
  

  

Abstract—Several approaches have been proposed recently 
for building shapes with swarms of self-assembling robots. 
However, there is a dearth of information about the 
performance of each approach, and how to compare them. This 
paper considers the active self-assembly scheme introduced by 
Arbuckle and Requicha, and investigates its performance 
through extensive simulations. The difficulties encountered in 
the evaluation of self-assembly schemes are discussed. 
Empirical simulation data are presented that show that the time 
for completion of the boundary of a polygon by the active 
self-assembly scheme is approximately linear in the size of the 
polygon, for the range of parameters investigated. 

I. INTRODUCTION 
OBOT swarms are interesting examples of decentralized 
systems whose global behavior emerges from local rules. 

Potentially, they can be remarkably robust in the presence of 
faults, and can adapt to dynamically changing environments. 
Construction tasks that involve building a specified spatial 
shape by a swarm of self-assembling robots are especially 
interesting and challenging. Although these tasks are, in 
principle, independent of spatial scale, they are likely to be 
most applicable at the micro and nanoscales. One can 
conceive of large numbers of identical robots being produced 
by MEMS (Microelectromechanical Systems) or NEMS 
(Nanoelectromechanical Systems) techniques, and 
assembling themselves into shapes that are used for such 
applications as scaffolds for electronic systems or for organ 
development in vivo. Note that results obtained for 
macroscopic scales do not necessarily extend to smaller 
spatial scales because the physics is quite different. 

Several algorithms and systems for construction tasks by 
robot swarms have been proposed in the last few years—see 
e.g. [1]-[12]. However, the performance of these systems is 
not well understood, and the systems are difficult to compare. 
In this paper we will focus on the active self-assembly 
approach introduced by Arbuckle and Requicha [1]-[6], and 
investigate its performance, in an attempt to gain some insight 
on how to evaluate this and similar systems. More 
specifically, we will consider the latest version of the system, 
which uses reactive rules and stateless robots [3]-[6]. 

The remainder of the paper is organized as follow. First we 
discuss briefly the principles of operation of the active 
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self-assembly system. Next, we address performance criteria 
and parameter spaces. The bulk of the paper presents the 
results of extensive simulations, starting with an assessment 
of the stochastic nature of the system, then looking at the 
influence of some of the major parameters, and finally 
showing the relationship between time-to-completion versus 
input complexity.   

II. THE ACTIVE SELF-ASSEMBLY SCHEME 
The robots in this scheme are all identical and identically 

programmed. They are unit squares aligned with the axes of 
the Euclidean plane, and move only by translation, 
maintaining their orientation. Initially, they execute a  
random  walk. When a robot meets another, it may attach to it 
and exchange messages. Adjacent robots remain attached as 
long as messages are being sent and received between them; 
if messaging stops, the strength of the attachment decays with 
time, and when it reaches zero the robots detach. 

An offline compiler processes a boundary representation 
(i.e., a list of edges) of the goal polygon, and produces a set of 
purely reactive rules that constitute the program to be 
executed by each robot. A typical rule specifies an action to 
be performed when a given message is received; the action 
usually involves sending other messages.  

Two sets of messages circulate in opposite directions along 
the boundary of a polygon being built. One set instructs the 
robots to build edges and vertices. The other sends 
acknowledgements backwards, and is necessary in this 
scheme to ensure that the process is self-repairing in the 
presence of robot faults, message corruption and message 
dropping. 

III. PERFORMANCE MEASURES 
The performance of an algorithm is usually measured in 

computer science by its execution time as a function of input 
size. This seems like a reasonable measure for active 
self-assembly as well. The simulation time for a given shape 
can be measured easily, but we immediately run into a 
difficulty with the input size. How do we measure the size of 
a polygon? Should we use the diameter of the set (largest 
value of the distance between two points of the set), the 
length of the boundary, the number of edges, or yet 
something else? For lack of a convincing answer to these 
questions, we decided to finesse the problem by using only 
square objects. For a square, the size can be measured 
unambiguously as the number of units in an edge, and other 
possible measures such as diameter or perimeter are 
proportional to the edge length. This decision has significant 
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consequences, as we will show in the results section: the 
completion time depends on the shape of the polygon to be 
constructed. 

The active self-assembly algorithm produces filled 
polygons but takes an asymptotically long time to do it with a 
high probability. Therefore, we decided to study the 
completion time for the boundary of the polygon. The 
simulator can keep track of how many robots are on the 
polygon’s boundary at each simulation step. Since we know 
how many robots are needed to complete the boundary, we 
can detect boundary completion and measure the 
corresponding simulation time.  

IV. PARAMETER SPACE 
Robotic swarm systems for self-assembly tend to have a 

large number of parameters. This results in a 
high-dimensional parameter space, in which it is impractical 
to search for optimal performance. In this work we leave all 
of the parameters at their empirically-determined 
“satisficing” values that were used in the experiments 
reported in earlier papers [1-6], and change only two.  

The simulation starts with an initial set of N robots 
randomly distributed on the plane. Conceptually, we sample a 
Gaussian distribution to find the x coordinate of a robot, and 
sample the same distribution to find its y coordinate. We do 
this for the N robots to generate the initial conditions. The 
Gaussian distributions can be centered at some arbitrary 
point, but for the experiments in this paper we set them at the 
origin (unless noted otherwise). The standard deviation σ of 
the Gaussians is another important parameter. N and σ are the 
two parameters we will vary in this study. 

Intuitively, it is clear that the number of robots and their 
“concentration” or density near the object being constructed 
should have an effect on the boundary completion time T. 
From elementary probability theory it is easy to derive the 
number of robots that fall within a square that goes from –σ to 
+σ, both in x and y. It is proportional to N, and the constant of 
proportionality is the square of the error function evaluated at 
2-1/2, which is a fixed number, approximately 0.5. Therefore, 
about half of the robots are initially within the 
(–σ, +σ) square. We define robot density as d = N/4σ2. From 
the previous discussion it follows that this density is 
proportional to the quotient between the number of robots 
that initially fall in the (–σ, +σ) square and the area of the 
square. We can increase the density by increasing the total 
number of robots, N, or by decreasing the standard deviation, 
σ. We will see below that both of these actions have a 
significant impact on the completion time. 

 The active self-assembly system has a goodly number of 
additional parameters. Here is a list of most of these (we will 
not explain what they mean, since that would require a long 
digression): message dropping rate (5%); signal to noise ratio 
(10% of messages are 1-bit corrupted); seed growing 
direction; latch range; bind length; period for checking 
unbinding; maximum relaxation time; collision buffer 

distance; send message delay time; flip bit position; pushing 
direction on collision; and Gaussian distributions sampled to 
determine the next motion distance, the next event time, and 
the time of the next decay event. We are quite sure that some 
of these 14 additional parameters beyond N and σ have a 
significant influence on the running time T, but we kept them 
constant for practical reasons. All of the experiments reported 
in this paper were run with noise, by assuming a 5% 
probability of dropping a message and a 10% probability of 
corrupting a message by a random bit flip. 

V. EXPERIMENTAL RESULTS 

A. Stochastic Variation 
The system involves a variety of stochastic behaviors, from 

the robot initial positions to their random motions, as well as 
the simulated faults such as message dropping and message 
corruption. Therefore we would expect that completion times 
would be random as well. To assess the magnitude of these 
stochastic effects we ran the same experiment repeatedly, and 
measured the boundary completion times. Fig. 1 shows the 
results for a series of 50 runs for a box of size S=40 centered 
at the origin, with d=1/2, σ=28.8, N=1,600. The mean value 
is 5,159 and the standard deviation is 613. The standard 
deviation is on the order of 10% of the average value. We 
judged this acceptable and did 50 runs for each of the 
experiments presented below. 

 
 

Fig. 1. Times to completion of 50 runs for a box of size 40. 
 
(In all of our experiments we encountered a small number 

of failures in the first time steps, due to low binding strength 
of the initial seed. We simply discarded runs in which this 
happened, rather than modifying the code. Therefore, our 
results were obtained exactly with the same system discussed 
in our earlier papers.) 

B. Standard Deviation of the Injection Distribution 
Here we control the density of robots, as defined above, by 

changing the standard deviation, σ, of the Gaussian 
distribution of initial positions, also known as the injection 
distribution. 
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We assume the robots have a unit edge size, and we 
measure length in units of robot size. In the series of 
experiments reported in this section, we use a fixed object, 
which is a box (i.e., a square) of size S=40 and centered at the 
origin. We keep the total number of robots fixed at 
N=1,600=S2 and vary σ as follows:  

 
σ = n1/2.S/2, for n = 1, 2, 3, 4, 5. 

 
This corresponds to densities d = 1, 1/2, 1/3, 1/4 and 1/5. For 
each value of σ we run 50 times and calculate the mean and 
standard deviation of the 50 resulting times for boundary 
completion. Fig. 2 plots these values as a function of σ. Of 
course, T is expected to increase when the density decreases, 
as σ increases and the robots are spread over a larger area. 
The behavior depicted in Fig. 2 is non-linear. Fig. 3 is a 
similar plot, but with 1/d in the abscissa. Interestingly, the 
variation of time T with 1/d is very nearly linear. Note that, 
with other parameters fixed, 1/d is proportional to 
σ2. Therefore, T is linear in the area of the standard deviation 
square (–σ, +σ)×(–σ, +σ).  

 
Fig. 2. Mean time of completion of a box of size 40 as a function of σ for 
fixed N. The bars in this and other figures denote the standard deviations of 
the results. 

 
Fig. 3. Mean time of completion of a box of size 40 as a function of the 
inverse density 1/d for fixed N. 
 

C. Number of Robots 
In another series of experiments we control the density 

through the number of robots, N. We use the same object, a 
box with S=40, and the same set of densities, d = 1, 1/2, 1/3, 
1/4, 1/5. We fix σ = S.2-1/2 ~ 28.8, and let N take the values N 
= 3,200; 1,600; 1,066; 800; and 640. The results are shown in 
Fig. 4, with T as a function of N, and in Fig. 5 with T as a 
function of 1/d. Note that d is proportional to N when all the 
other parameters are fixed. 

Now the behavior is strongly nonlinear. We had hoped that 
the time to completion would be independent of N and σ 
taken separately, and would depend only on d. Unfortunately, 
this is not the case. The number of robots has a stronger 
impact than the standard deviation of the injection 
distribution. 

 

 
Fig. 4. Mean time of completion of a box of size 40 as a function of N for σ 
constant. 
 

 
Fig. 5. Mean time of completion of a box of size 40 as a function of 1/d for σ 
constant. 

D. Object Shape 
Here we compare the time of completion for 3 different 

geometries (see Fig. 6): a key-like shape, a box, and an 
octagonal shape. These last two are centered at the origin.  
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Fig. 6. The three shapes being compared. 
 
The key has an overall size of 34x40 units, while both the 

box and the octagon have a size of 34x34. The key boundary 
is composed of 151 robots, whereas the box and the octagon’s 
boundaries both have 136 robots. The Gaussian injection 
distribution is centered at the origin for the box and octagon, 
and at the center of gravity of the key, at x=0, y=17. For the 3 
shapes we use σ = 21/2.17=24.04, and a density d=1/2, which 
correspond to a number of robots N=1,156. The key has 13 
vertices, whereas the box has 4 and the octagonal shape 36. 
As usual, we perform 50 runs and compute the means and 
standard deviations for the completion times for each of the 3 
shapes. The results are shown in Table 1. It is clear that the 
running time is significantly impacted by the specific shape 
being constructed, and not just by its size, or the number of 
robots on its boundary, or the number of its vertices. 

TABLE 1 – MEAN AND STANDARD DEVIATION FOR THE 
COMPLETION TIME OF 3 COMPARABLE SHAPES 

Shape Mean Std. Deviation 
Key 8,242 1,074 

Box 34 4,664 360 
Octagon 5,542 327 

E. Time vs. Input Size 
Finally, we address the major issue we investigate in this 

paper: the behavior of the boundary completion time T as a 
function of the input size. The results in the previous sections 
can be summarized as follows. For shapes with comparable 
sizes measured by their overall dimensions, or their 
perimeters, or their number of vertices, T depends on the 
specific shape. For a fixed shape (a box, in our experiments), 
T depends approximately linearly on the inverse density 1/d 
when we keep N fixed and vary σ. However, when we vary N 
and fix σ the behavior is nonlinear. Given these results, how 
should one proceed to investigate the time vs. input size 
dependency? 

This question does not have an obvious or unique answer. 
We decided to proceed as follows. To avoid the dependence 
on shape, we worked only with squares centered at the origin. 

We measured the input size by the edge size, S, of the 
squares.  Intuitively, it seems that we should keep the robot 
density, d, constant for fair comparisons. The results above, 
plus many other runs not reported here, indicate that the 
system operates well when the density is d=1/2, and therefore 
we fixed it at that value in all the experiments reported in this 
section. But we know from the previous sections that both N 
and σ impact T, albeit with different strengths. Again on 
intuitive grounds, the joint configuration of the object and the 
injection distribution should be held constant. To achieve 
this, we decided to make the standard deviation of the 
injection distribution proportional to the object size, and, 
guided by the results in the previous sections, chose to 
operate with σ = S.2-1/2. Since d=N/4σ2 and we wanted d=1/2, 
we used N=2σ2=S2. 

Fig. 7 shows the means and standard deviations of 50 runs 
for each of the squares. The square sizes are S = 20, 40, 60, 80 
and 100. The corresponding numbers of robots are N = 400; 
1,600; 3,600; 6,400; and 10,000. As noted earlier, σ is 
calculated by σ = S.2-1/2 for each object.  

 
Fig. 7. Mean time of completion as a function of box size, for fixed density. 

 
If we discard the point that corresponds to the box of size 

20, Fig. 7 shows that the boundary completion time T is linear 
on the size S. Note that the standard deviation for the box of 
size 20 is much larger than the others, and is nearly 20% of 
the mean value. We generally find that the system behaves 
somewhat erratically when the object size is relatively small. 
We speculate that this may be due to the robot size being a 
non-negligible fraction of the object size. 

VI. DISCUSSION 
The linear behavior of the boundary completion time with 

the size of the object for the active self-assembly scheme is a 
nice result, but one should not read more into it than what is 
implied by the experiments. We only showed linearity for a 
specific set of conditions and range of parameters, and 
extrapolation to other settings may not be justified. 

The work reported in this paper shows how difficult it is to 
assess the performance of a complex self-assembly scheme. 
Barring any major theoretical insights, which are unlikely, 
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performance must be evaluated experimentally. The systems 
tend to have a large number of parameters, whose effects on 
the performance measures are often nonlinear and not 
necessarily independent, and the simple approach of varying 
one parameter while others are fixed may not be very useful. 
Because the systems are stochastic, a large number of runs are 
necessary to obtain meaningful results. Therefore, a detailed 
exploration of the parameter space is seldom practical. Some 
issues are inherently problematic, for example, how does one 
deal with the influence of object geometry? 

Where do we go from here? As a first step, we suggest that 
the small community interested in construction tasks by robot 
swarms agree on a set of benchmarks that can be used to test 
and compare systems. Benchmarks, however imperfect, may 
be the only feasible approach to deal with the important 
problem of self-repair, which we ignored in this paper. We 
believe that self-repair is an essential property of any robotic 
swarm used for construction tasks, because some of the 
robots of the swarm will almost surely fail during the task’s 
execution. How should self-repair capabilities be 
quantitatively assessed? 
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