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Abstract— Robotic teams are often proposed for solving a
number of problems, ranging from exploring unknown envi-
ronments to monitoring areas for security or environmental
contamination. These teams are composed of individual robots
which may lack the capabilities to complete a task on their
own. One critical capability required by teams regardless of the
mission is the ability to have sufficient battery life to remain
active for the duration of the mission.

We present an approach for maintaining battery life by
developing a hierarchical team composed of deployable robots
and docking stations. Unlike other approaches, the approach
presented here focuses on docking stations supporting multiple
deployed robots simultaneously. In order to do so the docking
stations must continually optimize their locations with respect
to the robots in need of service. Discussion of the optimization
is presented, along with simulation in multiple environments to
illustrate the scalability of the approach to large robotic teams.
The on-going transition of this algorithm to actual hardware is
also discussed.

I. INTRODUCTION

Robotic teams are often proposed as a means of reducing
exposure of humans to hazardous situations. In addition,
robotic teams are proposed as a way to increase the ef-
fectiveness over a single robot solution, reducing the time
until a mission can be completed by distributing the work
over many systems. As technology improves and costs are
reduced, these teams are becoming a reality.

While they may be effective, distributed robotic teams
are not without limitations. In order to accomplish their
missions, the members of the team should be able to leverage
the sensing, locomotive, communication, and computational
capabilities of the other team members to overcome their
individual limitations. However, one limitation that is hard to
overcome is power. Distributed robotic teams often act with
a fixed amount of power, limiting the effective operational
lifetime of the team to the smallest battery.

In this paper, a strategy is proposed in which a number
of robots can be coordinated using mobile docking stations.
The docking stations are capable of maneuvering through the
environment while transporting, deploying, recovering, and
recharging the other members of the team. It is assumed that
the charging stations are capable of transporting significant
reserves of energy or are able to maneuver to locations where
they themselves can be rapidly recharged in order to have the
power to support the distributed team.

In order to support the team, a strategy is required to
continually reposition the docking stations in a way that

reduces the overall power consumption of the team when
they are seeking power. This in turn enables the distributed
robots to spend more time on their mission, whether that be
mapping a large structure or searching for the source of a
hazardous chemical leak.

In order for the coordination strategy to be effective, it
must be scalable to support teams consisting of large num-
bers of robots while still remaining computationally feasible.
In many cases, the strategy can be a convex optimization
problem. However, in complex environments, convexity may
be lost and the problem must be approached using hill
climbing or other gradient based optimization techniques.

The remainder of this paper is divided as follows. Section
II will discuss other relevant literature. The formulation for
the coordination is presented and discussed in Section III.
Simulations of the effectiveness of the approach in a variety
of environments are presented in Section IV. Conclusions
and areas of future exploration are presented in Section V.

II. RELATED WORK

Conserving and reallocating power is hardly a unique
concept in robotic teams. In the past this has been done in
a number of ways. Conservation of energy will extend the
lifetime of a robotic team. In [1], [2], power is saved through
communication schemes in which robots only broadcast to
nearby neighbors, thus reducing the required signal strength
and effectively reducing power consumption across the team.
However, as with all conservation approaches, this only
postpones the inevitable loss of power.

In other approaches, individual robots must dock with
power sources that are known in the environment [3], [4],
[5]. These solutions are often limited in their effectiveness
as the environment in which a robotic team is deployed
may not be known a priori, preventing the installation of
fixed charging stations. Additionally, even if the locations
are known in advance, the dynamic nature of the mission
(e.g. responding to a natural disaster) may render the pre-
installed charging stations no longer functional, reachable,
or optimally placed.

Marsupial robotics have been used in the past [6] where a
larger robot shares power with a smaller deployable robot
through the use of a tether. However, tethers can be a
double-edged sword. While they reduce power consumption
in terms of wireless communication and enable continuous
power to the deployed system, they also increase the amount
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of energy used as the deployable robot must expend more
energy towing the tether and the tether can get caught further
inhibiting movement.

Other robotic systems are able to extract power from their
environment such as the NASA Mars Rovers – Sojourner,
Spirit, and Opportunity. While solar cells work in certain
situations, they may not work in scenarios where robots are
needed indoors, in caves, or where environmental contami-
nants would damage the solar panels.

An approach that is close to the one presented here is
found in [7], where a simulated robot acts as a tanker. The
tanker traverses an environment to identify and locate robots
in need of refueling. However, this approach is limited in
that it can only support a single robot at a time.

Another alternative is found in [8] where the robots in
the team can physically exchange batteries. This provides
an exceptionally high rate of energy transfer between team
members. However, the precision alignment for the exchange
can be problematic.

III. TEAM COORDINATION

This work attempts to identify a means by which a team
of robots can be coordinated in order to extend the amount
of time that the robots can be “on task” while minimizing
the amount of time they spend seeking energy. This can be
formally stated as follows: “Given a team of n deployable
robots and d docking stations, how can the docking stations
be coordinated in order to maximize the longevity of the
deployed robots?”

In general, each of the n robots can act independently
of one another. If each these robots can choose among
nalt alternatives, then in order for a docking station to
predict the correct action, it must be able to evaluate nn

alt

simultaneous hypothesis about the potential configuration of
the n robots. This problem is not computationally tractable
as n increases. If the n robots were all stationary when
performing their tasks, this could be reduced to the Traveling
Salesman Problem (TSP) where the docking station must
simply visit each deployable robot in the most efficient path
possible. However, the TSP has been proven to be NP-hard,
thus a heuristic must be developed.

The following sections walk through a heuristic approach
which outlines the actions that a deployed robot may take
and how a docking station (or team of docking stations)
can be coordinated in a computationally efficient (albeit
greedy) method to service them. The underlying model for
this team formulation was first discussed in [9], while the
work here will focus on more efficient approximations of
that approach as well as demonstrations of the approach in
more complicated environments.

A. Deployable Robot Modeling

Each of the n robots in this scenario are assumed to be
homogeneous, although this is not a requirement. Each of
these robots operates with respect to a finite state model
governing how they interact with their environment and when
they choose to seek additional power in order to continue

their mission. Figure 1 shows the states of the model and
their relationships to one another. The actual transitions are
mission dependent and are based on the deployable robot’s
estimation of how far it can travel and its knowledge of the
location of the docking stations.

Fig. 1. The state transition model for the deployable robots.

In this model, there are the following groups of states:
• Active – This includes the states Explore and Deploy

as the deployed robot is maneuvering through the envi-
ronment in order to complete a task.

• Inactive – This includes the states Seek Home, Aban-
doned, and Dead. In these states the robot will do what
it can to reduce power consumption until it can either
make it to a docking station for recharge or remain
stationary to conserve power until it is retrieved or dies.

• Maintenance – This includes the states Wait to Dock,
Docked, and Wait to Deploy. In these states, the robot
is either waiting on a full dock, being transported by
a dock, or waiting for the dock to allow it to deploy.
These states are primarily focused on the actual recharge
process of the docking station.

The goal of this model is to maximize the amount of time
that the deployed robots spend in the Active group while
minimizing the time spent in the Inactive group.

B. Docking Station Modeling

The docking station must determine which deployed
robots are in the Inactive state and attempt to assist them by
maneuvering towards the robots most in need of its services.
The individual robots needing assistance are assumed to be
able to communicate an estimation of their position and
an estimate of how far they can travel on their remaining
energy reserves. The docking station must choose which of
these robots are in most need by first clustering the robots
using the ISODATA algorithm [10]. ISODATA was selected
as it is similar in function to k-means clustering without
a predefined number of clusters. Rather, there are an initial
guess of k clusters and then a series of iterations occur where
clusters are split and merged until the algorithm converges.
Each cluster is represented by an artificial average robot
which has the mean spatial location and available power
of the cluster members. Equation (1) is used to determine
the cost to the average robots representing the clusters, the
most expensive cluster is chosen as the one needing support.
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Equation (1) is then used to determine where the docking
station will move with respect to individual members of that
cluster.

In the case of multiple docking stations, it is assumed that
the docking stations can communicate amongst themselves
which robots they are servicing in order to prevent multiple
docking stations from attempting to service the same robots
concurrently.

Let SI be the set of inactive robots that the docking station
is attempting to service,

−→
RD be a vector representing the

location of a docking station at a given time and
−→
Ri be a

vector representing the location of the ith deployable robot in
the set SI . The objective is to determine the location of

−→
RD

at the next time step such that the overall cost of recovering
all robots of interest is minimized. The cost function is then

f(
−→
RD) =

n∑
i=1

xeα(x−1) (1)

where: x = 1
vεdist(

−→
RD,

−→
Ri), v = RiV

or the velocity of the
ith robot, and ε = RiE

or time remaining based upon the
remaining energy of the ith robot.

This formulation differs from previous work [9] by intro-
ducing a new term α, a scalar used to tune outlier behavior.
When α → 0, Equation (1) simply follows the mean of
the distribution and spatially close groups of robots will be
given the most priority. As α → ∞, the behavior of the
cost function changes and more attention will be payed to
robots that are outliers. This behavior may be more suitable
to mission specific applications. For the examples shown here
we have set α = 1.

There are many methods for solving this minimization;
under open or non-cluttered environments, the optimization
of Equation (1) is convex. This can be shown as follows:

The cost function described in Equation (1) is desirable as
it is fairly computationally inexpensive and it works in the
overall greedy approach described here. Ensuring the global
minimum of this cost function over all deployed robots (or
over sets of robots that have been clustered) as shown in
Equation (1) is reached can be difficult. The following is a
look at ways in which this optimization can be solved in a
variety of circumstances.

Let
−→
RD ∈ <2.

Minimize

f(
−→
RD) =

n∑
i=1

1
vε

∥∥∥−→RD −
−→
Ri

∥∥∥
2
e

1
vε

‚‚‚−→RD−
−→
Ri

‚‚‚
2
−1

such that
‖RD −RDold

‖2 ≤ VDδt,

where VD is the maximum velocity of the docking station
and δt is the time interval.

Visually, this is shown in Fig. 2 where a single docking
station must determine where it must go within a time
interval (depicted by the dotted line) in order to best position
itself in support of the team of robots deployed around it.

Fig. 2. Depiction of the basic problem in which a docking station must
determine the best location for supporting the robots around it. The dotted
black circle indicates areas that are reachable within a given time interval.

In this case it can be shown that f(
−→
RD) is convex through

composition as defined in [11]. Specifically:

f(
−→
RD) = h(gi(Rb))

is convex if the following conditions are true:
1) h(y) is convex,
2) h(y) is non-decreasing, and
3) gi(Rb) is convex.
In order to address the first two consider that

h(y) = yey−1.

To show h(y) is convex, the second derivative of h(y) must
be positive for all non-negative values of y.

d2

dy2

(
yey−1

)
= 2ey−1 + yey−1 (2)

In this case, there exists no value of y such that it will
result in a negative value. Therefore h(y), is convex.

To show that h(y) is non-decreasing, the first derivative
of h(y) must be positive for all non-negative values of y.

d

dy

(
yey−1

)
= ey−1 + yey−1 (3)

Again, there exists no value of y such that this will result
in a negative value. Therefore, h(y) is non-decreasing.

To address the third constraint, gi(Rb) = 1
vε ‖RD −Ri‖2

must be convex. Given that all norms are convex and that
1
vε must be positive, this third constraint holds.

Thus, the optimization is convex with respect to a single
deployable robot. The function in Equation (1) is also convex
over the set of all robots as the sum of convex functions
remains convex.

However, convexity only holds when certain conditions are
met. For example, the presence of insurmountable obstacles
destroys any hope of achieving convexity using the assump-
tions described so far. In this case, the cost of driving over the
obstacle would be infinite and the resulting function would
not be continuous and thus non-convex. Extending this, one
could switch to an alternative distance metric such as shortest
distance. In this case, as shown in Fig. 3, symmetric paths
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exist between a docking station and a robot, thus there
must be multiple local minima, eliminating the possibility
of convexity.

Fig. 3. Convexity will not hold in the presence of symmetric solutions.
Here, two equally efficient paths exist for the robot in the upper left.

As a result, as expected from the overall formulation of
this problem, the optimization of the function in the general
case will be at best an exercise in gradient descent. This
gradient descent may be plagued with local minima. The
previously discussed clustering helps to partition the space
and reduce the likelihood that a local minima will be reached.
Used properly, clustering techniques could partition robots
into sets that have few if any obstacles between the robots,
and when the average robot is computed, would result in an
average robot from which a revised cost function could be
utilized. This cost function could use an alternate distance
function which would remain convex with respect to that
single robot.

There are relaxations that would still enable convex op-
timization to be useful. For instance, if the obstacle could
be represented by a polygon, then there exists a left and
right boundary of the polygon. From the docking station,
the distance between these left and right boundaries can be
represented by an angle θ as shown in Fig. 4(a). When θ
is sufficiently small, it may be reasonable to assume that a
Euclidean distance metric could be utilized. This would hold
until the docking station had reached a critical point where
θ ≥ θmax, at which point a linear approximation would no
longer hold (Fig. 4(b)).

(a) Obstacle boundary creates
θ < θmax and the linear ap-
proximation of distance holds.

(b) Obstacle boundary creates
θ ≥ θmax preventing the linear
approximation.

Fig. 4. Relaxation of obstacles in order to approximate convexity.

Other issues preventing convexity could also be relaxed or

modified. For instance, symmetric paths could be eliminated
through a path-planner with a “commit and forget” strategy.
However, the larger issue of where the docking station
moves in the presence of obstacles remains. In the simplest
approach, the region in which the optimization is being
conducted could be scaled (as shown in Fig. 5). This would
require more frequent optimizations as the region would not
represent the maximum area that the docking station could
truly travel and may not be overly optimal. Alternatively,
the region could be divided into several convex regions
and hypotheses could be created for each of these regions
(Fig. 6). This would be required when the scalable area
was reduced significantly. However, this option may become
more computationally expensive in arbitrarily difficult areas
than applying other optimization methods to the same area.

Fig. 5. In the presence of obstacles (black), the docking station’s search
could theoretically be scaled to avoid them (grey circle).

(a) Relatively easy region divi-
sion.

(b) Relatively complex region
division.

Fig. 6. In the presence of obstacles (black), the docking station’s search
regions could be divided into convex regions (formed by dashed lines and
the reachable area) where multiple hypotheses could be generated.

IV. SIMULATION

In order to illustrate the coordination strategy outlined in
Section III a series of simulation have been developed utiliz-
ing the Player/Stage system [12], [13]. In order to simulate
the docking, transportation, and recharging of systems, an
enhanced Marsupial Player/Stage [14] is also required. The
docking station simulated in this environment is similar to the
hardware described in [15]. Each of the docking stations are
able to transport/recharge a total of six robots simultaneously
and have sufficient power to keep the robots in the simulation
alive.
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In order to illustrate the scalability of the coordination
presented in Section III-B, a series of 30 simulations were
conducted. In these simulations 64 deployable robots were
coordinated with one, two, or four mobile docking stations.
The simulations were performed on a PentiumTM Core 2 at
2.4GHz with 4GB of memory, and ran at approximately real
time. Each simulation required the use of almost all resources
available, as up to 68 devices were simulated simultaneously,
each with a separate subsumption-like architecture. Three
environments were chosen for running this simulation, the
Open Field (Fig. 7), Cave (Fig. 8), and Hospital (Fig. 9).

Fig. 7. The Open Field environment.

The Open Field environment offers only open areas which
make it perfect for convex optimizations. The results of this
simulation are shown in Table I. The Cave environment
offers both open areas and areas where obstacles may be
present. In this environment the proposed relaxations for
convexity could be applied to control the docking stations’
movements more efficiently. The results of this simulation
are shown in Table II. The Hospital environment offers much
more restricted access with more obstacles. Small, irregular
rooms, increase the difficulty of using the convex approach.
The results of this simulation are shown in Table III.

Fig. 8. The Cave environment.

As can be seen by the results in Tables I-III, the amount

Fig. 9. The Hospital environment.

TABLE I
MEAN TIME IN STATE FOR DEPLOYABLE ROBOTS IN THE Open Field.

Number of Docks
1 2 4

Time in State (%)
Active 31.09 48.86 74.70

Inactive 54.69 30.66 8.19
Maint. 14.22 20.48 17.11

Robots Dead Mean 38.17 22.23 1.67
Std 0.07 0.38 0.39

of time the robots are “Active” is greatly increased as the
number of docking stations increases. The large number of
robots that die in the single docking station case is partially
attributable to the fact that all deployed robots are started
simultaneously. Thus, they will nearly all attempt to dock
for their first dock at the same time and the docking station
can not accommodate such a large request.

A second series of simulations were conducted in both the
Open Field and Cave environment to determine the effect of
mobility on the docking stations. In this series of simulations,
30 runs were conducted each with four docking stations and

TABLE II
MEAN TIME IN STATE FOR DEPLOYABLE ROBOTS IN Cave.

Number of Docks
1 2 4

Time in State (%)
Active 30.96 48.31 74.55

Inactive 56.15 32.33 9.01
Maint. 12.89 19.37 16.43

Robots Dead Mean 38.53 22.07 1.70
Std 0.10 0.42 0.59

TABLE III
MEAN TIME IN STATE FOR DEPLOYABLE ROBOTS IN THE Hospital.

Number of Docks
1 2 4

Time in State (%)
Active 29.41 43.75 68.96

Inactive 59.57 40.03 14.09
Maint. 11.02 16.23 16.95

Robots Dead Mean 41.73 29.10 5.53
Std 0.30 0.85 0.63
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64 deployed robots in each configuration of environment
and docking stations (fixed or mobile). The results for this
simulation are shown in Table IV.

TABLE IV
RESULTS OF SIMULATION RUNS WITH FIXED DOCKING STATIONS IN THE

Cave AND OpenField ENVIRONMENTS.

Open Field Cave
Fixed Mobile Fixed Mobile

Time in State (%)
Active 69.82 74.70 68.37 74.55
Inactive 13.04 8.19 15.43 9.01
Maint. 17.13 17.11 16.21 16.43

# Robots Dead Mean 4.40 1.67 6.80 1.70
Std 0.77 0.39 0.96 0.59

Robot Recharges Mean 7.33 7.79 7.14 7.69
Std 4.69 1.95 7.11 1.99

V. FUTURE WORK AND CONCLUSIONS

As can be seen by the simulation presented in Section IV,
the approach presented here is more effective than simply
utilizing pre-positioned docking stations in maximizing the
amount of time a deployable robot can remain active. Table
IV shows that there was an increase of 7% time spent
“Active” in the OpenField and 9% in the Cave. This also
means a corresponding decrease of nearly 37% in the time
spent “Inactive” in the OpenField and a decrease of nearly
42% in the Cave environment. The number of robots that
die when mobile docking stations are used is approximately
62% less in the OpenField and 75% less in the Cave
environment. An ANOVA analysis shows that these results
are statistically significant (p < 0.01). Also, as expected, the
approach is shown to scale with the effectiveness with the
number of docking stations available.

Given that the approach presented here has shown to
be effective in a variety of simulations in environments of
varying complexity, the future work remains focused on
moving the algorithms to the actual hardware. In [15], the
required mechanisms for the mobile docking station are
presented. Figure 10 depicts the physical implementation
of a docking station capable of performing the deployment,
recovery, transportation, and recharge tasks required for this
team coordination. Here, the docking station is mounted on
a Pioneer 2 for mobility and capable of transporting and
recharging six deployable robots simultaneously. The pri-
mary concerns with the physical implementation stem from
problems relating to localization of the miniature platforms,
ensuring that there is effective communication in real-world
environments, and that the vision-based docking algorithm
is effective in real-world environments.

In order to truly address the potential of this approach,
additional docking stations will be constructed to carry out
experimentation with teams of Explorer robots [16]. These
docking stations will make use of custom power management
systems in order to utilize multiple large lithium-polymer
battery packs which will enable operational runtime measur-
ing in days.

Fig. 10. The physical implementation of the docking station.
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