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Abstract— This paper focuses on the design and test results
of an adaptive variation of Kalman filter (KF) estimator based
on fusing data from Inertial Measurement Unit (IMU) and two
Real Time Kinematic (RTK) Global Positioning Systems (GPS)
for driftless 3-D attitude determination and robust position
estimation of mobile robots. GPS devices are notorious for their
measurement errors vary from one point to the next. Therefore
in order to improve the quality of the attitude estimates, the
covariance matrix of measurement noise is estimated in real
time upon information obtained from the differential GPS
measurements, so that the KF filter continually is “tuned”
as well as possible. No a priori knowledge on the direction
cosines of the gravity vector in the inertial frame is required as
these parameters can be also identified by the KF, relieving any
need for calibration. Next, taking advantage of the redundant
GPS measurements, a weight least-squares estimator is derived
to weight the GPS measurement with the “good” data more
heavily than the one with “poor” data in the estimation
process leading to a robust position estimation. Test results
are presented showing the performance of the integrated IMU
and two GPS to estimate the attitude and location of a mobile
robot moving across uneven terrain.

I. INTRODUCTION

Both position and attitude determination of a mobile robot

are necessary for navigation, guidance and steering control

of the robot. A good survey of the state-of-the-art in sensors,

systems, and methods that aim at finding the position of a

mobile robot may be found in [1]. Dead-reckoning using

vehicle kinematic model and incremental measurement of

wheel encoders are the common techniques to determine

the position and orientation of mobile robots for indoors

applications. However, the application of these techniques for

localization of outdoor robots is limited, particularly when

the robot has to traverse an uneven terrain or loose soils.

This is because wheel slippage and wheel imperfection cause

quick accumulation of the position and attitude errors [2].

Other research utilizes inertial measurement unit and wheel

encoders to obtain close estimate of robot position [3]–

[5]. The problem with inertial systems, however, is that

they require additional information about absolute position

and orientation to overcome long-term drift [6]. An attitude

estimation system based on utilization of multiple inertial

measurements of a mobile robots is proposed in [3]. Only

pitch and roll angles may be estimated in this method by

using gravity components deduced from measurements of

two accelerometers [3], while the yaw angle is not detectable.
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Nowadays, differential GPSs to centimeter-level accuracy

are commercially available making them attractive for lo-

calization of outdoor mobile robots [7], [8]. Although the

GPS satellite infrastructure does not exist on the Moon

or Mars, development of the low-power transmitters called

“pseudolites” instead of orbiting satellites is a promising

technology that can be used for localization of a rover in

planetary exploration [9].

In this work, we present a method for estimating robot

attitude and position, in three dimensions, by optimally fus-

ing data from two RTK GPS measurements, accelerometric

measurements of gravity from an accelerometer and angular

rate measurements from a rate gyro in an adaptive Kalman

filter. Unlike the case of GPS-based attitude determination

of spacecraft, the two differential GPS receivers give their

ranges with respect to a stationary GPS base antenna. There-

fore, the GPS bias resulting from the multipath is nicely elim-

inated from measurement of the antenna-to-antenna baseline

due to the common mode rejection. However, RTK GPS

devices notoriously suffer from signal robustness issue as

their signal can be easily disturbed by many factors such as

satellite geometry, atmospheric condition and shadow. This

means that the covariance matrix of the GPS measurement

noise can not be given beforehand as it may change from

one point to another. In this work, the covariance matrix

associated with GPS measurement noise is simultaneously

estimated in an online fashion base upon information ob-

tained in real time from the measurements, so that the filter

continually is “tuned” as well as possible. In addition to the

attitude, the KF also estimates all required parameters such as

the direction cosines of the gravity vector in the inertial frame

and the gyro bias. We also show that the redundancy in the

GPS measurements data plus the knowledge of the GPS noise

characteristics can be utilized to enhance the accuracy and

robustness of the GPS-based localization of mobile robots.

Tests have been conducted on the Canadian Space Agency

(CSA) red rover for assessing the performance of our pose

estimator.

Section II describes the observation equations and their

linearization in terms of two GPS measurements and the ac-

celerometric measurements of gravity by the accelerometer.

In Sections III and IV, fusing accelerometer, rate gyro and

GPS information in a self-tuning adaptive KF for estimating

robot attitude is developed, while another stochastic estima-

tor for reliable position estimation of the robot is described

in Section V. Finally, the experimental results are reported

in Section VII.
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Fig. 1. Multiple GPS antennas and IMU attached on a vehicle body.

II. KINEMATICS

Fig. 1 schematically illustrates a vehicle as a rigid body to

which multiple differential GPS-antennas and an IMU device

are attached. Coordinate frame {A} is an inertial frame while

{B} is a vehicle-fixed (body frame) coordinate system. The

origin of frame {A} coincides with that of the GPS base

antenna, i.e., the vehicle GPS measurements are expressed

in {A}. On the other hand, the origin of {B} coincides with

the IMU center and their axes are parallel, i.e., the IMU

measurements are expressed in {B}. The orientation of {B}
with respect to {A} is represented by the unit quaternion q =
col(qv, qo), where subscripts v and o denote the vector and

scalar parts of the quaternion, respectively. Below, we review

some basic definitions and properties of quaternions used in

the rest of the paper. The rotation matrix A representing the

rotation of frame {B} with respect to frame {A} is related

to the corresponding quaternion q by

A(q) = (2q2
o − 1)13 + 2qo[qv×] + 2qvq

T
v , (1)

where [·×] denotes the matrix form of the cross-product.

Consider quaternions q1, q2, and q3. Then, A(q3) =
A(q1)A(q1) and q3 = q2 ⊗ q1 are equivalent, where ⊗
denotes the quaternion-product and the operators [q⊗] is

defined, analogous to the cross-product matrix as

[q⊗] = Υ − diag([qv×], 0), where Υ =

[
q013 qv

−qT
v q0

]

.

The conjugate q∗ of a quaternion is defined such that q∗ ⊗
q = q ⊗ q∗ = [0 0 0 1]T .

Now, assume that vector r represents the location of the

origin of frame {B} that is expressed in coordinate frame

{A}, and pi is the output of the ith GPS measurement.

Apparently, from Fig. 1, we have

pi = r + A(q)ei + vpi
∀i = 1, 2 (2)

where constant vectors eis are the locations of the GPS

antennas in the vehicle-fixed frame and vpi
s represent the

GPS measurement noises, which are assumed random walk

noises with covariance E[vpi
vT

pi
] = Rpi

.

The IMU is equipped with an accelerometer, which can be

used for accelerometric measurements of gravity. In general,

accelerometers’ outputs contain components of the accelera-

tion of gravity and the inertial acceleration. In mobile robots,

the level of inertial acceleration is negligible compared to

the acceleration of gravity [1]—typically maximum inertial

acceleration is about 0.03g. Therefore, despite the fact that

estimation of the inertial acceleration of the robot can be

obtained from the GPS data, it is sufficient to model the

inertial acceleration as a measurement noise in the KF.

Let assume that a be the accelerometer output. Then, the

acceleration equation can be written as

a

‖a‖
= AT k + va, (3)

where ‖·‖ denotes the Euclidean norm, and unit vector k

is defined to be aligned with the gravity vector in frame

{A}, while va captures the accelerometer noise and inertial

acceleration all together. We treat va as a random walk noise

with covariance E[vavT
a ] = σ2

a13. The unit vector k can

be defined in terms of the corresponding direction cosines

η = col(α, β) as

k(η) =

[
η

−(1 − ‖η‖
2
)1/2

]

(4)

A. Observation Equations

The objective of EKF is to determine the vehicle attitude

and position by fusing the IMU and GPS measurements.

This section presents the measurement equations and mea-

surement sensitivity matrix, while the state transition matrix

and the discrete-time process noise needed for covariance

propagation are developed later.

In principle, the attitude of a rigid body can be determined

from expressions of two non-collinear position vectors in

two coordinate systems. The gravity vector is given in both

frames {A} and {B} in (3), while the baseline vector

∆p , p1 − p2

is the rotated version of vector

∆e , e1 − e2,

which is expressed in the vehicle frame {B}. Therefore,

equations (2) and (3) are sufficient to obtain the attitude q

and the position r. However, the accuracy of this attitude de-

termination method is closely related to the distance between

the antennas. Typically, the antenna-to-antenna baseline dis-

tance, ‖∆e‖, is approximately 1 m, whereas the GPS error

is bout ±5 cm. This means that the error in measurement

of orientation of vector ∆p is about 10%, which is far from

desired accuracy. As will be discussed in the followings, the

two GPS observations in conjunction with the measurements

of the acceleration gravity will be used as external updates in

an elaborate Kalman filter integrating a rate gyro data with

the observation data.

In our implementation, the IMU signals are given at the

rate of 20 Hz, whereas the GPS data can be acquired at the

rate of 1 Hz. Therefore, an average of the IMU signal can
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be obtained between two consecutive GPS data acquisitions

whereby decreasing the IMU noise. The discrete-time mea-

surement of the acceleration is obtained through integration

of the IMU signals at interval tk − t∆ < t ≤ tk, where t∆
denotes the GPS sampling rate, i.e.,

āk =
1

t∆

∫ tk

tk−1

a(ξ)dξ (5)

Let us define the discrete-time measurement vector as

zk =

[
p1k

− p2k

āk/ ‖āk‖

]

. (6)

Then, in view of (2), (3) and (6), the observation vector

as a function of the discrete-time variables (qk, kk) can be

written as

hk =

[
A(qk)(e1 − e2)

AT (qk)kk

]

. (7)

Thus, the observation equation is

zk = hk + vk, where vk =

[
v

∆k

vak

]

represents the overall additive measurement noise, and

v
∆

= vp1 − vp2.

Assuming that the noises of the two GPS receivers are not

corrected with the IMU noise, the covariance matrix of the

measurement noise takes the form

Rk = E[vkvT
k ] =

[
R

∆k
0

0 σ2
a13

]

. (8)

Note that the discrete-time observation vector (7) is a

nonlinear function of the quaternion. To linearize the obser-

vation vector, one also needs to derive the sensitivity of the

nonlinear observation vector with respect to the system state

vector. To this end, consider small orientation perturbations

δq = q ⊗ q̄∗. (9)

around a nominal quaternion q̄. As will be discussed in

the following section, to take the decomposition rules of

quaternion into account, the state vector to be estimated by

the EKF is defined as

x = col(δqv, ρ) (10)

with ρ = col(b, η) ∈ R
5, where vector b is the

corresponding gyro bias as will be discussed in the following

section.

Now, by virtue of A(q) = A(δq⊗q̄), one can compute the

observation vector (7) in terms of the perturbation δq. Using

the first order approximation of nonlinear matrix function

A(δq) from expression (1) by assuming a small rotation δq,

i.e., ‖δqv‖ ≪ 1 and δq0 ≈ 1, we will have

A(δq) ≈ 13 + 2[δqv×]. (11)

Thus, the sensitivity matrix can be written as

H =

(
∂h

∂x

)

=

[
−2Ā[(e1 − e2)×] 03×3 03×2

2ĀT [k×]Ā 03×3 ĀT N

]

,

where Ā = A(q̄) and

N ,
∂k(η)

∂η
=

[
12

ηT /(1 − ‖η‖2)1/2

]

.

III. ATTITUDE ESTIMATION

A. Rate Gyro

The relation between the time-derivative of the quaternion

and the angular velocity ω can be readily expressed by

q̇ =
1

2
ω ⊗ q where ω ,

[
ω

0

]

. (12)

The angular rate obtained from the gyro measurement is

ωg = ω − b − ǫg (13)

where b is the corresponding bias vector; ǫg is the angular

random walk noises with covariances E[ǫgǫ
T
g ] = σ2

g13. The

gyro bias is traditionally modeled as [10]

ḃ = ǫb, (14)

where ǫb is the random walk with covariances E[ǫbǫ
T
b ] =

σ2
b13. Then, adopting a linearization technique similar

to [10], [11] one can linearize (12) about the nominal

quaternion q̄ and nominal velocity ω̄ = ωg + b̄, to obtain

d

dt
δqv = −ω̄ × δqv +

1

2
δb +

1

2
ǫg. (15)

Note that, since δqo is not an independent variable and it has

variations of only the second order, its time derivative can

be ignored, as suggested in [11]. Then, setting the dynamics

equations (15) and (14) in the standard state space form, we

get
d

dt
x = Fx + Gǫ, (16)

where ǫ = col(ǫg, ǫb); and

F =

[
−[ω̄×] 1

213 03×2

05×3 05×3 05×3

]

, G =





1
213 03×3

03×3 13

02×3 02×3





Note that the linear model (16), also known as design model,

just serves to generate the filter.

B. Discrete-Time Model

The equivalent discrete-time model of (16) is

xk+1 = Φkxk + wk (17)

where Φk = Φ(tk+t∆, tk) is the state transition matrix over

time interval t∆. In order to find a closed form solution for

the state transition matrix, we need to know the nominal

values too. The nominal values of the relevant states at

interval tk < τ ≤ tk + t∆ are given upon the latest estimate

update becoming available, i.e., q̄k(τ) = q̂k, b̄k(τ) = b̂k.

Similar to (5), the nominal value of the angular velocity

is obtained by averaging through integration of the IMU

signals at that interval between two consecutive GPS data

acquisition, i.e.,

ω̄k = b̂k +
1

t∆

∫ tk

tk−1

ωg(ξ)dξ. (18)
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Therefore, the state transition matrix can be obtained in

closed form for constant angular velocity or for varying

angular velocity which remains constant in direction. Let

us define θk(τ) = ω̄kτ and θk = ‖θk‖. Then, the state

transition matrix Φk(τ) = Φ(τ, tk + τ) takes on the form:

Φk(τ) =





Ψ1k
(τ) 1

2Ψ2k
(τ) 0

0 13 0

0 0 12



 (19)

where the elements of the above matrix are given as

Ψ1k
(t∆) =13 −

sin θk

θk
[θk×] +

1 − cos θk

θk
[θk×]2 (20)

Ψ2k
(t∆) =

(
13 +

cos θk − 1

θ2
k

[θk×] +
θk − sin θk

θ3
k

[θk×]2
)
t∆,

Let Σǫ = blockdiag(σ2
g13, σ

2
b13) be the continuous-time

covariance matrix of the entire process noise. Then, the

corresponding discrete-time covariance matrix is

Qk = E[wkwT
k ] =

∫ tk+t∆k

tk

Φ(t)GΣǫG
T
Φ

T (t)dt, (21)

which has the following structure

Qk =





Λ1k
Λ2k

0

× σ2
b t∆13 0

× × 0



 (22)

For small angle θk, where sin θk ≈ θk − 1
6θ3

k and cos θk ≈
1 − 1

2θ2
k, the elements of the state-transition matrix (20)

can be effectively simplified. Then, upon substitution of the

simplified state transition matrix into (21), we arrive at

Λ1k
=

(σ2
gt∆

4
+

σ2
b t3∆
12

)

13 +
σ2

b t3∆
240

[θk×]2

+
(σ2

gt∆

80
+

σ2
b t3∆

1008

)

[θk×]4

Λ2k
= σ2

b t2∆

(1

4
13 −

1

12
[θk×] +

1

48
[θk×]2

)

.

IV. ESTIMATOR DESIGN

A. Quaternion Update in Innovation Step

Note that the state transition matrix (19) is used only for

covariance propagation, while the system states have to be

propagated separately by solving their own differential equa-

tions. Let us compose the redundant state ax = col(q, ρ),
which contains the full quaternion q and parameters ρ.

Combining (12), (14) and ρ̇ = 0, we then describe the state-

space model of the system as

aẋ = f(ax, ǫ)

The EKF-based observer for the associated noisy discrete

system (17) is given in two steps: (i) estimate correction

Kk = P−

k HT
k

(
HkP−

k HT
k + Rk

)−1
(23a)

x̂k = x̂−

k + K
(
zk − h(χ̂−

k )
)

(23b)

Pk =
(
112 − KkHk

)
P−

k (23c)

and (ii) estimate propagation

ax̂−

k+1 = ax̂k +

∫ tk+t∆

tk

f(ax(t),0) dt (24a)

P−

k+1 = ΦkPkΦ
T
k + Qk (24b)

As mentioned before, the vector of discrete-time states,

xk, contains only the variations δqvk
not the quaternion qk.

However, the full quaternion can be obtained from the former

variables if the value of the nominal quaternion q̄k is given,

that is

δq̂−

k = q̂−

k ⊗ q̄∗

k (25)

A natural choice for the nominal value of quaternion is

its update estimate as q̄(tk−1) = q̂k−1. Since the nominal

angular velocity ω̄k is assumed constant at interval tk−1 ≤
t ≤ tk, then, in view of (12), the nominal quaternion evolves

from its initial value q̄(tk−1) to its final value q̄k = q̄(tk)
according to:

q̄k = e
1

2
[θ

k
⊗]q̂k−1. (26)

It can be shown that the above exponential matrix function

has a closed-form expression so that the above equation can

be written as

q̄k =
(
cos

θk

2
+ sin

θk

2

)
q̂k−1 (27)

+
( 2

θk
sin

θk

2
−

1

2
cos

θk

2

)

θk ⊗ q̂k−1

From (25), the innovation step of KF, i.e., (23b), can be

written in terms of the full quaternion, qk instead of its

variation δqvk
, as

[
δq̂vk

ρ̂k

]

=

[
vec(q̂−

k ⊗ q̄∗

k)
ρ̂−

k

]

+ K(zk − hk) (28)

where q̄k is obtained from (27). Finally, assuming that

‖δq̂vk
‖ < 1, a valid unit quaternion can be constructed from

q̂k =

[
δq̂vk√

1 − ‖δq̂vk
‖
2

]

⊗ q̄(tk) (29)

B. Noise-Adaptive Filter

The IMU noises are not usually characterized by a time-

invariant covariance. Therefore, σa can be treated as a

constant parameter, which can be either derived from the

sensor specification or empirically tuned. However, the GPS

measurement errors may vary from one point to the next,

in which case the error depends on many factors such as

satellite geometry, atmospheric condition, multipath areas,

and shadow. Therefore, it is desirable to weight GPS mea-

surement data in the GPS and IMU data fusion process

heavily only when a “good” GPS measurement data is

available.

In a noise-adaptive Kalman filter, the issue is that, in addi-

tion to the states, the covariance matrix of the measurement

noise has to be estimated [12], [13]. From (2), we get

∆p − A(q)∆e = v
∆

(30)
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Moreover, in view of quaternion error δq̃v = δqv − δq̂v and

the first order approximation of a small rotation matrix (11),

one can relate the actual rotation matrix to the nominal and

estimated rotation matrices and the quaternion error by

A(q) ≈ Â + 2Ā[δq̃×], (31)

where Â = A(q̂) is the estimation of the rotation matrix.

Let us define the residual error

̺ = ∆p − Â∆e = −Ā(∆e × δq̃v) + v
∆
, (32)

where the RHS of (32) is obtained by using (31) in (30).

It is apparent from (32) that ̺ is a linear combination

of of q̃v and v
∆

, and hence it, in fact, is a zero-mean,

white noise sequence, i.e., E[̺] = 0. On the other hand,

since the Kalman filer gives the covariance matrix of all

estimated states including the quaternion, one can get Pq =
E[δq̃vδq̃T

v ] ∈ R
3×3 from the filter covariance matrix, i.e.,

P =

[
Pq ×
× ×

]

∈ R
8×8.

With the exception of the DC component, the rate gyro

provides much more accurate information about the attitude

than the GPS meaning that the attitude error is mainly

determined by the gyro noise. In other words, it is reasonable

to assume that random variables δq̃v and vp are weakly

correlated. Ignoring the cross correlation of these stochastic

variables, one can obtain an estimate of the covariance matrix

R̂
∆

from (32) as:

R̂
∆k

= Sk + 4Āk[∆e×]Pqk
[∆e×]T ĀT

k (33)

where

Sk = E[̺k̺T
k ] ≈

1

w

k∑

i=k−w

̺i̺
T
i (34a)

= Sk−1 +
1

w

(

̺k̺T
k − ̺k−w̺T

k−w

)

. (34b)

Here, the term in the RHS of (34a) is an ergodic approxi-

mation of the covariance of the zero-mean residual ̺ in the

sliding sampling window with length w. Despite the batch

processing (34a) is equivalent to the recursive formulation

(34b), the latter is more computationally efficient.

C. Initialization of KF

For the first iteration of the EKF, an adequate guess of the

initial states is required. The best guess for the parameters

at t = 0 s is ρ = 05×1, while the initial orientation of the

vehicle with respect to the inertial frame at t = 0 s has

to be carefully selected so that our assumption ‖δqv‖ ≤ 1
is satisfied in the innovation step (28)-(29); otherwise the

error quaternion will not be unit norm. To prevent this

from happening, it is important to keep the initial error in

quaternion estimate small as much as possible based on the

information available from the measurements.

Mathematically, the rotation matrix can be computed from

two non-collinear unit vectors k and ∆p/ ‖∆p‖ and their ro-

tated versions a/‖a‖ and ∆e/ ‖∆e‖. Similar to the methods

for registration of 3-D laser scanning data [14], let us form

the following matrices from the unit vectors as

Da =
[
k ∆p/ ‖∆p‖ k × ∆p/ ‖k × ∆p‖

]
(35a)

Db =
[
a/ ‖a‖ ∆e/ ‖∆e‖ a × ∆e/ ‖a × ∆e‖

]
(35b)

Note that the column vectors in (35) are normalized in order

to avoid ill-conditioning of the matrices. Then, in the absence

of measurement noise, i.e., v ≡ 0, the above matrices are

related by

Da = ADb (36)

Matrices Da and Db are non singular as long as k and

∆p are not collinear, i.e., the line connecting the GPS

antennas is not parallel to the gravity vector. Then, under

this circumstance, the rotation matrix can be obtained from

A = DaD−1
b (37)

Solution (37) yields a valid rotation matrix A so that AT A =
13 only if there is no error in the column vectors of matrices

(35). This may not be the case in practice, however, due to

the IMU and GPS noises. To correct this problem, one may

observe that all singular values of any orthogonal matrix must

be one. This means that the singular value decomposition of

the RHS of (37) yields

DaD−1
b = UΣV T ,

where U and V are orthogonal matrices and matrix Σ =
13 + ∆Σ is expected to be close to the identity matrix, i.e.,

‖∆Σ‖ ≪ 1. Therefore, by ignoring small matrix ∆Σ, a valid

solution to the rotation matrix can be found as

Â = UV T , (38)

which, then, can be used to obtain the equivalent quaternion

at t = 0 s.

V. POSITION ESTIMATION

Now, with the estimation of attitude in hand, one can

obtain an estimate of position r from either one of the

equations in (1). Nevertheless, in order to improve the quality

of the position estimate, it would be desirable to weight the

GPS measurement with the “good” data more heavily than

the one with “poor” data in the estimator; rather than all GPS

measurements being given equal weights.

Assuming that the noises of the two GPS receivers are not

mutually corrected, we will have

E[vpi
vT

pj
] =

{
Rpi

i = j
0 i 6= j

that leads to

R
∆

= Rp1
+ Rp2

(39)

The objective is to estimate Rp1
and Rp2

from (39) upon

real-time estimate of R
∆

using (33). There is no unique

solution to (39), unless the share of each GPS in the overall

measurement uncertainty is known. To this end, one can

take advantage of that most RTK GPS receivers return a

real-time signal indicating the confidence on their position
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measurements. Now, assuming the covariance matrix of the

ith GPS in (39) is proportional to its confidence measure µi,

one can assume

Rpi
=

µi

µ1 + µ2
R

∆
∀i = 1, 2, (40)

which trivially satisfies (39). On the other hand, setting

equations (2) in the matrix form and then using (31) in the

resultant equation, we arrive at

y = Lr + np + nq
︸ ︷︷ ︸

noise

(41)

where

y =

[
p1 − Âe1

p2 − Âe2

]

, L =

[
13

13

]

,

while the GPS measurement errors and attitude estimation

errors are respectively represented by vectors

np =

[
vp1

vp2

]

, nq = −2Ā

[
[e1×]
[e2×]

]

δq̃v.

Finally, using the argument that mutual correlation between

np and nq is negligible, we can write the covariance matrix

of the entire noise in (41) as:

Rr = E[npn
T
p ] + E[nqn

T
q ] (42)

=

[
Rp1

+ 4Ā[e1×]Pq[e1×]ĀT 4Ā[e1×]Pq[e2×]ĀT

4Ā[e2×]Pq[e1×]ĀT Rp2
+ 4Ā[e2×]Pq[e2×]ĀT

]

Then, an optimal solution to (41), which minimizes the

normalized measurement residual, can be obtained by the

weighted pseudo-inverse where a suitable weighting matrix

is the covariance matrix of the noise [15]. That is

r̂ = (LT R−1
r L)−1LT R−1

r y, (43)

If the orientation estimation error is sufficiently small, i.e.,

the second term in RHS of (42) is negligible, then (43) can

be conveniently written as

r̂ = W1(p1 − Ae1) + W2(p2 − Ae2), where (44)

W1 , Rp2

(
Rp1

+ Rp2

)−1
(45a)

W2 , Rp1

(
Rp1

+ Rp2

)−1
. (45b)

VI. POSE ESTIMATION FROM THREE GPS

MEASUREMENTS

This section briefly describes a method to estimate the

pose adequately from three independent GPS measurements

and their corresponding estimated noise covariance matri-

ces. Assume that p3, vp3
and e3 denote the third GPS

measurement, its noise, and location of its antenna on the

vehicle, respectively. Also, denote ∆p′ = p1 − p3 and

∆e′ = e1 − e3. Then, in a development similar to (35)

to (38), one can calculate the rotation matrix from the

three GPS measurements by replacing vectors k and a in

(35) by ∆p′/ ‖∆p′‖ and ∆e′, respectively. Furthermore, the

optimal position estimation can be obtained similar to the

development from (41) to (45).

?

RTK GPS antenna

Fig. 2. The CSA red rover with three RTK GPS antennas.
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Fig. 3. IMU outputs.

VII. EXPERIMENT

Fig. 2 shows the CSA red rover, which is equipped

with three RTK GPS receivers along with satellite antennas

and radio modems (model Promark3RTK from Magellan

Navigation Inc.) in addition to an IMU device from Cross-

bow Technology, Inc. (model IMU300). Experiments were

conducted on the 30 × 60 m Mars Emulation Terrain (MET)

of the CSA .

An operator sent a pre-scheduled sequence of primitive

commands to the mobile robot—e.g.,“move forward of a

certain distance”, “rotate clockwise by 45◦”, etc—so that

the robot follows a pre-planned path going through some

specified via points. The GPS and IMU measurements are

received at the rate of 1 Hz and 20 Hz, respectively, and the

corresponding trajectories are depicted in Figs. 3 and 4. The

variances of the IMU noise are set to σg = 5×10−5 rad/s and

σa = 0.3 m/s2, while the covariance matrix of the baseline

vector measurement from the two GPS data is estimated

in the online fashion as illustrated in Fig. 5. It is apparent

from the figure that the covariances are not constant, rather

they fluctuate significantly over time, e.g., the noises are
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Fig. 8. Attitude errors.

0 100 200 300 400 500
4

6

8

10

12

 

 

0 100 200 300 400 500

−30

−28

−26

−24

0 100 200 300 400 500
0.5

1

1.5

2

2.5

time (sec)

X
(m

)
Y

(m
)

Z
(m

)

two-gps

ref
one-gps

Fig. 9. Vehicle position.

2051



0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

time (sec)

two-gps
one-gps

P
o

si
ti

o
n

er
ro

r
(m

)

Fig. 10. Position errors.

particularly strong around t = 400 s. In our experiment,

we compare the Two-GPS-IMU fusion method with One-

GPS-IMU method. Fig. 6 illustrates that the KF can quickly

identify the parameters, i.e., gyroscope bias and the direction

cosines of the gravity vector. Trajectories of the estimated

vehicle attitude (represented by quaternion) based on the

Two-GPS-IMU fusion method are illustrated in Fig. 7. For

a comparison, trajectories of the attitude obtained once from

numerical integration of the gyro rate signals and then from

the geometric pose estimation using three GPS measurements

are also shown in the figure. Fig. 8 illustrates the time-history

of the orientation errors calculated by

Attitude Error = 2 sin−1 ‖vec(q̂∗ ⊗ qref)‖. (46)

It is clearly evident from the figure that the attitude esti-

mation from the adaptive KF exhibits no drift, whereas the

orientation error using the gyro alone accumulates gradually

due to its drift, i.e., a drift of 14◦ over the 500 s. period.

The second part of the experiment involves estimating

the vehicle position. It was already known from graphs

of Fig. 5 that the GPS measurements are erroneous at the

time around t = 400 s that is mainly attributed to GPS 1.

However, since GPS 2 still provides “good” data during the

faulty period of GPS 1, the stochastic estimator described in

Section V should be still able to estimate the position. To

demonstrate the robustness of the latter estimator, we will

use the position estimate obtained from averaging of three

GPS measurements as described in Section VI. Fig. 9 shows

trajectories of the vehicle position based on three methods:

i) One-GPS and gyo , ii) Two-GPS method and iii) Three-

GPS method (reference trajectory). The errors between the

reference and the other two position estimation methods are

calculated and the results are plotted Fig. 10. The spike in

the position error at the time around t = 400 s is due to the

fact that the error margin of the GPS 1 receiver during that

period is incidentally high.

VIII. CONCLUSIONS

A method for driftless 3-dimensional attitude determina-

tion and reliable position estimation of a mobile robot by op-

timally fusing the information from IMU and two RTK GPS

receivers in an adaptive KF has been developed. In the face

of variation and uncertain GPS noise model, the covariance

matrix of measurement noise was estimated upon informa-

tion obtained in real time from the GPS measurements, so

that the KF filter is continually “tuned” as well as possible.

In addition to the vehicle attitude, the KF estimator is able

to estimate all parameters required for attitude determination

including the direction cosines of the gravity vector relieving

the need for any calibration. Furthermore, the weighted least-

squares estimator has been derived for a robust estimation of

the vehicle position that weights the GPS measurement with

“good” data more heavily that the one with “poor” data in

the estimation process. Experiments conducted on the CSA

red rover and the results have shown that the Two-GPS-

IMU system can provide a driftless attitude determination

and reliable localization of the vehicle.
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