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Abstract— Periodicity has been recognized as an important
cue for tasks like activity recognition and gait analysis. However,
most existing techniques analyze periodic motions only in image
coordinates, making them very dependent on the viewing angle.
In this paper we propose a new technique for reconstructing
periodic point trajectories in 3D given only their apparent
trajectories in image coordinates from a single stationary
camera. We show that this reconstruction is possible without
performing a costly gradient descent-type optimization, and is
based only on a single SVD. This new algorithm is shown to
accurately reconstruct natural human motions, allowing them
to be compared in 3D world coordinates, independent of the
angle from which they were originally viewed.

I. INTRODUCTION

Periodic motion is quite common in our everyday experi-

ence, and one of the most frequent and interesting examples

arises from natural human motions such as walking and

running. It has been recognized as an important cue in the

literature by researchers interested in various areas, such as

activity recognition and gait analysis, among others. How-

ever, since monocular systems are far more commonplace

than multi-camera observations, existing techniques for an-

alyzing periodicities are largely image-based. This typically

implies a lack of view-invariance, since the same motion can

have a drastically different appearance in the image if viewed

from a different angle.

Because they are not view-invariant, motion/action classi-

fiers or mappings that are learned solely from image coordi-

nate observations typically do not generalize well to different

cameras or viewing angles. In general, a new classifier or

mapping must be learned separately for every viewing angle

(e.g., [7]). As such, one way to circumvent this need is

to first infer characteristics of the motion in 3D, and then

any subsequent analysis is performed in world coordinates,

independent of the viewing angle from which the motion

was originally imaged. This allows one to develop general

classifiers or mappings, which theoretically can be used

for any captured sequence. Of course, in the case of any

arbitrary motion it may not be possible to reconstruct the

object’s trajectory in 3D given only its appearance in image

coordinates. However, when more is known about the motion

of the object in the world, this additional information can

sometimes be used to adequately constrain the reconstruction

problem.

E. Ribnick is with the Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, MN
ribnick@cs.umn.edu

N. Papanikolopoulos is with the Department of Computer Sci-
ence and Engineering, University of Minnesota, Minneapolis, MN
npapas@cs.umn.edu

In this paper we explore the idea of reconstructing periodic

point trajectories in 3D given only their appearances in image

coordinates, along with the known physical constraints on

a motion that is periodic in the world. Broadly speaking,

the goals of this paper are twofold: (i) to show that such

reconstructions are both possible to obtain and accurate in

realistic settings, and (ii) that they contain useful information.

We demonstrate that this information can be used to analyze

and compare natural human motions, filmed from completely

different viewing angles. The focus here is on human motion,

because it is the type of periodic motion for which the richest

set of applications exist. In addition, it is more challenging

to reconstruct and analyze than mechanical motions, since it

often includes significant deviations from pure periodicity.

We demonstrated in [15] that it is possible in most cases

to reconstruct periodic motions in 3D. That work was the

first published attempt to perform reconstruction of periodic

motion (to the best of our knowledge), which represents

a significant proof-of-concept, but it left several questions

unanswered. Here we present a new formulation of the peri-

odic motion reconstruction problem, and attempt to address

several of the remaining issues. Some of the advantages of

this formulation are:

• we assume only that the observed motion is periodic in

the world, and do not require any additional constraints

for reconstruction,

• estimation does not require a costly gradient descent-

type optimization, but only a single SVD,

• extrinsic camera parameters do not need to be known,

and

• reconstruction can be performed from observation of

only two periods of motion.

Additionally, the formulation presented here has an intuitive

multi-view geometry analogy, from which significant insight

can be obtained regarding the nature of the problem and

the information that is required to solve it. Our formulation

is presented in the context of a more complete system, in

which points of interest are tracked automatically, and a

novel heuristic for automatically estimating the period of

motion is presented. It is illustrated that accurate and useful

reconstructions are possible to obtain in a very automated

fashion, and that they are robust to the noise and errors

inherent in real scenarios.

II. RELATED WORK

As mentioned above, we demonstrated in [15] that it is

possible in most cases to reconstruct periodic motions in

3D given their image trajectories. That formulation is based

on minimizing the squared reprojection error, and requires
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one additional constraint in order to perform the estimation.

It requires that at least three periods of motion must be

observed in order to perform reconstruction, and tracking

and period estimation are performed manually.

Belongie and Wills [2] propose a technique for estimating

the structure of an object that is undergoing periodic motion.

They consider snapshots of the object separated by one

period in time, and treat them as multiple views of the same

object. These multiple views are used to perform geometric

inference using techniques from multiview geometry. Note

that this is fundamentally differently than what we aim to

achieve in this paper, since our goal is to estimate the

trajectory of an object in 3D, and not the structure of the

object itself. In addition, the technique in [2] only makes

use of one image per period of motion for their purposes,

while we use samples from every image during the observed

trajectory in order to obtain complete motion information.

Other work related to periodic motion has focussed mainly

on detection and analysis in image coordinates, and does not

explicitly consider the 3D information that is embedded in

the periodicity. In some cases, the object of interest is first

tracked, and translational motion removed before processing.

Several techniques (e.g., [3], [5], [11]–[14]) use some type of

Fourier analysis of pixel intensities or appearances to detect,

segment, and represent periodic motions. Frequency-domain

techniques have also been used in the activity classification

and recognition tasks [8], [10], [17].

Some of the other existing work does not rely on Fourier

techniques to detect and analyze periodic motion. Seitz and

Dyer [16] present a framework for analyzing cyclic motions

that deviate from pure periodicity. In [1], cyclic motions

are detected as repetitions on surfaces carved out by a

moving object in xyt space. Periodicity has also been used

to recognize and classify human gestures [4], human facial

expressions, and bird movements [6].

III. PERIODIC MOTION RECONSTRUCTION

We now describe in more detail the problem we are trying

to solve, and introduce the mathematical formulation. For

now it is assumed that a point of interest has been tracked in

image coordinates, and that this point corresponds to a point

in the world on an object that is undergoing periodic motion

with a known temporal period. For example, in this paper

we consider points on the hands and feet of moving people.

Later we will describe how the track and period estimate are

obtained automatically.

Periodic motion here is defined as any movement that is

periodic in velocity (in 3D world coordinates):

v(t + nT ) = v(t), (1)

for any integer n, where v , (Ẋ, Ẏ , Ż) and T is the period.

In terms of the 3D position of the point, we have:

p(t + T ) = p(t) + ∆pT
, (2)

where ∆pT
, (∆XT

,∆YT
,∆ZT

) is the displacement per

period of the point, which is constant over any period of

length T .

Since samples are taken at discrete times determined by

the video frame rate, we represent times using discrete

indices of the form tik. This represents the time of the k-

th sample in the i-th period. From equation (2) we can then

arrive at the expression:

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k

Y i
k
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

 , (3)

for any integers k and i, where t0k is the time of sample k

in the zeroth period.

In order to see how samples from the periodic trajectory

are projected into image coordinates, we rely on the pin-

hole camera model to obtain equations for the image point

(ui
k, vi

k) in pixel coordinates:
(
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k

)

=
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)

+

(
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)

, (4)

where we have placed the origin of the world coordinate

system at the camera center, with the Z-axis parallel to

the camera’s optical axis. The quantities fx, fy , cx, and cy

are intrinsic parameters of the camera representing the focal

length and image plane center in pixel units. Equation (4)

can be expanded using (3) as follows:
(

ui
k

vi
k

)

=
1

Z0
k + i∆ZT

(

fx 0
0 fy

) (

X0
k + i∆XT

Y 0
k + i∆YT

)

+

(

cx

cy

)

.

(5)

Thus, we see that it is possible to express the projection

of any sample projected into image coordinates, (ui
k, vi

k),
as a function of the corresponding 3D point in the ze-

roth period (X0
k , Y 0

k , Z0
k) and the inter-period displacement

(∆XT
,∆YT

,∆ZT
).

A. Estimation

Rearranging the terms in Equation (5), we can obtain

expressions for X0
k and Y 0

k in terms of estimates of Z0
k and

(∆XT
,∆YT

,∆ZT
):

iX̂0
k =

ui
k − cx

fx

(Ẑ0
k + i∆̂ZT

) − i∆̂XT
(6)

iŶ 0
k =

vi
k − cy

fy

(Ẑ0
k + i∆̂ZT

) − i∆̂YT
, (7)

where “ ˆ ” denotes that a quantity is an estimate, and iX̂0
k

and iŶ 0
k are approximations of X0

k and Y 0
k based on the

estimates and the image-coordinate samples of period i. Such

equations can be formed for each sample k = 0, 1, ...N − 1
and each period i = 0, 1, ...M − 1. Note that, from these

relations, it is clear that the parameters we wish to estimate,

Z0
k , k = 0, 1, ...N − 1 and (∆XT

,∆YT
,∆ZT

), completely

characterize the trajectory of the point in 3D.

Ideally i1X̂0
k = i2X̂0

k and i1 Ŷ 0
k = i2 Ŷ 0

k for any sample k
and any pair of periods i1 and i2. Therefore, making use of
(6) and (7), we can obtain a pair of equations as follows:

i1X̂
0

k −

i2X̂
0

k =
u

i1
k − u

i2
k

fx

Ẑ
0

k + (i2 − i1)∆̂XT

+
i1u

i1
k − i2u

i2
k + cx(i2 − i1)

fx

∆̂ZT
= 0 (8)
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and

i1 Ŷ
0

k −

i2 Ŷ
0

k =
v

i1
k − v

i2
k

fy

Ẑ
0

k + (i2 − i1)∆̂YT

+
i1v

i1
k − i2v

i2
k + cy(i2 − i1)

fy

∆̂ZT
= 0. (9)

Two equations of the form (8) and (9) can be obtained for

every sample k, for every pair of periods i1 and i2. This

results in a total of 2N

(

M

2

)

, where M is the number of

periods, and N is the number of samples from each period.

If we stack all these equations together in matrix form, the

result is the overconstrained homogeneous linear system:

AX = 0, (10)

where A ∈ R



2N





M

2







×(N+3)

is the coefficient matrix,

and X ∈ R
N+3 is the vector of the parameters we wish to

estimate:

X =
(

Ẑ0
0 Ẑ0

1 Ẑ0
2 ... Ẑ0

N−1 ∆̂XT
∆̂YT

∆̂ZT

)T
.

(11)

Since the system (10) is overconstrained, the estimation

is cast as a homogeneous linear least-squares problem in

which we aim to minimize ‖AX‖2 subject to ‖X‖2 = 1.

Note that ideally the solution X must lie in the nullspace

of A, and that the nullity of A is one. This implies that it

is possible to obtain a solution only up to a scaling factor.

We will demonstrate later that this is sufficient for many

activity analysis tasks. This minimization can be performed

efficiently using one Singular Value Decomposition (SVD),

where A = UΣV T , and the minimizer X∗ is the last column

of V [9].

Finally, once the parameters X are estimated, the trajec-

tory can be reconstructed using (6) and (7). We estimate

X0
k by taking the mean of the estimates iX̂0

k over all

periods i, and similarly for Y 0
k , for all samples k. Points

from subsequent periods can then easily be reconstructed

from the estimates of (X0
k , Y 0

k , Z0
k) using the relation (3),

k = 1, 2, ..., N − 1.

B. Multi-View Geometry Analogy

An interesting observation is that the problem described

above is mathematically analogous to multi-view reconstruc-

tion. Since it is assumed that each period of the trajectory

is identical in world coordinates, observation of M periods

from a single camera is mathematically equivalent to ob-

serving a single period from M cameras. Additionally, this

implies that the motion between these “virtual cameras” is

purely translational, and that the translation from camera

i to camera i + 1 is (−∆XT
,−∆YT

,−∆ZT
). To see this,

simply reinterpret all equations presented thus far, taking k

to be the index of a sample in the one observed period,

and i to be the index of the virtual camera view. Under this

analogy, equation (5) can be interpreted as expressing the

pixel coordinates of sample k in the i-th camera view, as a

function of the 3D position of sample k in the coordinate

frame fixed at camera i = 0, and the translation between the

camera views.

Recognizing this equivalence allows us to understand the

current problem in a quite intuitive manner, and to draw

some simple conclusions regarding its solvability based on

well-known results from multi-view geometry. First, we

point out that when the motion is periodic in position, this

implies that the translation between the virtual cameras,

−(∆XT
,∆YT

,∆ZT
), is zero. In this case, it is not possible

to reconstruct the periodic trajectory, since all of the virtual

cameras are collocated. Indeed, it is possible to arrive at the

same conclusion by observing that the system of equations of

the form (8) and (9) becomes ill-posed when the inter-period

displacement goes to zero.

Second, the mathematical equivalence between our prob-

lem and multi-view reconstruction also assures us that only

two periods of motion need to be observed in order to

estimate the trajectory in 3D. This is equivalent to binocular

stereo, where we have two virtual cameras observing a single

period of motion.

Finally, since the motion between these virtual cameras is

known to be purely translational, it is guaranteed that the

only other case in which the problem becomes degenerate is

when the 3D samples in the first period of motion happen to

be coplanar with the optical centers of both virtual cameras

[9]. This can only happen in the unlikely case when all points

on the periodic trajectory lie in a plane, and the camera views

the trajectory from a point on this plane.

C. Tracking Points of Interest

Until now it has been assumed that the trajectory of the

point in image coordinates is already known. However, in

the experiments here we have used an automatic tracker in

order to demonstrate that reconstruction of periodic motion

is still possible when the image coordinate samples contain

significant noise. Note that any arbitrary algorithm which can

accurately track a point of interest in image coordinates could

be used, and that the choice of tracking algorithm is purely

one of convenience based on the particular application.

For the results presented here we have used a manually

initialized marker-based tracker, in which the subject wears

a brightly colored patch that can be easily identified in the

image. In most cases, it is attached near the subject’s ankle.

Colors are analyzed in normalized RGB space, which is

known to be illumination-invariant for Lambertian surfaces.

A simple Bayesian classifier is learned from the manual

initialization, in which the marker color is modeled as a mul-

tivariate Gaussian in normalized RGB space. This classifier

is then used to identify the colored marker in subsequent

images.

D. Period Estimation

We also propose a new heuristic for estimating the period

of motion (or equivalently, the dominant frequency), which

has been found to perform reliably on real data. A key

observation here is that, even though the periodic trajectory

has been warped by the perspective projection into image
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coordinates (and as such is no longer periodic in the image),

much of the temporal frequency content of the original world

coordinate signal can still be recovered. This is not always

immediately obvious from the appearance of the trajectory

in the image.

Once a point undergoing periodic motion has been tracked,

its image coordinate trajectory can be thought of as a curve

through u-v-t-space, where, u and v are image coordinates,

and t is time. If one were to plot the time derivatives of the

u(t) and v(t) signals separately, it might be observed that

one of these signals appears to be “more periodic” than the

other. In fact, these are just two examples of projections

of the u̇-v̇-t trajectory onto planes parallel to the t-axis.

We estimate the period by projecting the u̇-v̇-t trajectory

onto several planes parallel to the t-axis at evenly spaced

rotations. For each projection, the Fast Fourier Transform

(FFT) is computed, and the dominant spectral component is

identified. The median of these dominant frequencies over

all projections is then taken to be the inverse of the period

of motion.

IV. EXPERIMENTS

In order to demonstrate the effectiveness of the proposed

technique for reconstructing periodic trajectories in 3D, we

perform several experiments with videos of real human mo-

tion. We focus on natural human motion because it is quite

challenging, in that there can be significant deviations from

perfect periodicity. Additionally, human motion analysis is

an area of interest in the computer vision community, and

has a rich set of potential applications. In the following

experiments we attempt to show that the reconstructions are

accurate (§IV-C), that they are view-invariant (§IV-A), and

that useful information is embedded in them, which can be

used to make inferences about the motion of a human subject

(§IV-B).

The tracking algorithm outlined in §III-C was used to track

points of interest in all experiments, except the one in §IV-C,

where we have used an existing dataset for comparison. In

all cases where our tracking algorithm was used, the marker

was fixed near the subject’s ankle. The period estimation

technique presented in §III-D was used in all of the following

experiments.

A. View-Invariance

In this experiment we analyzed videos of humans walking

in a straight line. The videos contained 34 walking sequences

from two different people, filmed simultaneously from two

very different viewing angles. Each trajectory was recon-

structed separately from both views. The purpose of this

experiment is to show that the two reconstructions are very

similar for each sequence, implying view-invariance.

Since reconstruction is accurate only up to a scaling

factor, and the extrinsic camera parameters are unknown,

it was necessary to first project the reconstructions onto

a standard set of basis vectors in order to compare them.

New axes were computed for any given sequence using

Principal Component Analysis (PCA) on the reconstructed
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x
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 1

0 50 100 150 200
−0.5

0

0.5

A
x
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0 50 100 150 200
−0.2

0

0.2

time

A
x
is

 3
View 1

View 2

Fig. 1. Example of view-invariant reconstruction. (top) Two views of the
same trajectory. (bottom) Both reconstructions plotted together, reprojected
onto the axes computed using PCA. Each dimension is plotted against time.
Three periods are shown.

3D datapoints from one period of motion. The datapoints

were then projected onto the new axes, and scaled. Finally,

we compare two reconstructions by aligning the principal

components, and computing the mean Euclidean distance

between corresponding samples in this new space. Note

that the new axes computed with PCA do not necessarily

correspond to any standard XY Z axes in the world.

An example of a single walking sequence, reconstructed

independently from two views, is shown in Figure 1. Notice

that even though the trajectory of the tracked point is the
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Walk Jog March Shuffle

V
ie

w
1

V
ie

w
2

Fig. 2. Examples of the four activities, from two different views.

same in both cases, its appearance in image coordinates

changes dramatically with the viewing angle. Figure 1 (bot-

tom) shows plots of the reconstructions from the two views,

superimposed. Note that they are plotted on the new axes,

as described above, where the first axis is the principal

component. Three periods of the reconstructions are shown,

plotted against time on the horizontal axis. As can be seen,

the two reconstructions match each other very well, even

over multiple periods.

Similar analysis was performed for each of the 34 motion

sequences, and the distance between each corresponding pair

of reconstructions was computed – the so-called inter-view

reconstruction error. Since the reconstructions are on an

arbitrary scale, the distance between them is computed as

a fraction of the total displacement over the three periods.

We found that the average inter-view reconstruction error

was 8.7% of the total displacement, which shows that the

corresponding reconstructions from different views match

each other quite well. This will be further explored below.

B. Activity Classification

Reconstruction quality and view-invariance are further

examined through the task of activity classification. In this

experiment we show that the reconstructed trajectory of a sin-

gle point on the body (near the ankle in this case) can be used

to distinguish between several activities. Here we analyzed

videos containing two people performing several instances

of the following four activities: walking, jogging, marching,

and sideways shuffling. As before, motion sequences were

filmed from two very different viewing angles. Examples of

these four activities are shown in Figure 2 from two different

views.

It is important to note that the aim of this paper is not to

propose a new method for activity recognition. Rather, we

choose the task of activity classification only to demonstrate

that it is possible to accurately reconstruct periodic motions

in 3D from a single camera, independent of viewing angle,

and to show that useful information is embedded in these

reconstructions.

The dataset used in this experiment consisted of 32

sequences, including four instances of each activity from

TABLE I

CONFUSION MATRIX FOR OPPOSITE-VIEW ACTIVITY CLASSIFICATION.

Classification
Walk Jog March Shuffle

A
ct

u
al

Walk 8 0 0 0
Jog 0 8 0 0

March 3 0 5 0
Shuffle 0 0 0 8

each of the two views (see Figure 2 for examples). These

sequences contain motions from two different people. We

employed an opposite-view nearest-neighbor classification

scheme, in which a reconstructed trajectory from one view is

assigned an activity label based on its nearest-neighbor from

the reconstructed trajectories from the other view. Distances

between trajectories were computed using the same PCA-

based axis-alignment and scaling as described above in §IV-

A.

Results from the opposite-view activity classification are

shown in Table I in the form of a confusion matrix. Overall

classification accuracy is 90.6%. Notice that the walking,

jogging, and shuffling sequences are classified perfectly.

Some of the march sequences were erroneously classified

as walks since the motions are quite similar in cases when

the marching action is not performed well. Reconstruction is

also sensitive to errors in period estimation.

C. Reconstruction Accuracy

So far we have demonstrated that it is possible to recon-

struct periodic motions in 3D irrespective of the viewing

angle, and that these reconstructions can be used to make

inferences about the human subject. In this final experiment,

we examine the absolute accuracy of the reconstruction. For

the sake of comparison, the data used in this experiment

was the same used in [15]. The video contains footage of a

walking person. Importantly, we also have the ground-truth

trajectory of a point on the person’s hand in 3D, which was

captured simultaneously with a commercial motion capture

system. An image from the sequence is shown in Figure 3,

with the track overlaid.
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For this experiment our tracking algorithm was not used

– rather, tracking information was provided with the dataset.

However, our automatic period estimation was used. Recon-

struction of the periodic trajectory was performed from a

single view and compared with the 3D ground-truth. The

reconstruction and ground-truth were matched and error

computed as described earlier using PCA, except that in

this case we scale the reconstruction to be the same scale

as the ground-truth. The aligned reconstructed and ground-

truth trajectories are shown in Figure 4 over three periods,

on the reprojected axes. Note that in this case, the units of

the vertical axes are mm. As can be seen, the reconstruction

matches quite closely with the ground-truth trajectory. For

this trajectory, the average reconstruction error is 5.92cm

over three periods. This is quite similar to the reconstruction

error reported for this sequence in [15]. Additionally, in

our case the error in the stride length estimation (i.e., the

magnitude of the inter-period displacement) was 7.9mm.

V. CONCLUSIONS AND FUTURE WORK

We have presented a new algorithm for reconstructing

periodic motions in 3D from a single stationary view, and

loosened many of the assumptions of the previous technique.

Fig. 3. An image from the walking sequence.
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Fig. 4. Reconstruction of hand trajectory, plotted together with ground-
truth. Here the vertical axes are on the mm scale. Three periods are shown.

The proposed formulation also has an intuitive multi-view

geometry interpretation, from which important conclusions

can be drawn. It was demonstrated that these reconstructions

are accurate, view-invariant, and contain useful information.

We focussed on natural human motion, and illustrated that

the reconstructed trajectory of a single point on the body can

be used to classify various activities.

There are several aspects that we plan to investigate

further in the future. It would be interesting to explore

the structure of the manifold on which different periodic

human motions reside. Additionally, we plan to develop

reconstruction techniques which explicitly model fluctuations

in instantaneous frequency.
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