

Abstract—Several approaches have been proposed recently
for building shapes with swarms of self-assembling robots.
However, there is a dearth of information about the
performance of each approach, and how to compare them. This
paper considers the active self-assembly scheme introduced by
Arbuckle and Requicha, and investigates its performance
through extensive simulations. The difficulties encountered in
the evaluation of self-assembly schemes are discussed.
Empirical simulation data are presented that show that the time
for completion of the boundary of a polygon by the active
self-assembly scheme is approximately linear in the size of the
polygon, for the range of parameters investigated.

I. INTRODUCTION
OBOT swarms are interesting examples of decentralized
systems whose global behavior emerges from local rules.

Potentially, they can be remarkably robust in the presence of
faults, and can adapt to dynamically changing environments.
Construction tasks that involve building a specified spatial
shape by a swarm of self-assembling robots are especially
interesting and challenging. Although these tasks are, in
principle, independent of spatial scale, they are likely to be
most applicable at the micro and nanoscales. One can
conceive of large numbers of identical robots being produced
by MEMS (Microelectromechanical Systems) or NEMS
(Nanoelectromechanical Systems) techniques, and
assembling themselves into shapes that are used for such
applications as scaffolds for electronic systems or for organ
development in vivo. Note that results obtained for
macroscopic scales do not necessarily extend to smaller
spatial scales because the physics is quite different.

Several algorithms and systems for construction tasks by
robot swarms have been proposed in the last few years—see
e.g. [1]-[12]. However, the performance of these systems is
not well understood, and the systems are difficult to compare.
In this paper we will focus on the active self-assembly
approach introduced by Arbuckle and Requicha [1]-[6], and
investigate its performance, in an attempt to gain some insight
on how to evaluate this and similar systems. More
specifically, we will consider the latest version of the system,
which uses reactive rules and stateless robots [3]-[6].

The remainder of the paper is organized as follow. First we
discuss briefly the principles of operation of the active

T. Tangchoopong is with the Computer Science Department, University

of Southern California, Los Angeles, CA 90089-0781 (e-mail:
tangchoo@usc.edu).

A. A. G. Requicha is with the Laboratory for Molecular Robotics,
University of Southern California, Los Angeles, CA 90089-0781 (phone:
213-740-4502; fax: 213-740-7512; e-mail: requicha@usc.edu).

This work was supported in part by the Okawa Foundation.

self-assembly system. Next, we address performance criteria
and parameter spaces. The bulk of the paper presents the
results of extensive simulations, starting with an assessment
of the stochastic nature of the system, then looking at the
influence of some of the major parameters, and finally
showing the relationship between time-to-completion versus
input complexity.

II. THE ACTIVE SELF-ASSEMBLY SCHEME
The robots in this scheme are all identical and identically

programmed. They are unit squares aligned with the axes of
the Euclidean plane, and move only by translation,
maintaining their orientation. Initially, they execute a
random walk. When a robot meets another, it may attach to it
and exchange messages. Adjacent robots remain attached as
long as messages are being sent and received between them;
if messaging stops, the strength of the attachment decays with
time, and when it reaches zero the robots detach.

An offline compiler processes a boundary representation
(i.e., a list of edges) of the goal polygon, and produces a set of
purely reactive rules that constitute the program to be
executed by each robot. A typical rule specifies an action to
be performed when a given message is received; the action
usually involves sending other messages.

Two sets of messages circulate in opposite directions along
the boundary of a polygon being built. One set instructs the
robots to build edges and vertices. The other sends
acknowledgements backwards, and is necessary in this
scheme to ensure that the process is self-repairing in the
presence of robot faults, message corruption and message
dropping.

III. PERFORMANCE MEASURES
The performance of an algorithm is usually measured in

computer science by its execution time as a function of input
size. This seems like a reasonable measure for active
self-assembly as well. The simulation time for a given shape
can be measured easily, but we immediately run into a
difficulty with the input size. How do we measure the size of
a polygon? Should we use the diameter of the set (largest
value of the distance between two points of the set), the
length of the boundary, the number of edges, or yet
something else? For lack of a convincing answer to these
questions, we decided to finesse the problem by using only
square objects. For a square, the size can be measured
unambiguously as the number of units in an edge, and other
possible measures such as diameter or perimeter are
proportional to the edge length. This decision has significant

An Empirical Study of the Performance of Active Self-Assembly
Thanaphon Tangchoopong and Aristides A. G. Requicha, Life Fellow, IEEE

R

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1838

consequences, as we will show in the results section: the
completion time depends on the shape of the polygon to be
constructed.

The active self-assembly algorithm produces filled
polygons but takes an asymptotically long time to do it with a
high probability. Therefore, we decided to study the
completion time for the boundary of the polygon. The
simulator can keep track of how many robots are on the
polygon’s boundary at each simulation step. Since we know
how many robots are needed to complete the boundary, we
can detect boundary completion and measure the
corresponding simulation time.

IV. PARAMETER SPACE
Robotic swarm systems for self-assembly tend to have a

large number of parameters. This results in a
high-dimensional parameter space, in which it is impractical
to search for optimal performance. In this work we leave all
of the parameters at their empirically-determined
“satisficing” values that were used in the experiments
reported in earlier papers [1-6], and change only two.

The simulation starts with an initial set of N robots
randomly distributed on the plane. Conceptually, we sample a
Gaussian distribution to find the x coordinate of a robot, and
sample the same distribution to find its y coordinate. We do
this for the N robots to generate the initial conditions. The
Gaussian distributions can be centered at some arbitrary
point, but for the experiments in this paper we set them at the
origin (unless noted otherwise). The standard deviation σ of
the Gaussians is another important parameter. N and σ are the
two parameters we will vary in this study.

Intuitively, it is clear that the number of robots and their
“concentration” or density near the object being constructed
should have an effect on the boundary completion time T.
From elementary probability theory it is easy to derive the
number of robots that fall within a square that goes from –σ to
+σ, both in x and y. It is proportional to N, and the constant of
proportionality is the square of the error function evaluated at
2-1/2, which is a fixed number, approximately 0.5. Therefore,
about half of the robots are initially within the
(–σ, +σ) square. We define robot density as d = N/4σ2. From
the previous discussion it follows that this density is
proportional to the quotient between the number of robots
that initially fall in the (–σ, +σ) square and the area of the
square. We can increase the density by increasing the total
number of robots, N, or by decreasing the standard deviation,
σ. We will see below that both of these actions have a
significant impact on the completion time.

 The active self-assembly system has a goodly number of
additional parameters. Here is a list of most of these (we will
not explain what they mean, since that would require a long
digression): message dropping rate (5%); signal to noise ratio
(10% of messages are 1-bit corrupted); seed growing
direction; latch range; bind length; period for checking
unbinding; maximum relaxation time; collision buffer

distance; send message delay time; flip bit position; pushing
direction on collision; and Gaussian distributions sampled to
determine the next motion distance, the next event time, and
the time of the next decay event. We are quite sure that some
of these 14 additional parameters beyond N and σ have a
significant influence on the running time T, but we kept them
constant for practical reasons. All of the experiments reported
in this paper were run with noise, by assuming a 5%
probability of dropping a message and a 10% probability of
corrupting a message by a random bit flip.

V. EXPERIMENTAL RESULTS

A. Stochastic Variation
The system involves a variety of stochastic behaviors, from

the robot initial positions to their random motions, as well as
the simulated faults such as message dropping and message
corruption. Therefore we would expect that completion times
would be random as well. To assess the magnitude of these
stochastic effects we ran the same experiment repeatedly, and
measured the boundary completion times. Fig. 1 shows the
results for a series of 50 runs for a box of size S=40 centered
at the origin, with d=1/2, σ=28.8, N=1,600. The mean value
is 5,159 and the standard deviation is 613. The standard
deviation is on the order of 10% of the average value. We
judged this acceptable and did 50 runs for each of the
experiments presented below.

Fig. 1. Times to completion of 50 runs for a box of size 40.

(In all of our experiments we encountered a small number

of failures in the first time steps, due to low binding strength
of the initial seed. We simply discarded runs in which this
happened, rather than modifying the code. Therefore, our
results were obtained exactly with the same system discussed
in our earlier papers.)

B. Standard Deviation of the Injection Distribution
Here we control the density of robots, as defined above, by

changing the standard deviation, σ, of the Gaussian
distribution of initial positions, also known as the injection
distribution.

1839

We assume the robots have a unit edge size, and we
measure length in units of robot size. In the series of
experiments reported in this section, we use a fixed object,
which is a box (i.e., a square) of size S=40 and centered at the
origin. We keep the total number of robots fixed at
N=1,600=S2 and vary σ as follows:

σ = n1/2.S/2, for n = 1, 2, 3, 4, 5.

This corresponds to densities d = 1, 1/2, 1/3, 1/4 and 1/5. For
each value of σ we run 50 times and calculate the mean and
standard deviation of the 50 resulting times for boundary
completion. Fig. 2 plots these values as a function of σ. Of
course, T is expected to increase when the density decreases,
as σ increases and the robots are spread over a larger area.
The behavior depicted in Fig. 2 is non-linear. Fig. 3 is a
similar plot, but with 1/d in the abscissa. Interestingly, the
variation of time T with 1/d is very nearly linear. Note that,
with other parameters fixed, 1/d is proportional to
σ2. Therefore, T is linear in the area of the standard deviation
square (–σ, +σ)×(–σ, +σ).

Fig. 2. Mean time of completion of a box of size 40 as a function of σ for
fixed N. The bars in this and other figures denote the standard deviations of
the results.

Fig. 3. Mean time of completion of a box of size 40 as a function of the
inverse density 1/d for fixed N.

C. Number of Robots
In another series of experiments we control the density

through the number of robots, N. We use the same object, a
box with S=40, and the same set of densities, d = 1, 1/2, 1/3,
1/4, 1/5. We fix σ = S.2-1/2 ~ 28.8, and let N take the values N
= 3,200; 1,600; 1,066; 800; and 640. The results are shown in
Fig. 4, with T as a function of N, and in Fig. 5 with T as a
function of 1/d. Note that d is proportional to N when all the
other parameters are fixed.

Now the behavior is strongly nonlinear. We had hoped that
the time to completion would be independent of N and σ
taken separately, and would depend only on d. Unfortunately,
this is not the case. The number of robots has a stronger
impact than the standard deviation of the injection
distribution.

Fig. 4. Mean time of completion of a box of size 40 as a function of N for σ
constant.

Fig. 5. Mean time of completion of a box of size 40 as a function of 1/d for σ
constant.

D. Object Shape
Here we compare the time of completion for 3 different

geometries (see Fig. 6): a key-like shape, a box, and an
octagonal shape. These last two are centered at the origin.

1840

Fig. 6. The three shapes being compared.

The key has an overall size of 34x40 units, while both the

box and the octagon have a size of 34x34. The key boundary
is composed of 151 robots, whereas the box and the octagon’s
boundaries both have 136 robots. The Gaussian injection
distribution is centered at the origin for the box and octagon,
and at the center of gravity of the key, at x=0, y=17. For the 3
shapes we use σ = 21/2.17=24.04, and a density d=1/2, which
correspond to a number of robots N=1,156. The key has 13
vertices, whereas the box has 4 and the octagonal shape 36.
As usual, we perform 50 runs and compute the means and
standard deviations for the completion times for each of the 3
shapes. The results are shown in Table 1. It is clear that the
running time is significantly impacted by the specific shape
being constructed, and not just by its size, or the number of
robots on its boundary, or the number of its vertices.

TABLE 1 – MEAN AND STANDARD DEVIATION FOR THE
COMPLETION TIME OF 3 COMPARABLE SHAPES

Shape Mean Std. Deviation
Key 8,242 1,074

Box 34 4,664 360
Octagon 5,542 327

E. Time vs. Input Size
Finally, we address the major issue we investigate in this

paper: the behavior of the boundary completion time T as a
function of the input size. The results in the previous sections
can be summarized as follows. For shapes with comparable
sizes measured by their overall dimensions, or their
perimeters, or their number of vertices, T depends on the
specific shape. For a fixed shape (a box, in our experiments),
T depends approximately linearly on the inverse density 1/d
when we keep N fixed and vary σ. However, when we vary N
and fix σ the behavior is nonlinear. Given these results, how
should one proceed to investigate the time vs. input size
dependency?

This question does not have an obvious or unique answer.
We decided to proceed as follows. To avoid the dependence
on shape, we worked only with squares centered at the origin.

We measured the input size by the edge size, S, of the
squares. Intuitively, it seems that we should keep the robot
density, d, constant for fair comparisons. The results above,
plus many other runs not reported here, indicate that the
system operates well when the density is d=1/2, and therefore
we fixed it at that value in all the experiments reported in this
section. But we know from the previous sections that both N
and σ impact T, albeit with different strengths. Again on
intuitive grounds, the joint configuration of the object and the
injection distribution should be held constant. To achieve
this, we decided to make the standard deviation of the
injection distribution proportional to the object size, and,
guided by the results in the previous sections, chose to
operate with σ = S.2-1/2. Since d=N/4σ2 and we wanted d=1/2,
we used N=2σ2=S2.

Fig. 7 shows the means and standard deviations of 50 runs
for each of the squares. The square sizes are S = 20, 40, 60, 80
and 100. The corresponding numbers of robots are N = 400;
1,600; 3,600; 6,400; and 10,000. As noted earlier, σ is
calculated by σ = S.2-1/2 for each object.

Fig. 7. Mean time of completion as a function of box size, for fixed density.

If we discard the point that corresponds to the box of size

20, Fig. 7 shows that the boundary completion time T is linear
on the size S. Note that the standard deviation for the box of
size 20 is much larger than the others, and is nearly 20% of
the mean value. We generally find that the system behaves
somewhat erratically when the object size is relatively small.
We speculate that this may be due to the robot size being a
non-negligible fraction of the object size.

VI. DISCUSSION
The linear behavior of the boundary completion time with

the size of the object for the active self-assembly scheme is a
nice result, but one should not read more into it than what is
implied by the experiments. We only showed linearity for a
specific set of conditions and range of parameters, and
extrapolation to other settings may not be justified.

The work reported in this paper shows how difficult it is to
assess the performance of a complex self-assembly scheme.
Barring any major theoretical insights, which are unlikely,

1841

performance must be evaluated experimentally. The systems
tend to have a large number of parameters, whose effects on
the performance measures are often nonlinear and not
necessarily independent, and the simple approach of varying
one parameter while others are fixed may not be very useful.
Because the systems are stochastic, a large number of runs are
necessary to obtain meaningful results. Therefore, a detailed
exploration of the parameter space is seldom practical. Some
issues are inherently problematic, for example, how does one
deal with the influence of object geometry?

Where do we go from here? As a first step, we suggest that
the small community interested in construction tasks by robot
swarms agree on a set of benchmarks that can be used to test
and compare systems. Benchmarks, however imperfect, may
be the only feasible approach to deal with the important
problem of self-repair, which we ignored in this paper. We
believe that self-repair is an essential property of any robotic
swarm used for construction tasks, because some of the
robots of the swarm will almost surely fail during the task’s
execution. How should self-repair capabilities be
quantitatively assessed?

ACKNOWLEDGMENT
We thank Dan Arbuckle, who originally designed and

implemented the active self-assembly system, for advice and
help with his system.

REFERENCES
[1] D. J. Arbuckle and A. A. G. Requicha, “Active self-assembly”, Proc.

IEEE Int’l Conf. on Robotics & Automation (ICRA ‘04), New Orleans,
LA, pp. 896-901, April 25-30, 2004.

[2] D. J. Arbuckle and A. A. G. Requicha, “Shape restoration by active
self-assembly”, Applied Bionics and Biomechanics, Vol. 2, No. 2, pp.
125-130, 2005.

[3] A. A. G. Requicha and D. J. Arbuckle, “CAD/CAM for nanoscale
self-assembly”, IEEE Computer Graphics and Applications, Vol. 26,
No. 2, pp. 88-91, March/April 2006.

[4] D. J. Arbuckle and A. A. G. Requicha, “Self-repairing self-assembled
structures”, Proc. IEEE Int’l Conf. on Robotics & Automation (ICRA
‘06), Orlando, FL, pp. 4288-4290, May 15-19, 2006.

[5] D. J. Arbuckle and A. A. G. Requicha, “Global-to-local rule generation
for self-assembly and self-repair by robot swarms”, Proc. 4th Conf. on
Foundations of Nanoscience (FNANO ‘07), Snowbird, UT, pp.
251-255, April 18-21, 2007.

[6] D. J. Arbuckle and A. A. G. Requicha, “Self-assembly and self-repair of
arbitrary shapes by a swarm of reactive robots: algorithms and
simulations”, Tech. Rept. AR-07, Laboratory for Molecular Robotics,
University of Southern California, Los Angeles, CA, 2007,
http://www-lmr.usc.edu/~lmr/publications/SwarmRept.pdf .

[7] A. L. Christensen, R. O'Grady and M. Dorigo, “SWARMORPH-script:
a language for arbitrary morphology generation in self-assembling
robots”, Swarm Intelligence, Vol. 2, Nos. 2-4, pp. 143-165, December
2008.

[8] C. V. Jones and M. J. Matarić., “From local to global behavior in
intelligent self-assembly”, Proc. IEEE Int’l. Conf. on Robotics and
Automation (ICRA ’03), Taipei, Taiwan, pp. 721-726, Sep 14-19, 2003.

[9] E. Klavins, “Directed self-assembly using graph grammars”, Proc. 1st.
Conf. on Foundations of Nanoscience: Self Assembled Architectures
and Devices, Snowbird, UT, 2004.

[10] M. Rubenstein and W.-M. Shen, “A scalable and distributed approach
for self-assembly and self-healing of a differentiated shape”, Proc.
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS '08),
Nice, France, September 22-26, 2008.

[11] J. Werfel, D. Ingber and R. Nagpal, “Collective construction of
environmentally-adaptive structures”, Proc. IEEE/RSJ Int'l Conf. on
Intelligent Robots and Systems (IROS '07), October 2007.

[12] J. Werfel, Y. Bar-Yam and R. Nagpal, “Building patterned structures
with robot swarms”, Proc. Int'l. Joint Conf. on Artificial Intelligence
(IJCAI '05), August 2005.

1842

