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Abstract— In order to exert a large force on the environment,
it is effective to apply impulsive force. We describe the motions
that perform tasks by applying impulsive force as “impact
motion.” This paper presents a contact dynamics model of
a humanoid robot for such a motion. Multibody dynamics
and effect of a servo controller on impulsive force are also
considered in the proposed model. The proposed model can
estimate impulsive force at low computation cost compared with
full-featured dynamics computation methods. The estimation
results of each motion are compared with simulation results by
OpenHRP3. The maximum error of impulse is about 6 (%).
Therefore, the proposed model is useful for estimating dynamics
behavior of a humanoid robot.

I. INTRODUCTION

When a robot applies force statically on the environment,
the magnitude of the force is limited by the maximum torque
of the actuators. In order to exert a large force on the
environment beyond this limitation, it is effective to apply
impulsive force. We describe the motions that perform tasks
by applying impulsive force as “impact motion.” There are
difficult problems introduced by impacts between robots and
environments.

Uchiyama proposed a control algorithm constitution
method and dynamic control modes for performing a nailing
task by a 3 DOF manipulator [1]. Zheng and Hemami dis-
cussed mathematical modeling of a robot that collides with
the environment [2]. Asada and Ogawa proposed the virtual
mass for analyzing dynamic behavior of a manipulator arm
and its end effector that interacts with the environment [3].
Around the same time, Khatib and Burdick proposed the
effective mass [4]. Walker investigated the effect of different
configurations of kinematically redundant arms with impact
force at their end effectors during contact [5]. Tsujio et al.
evaluated the virtual mass of a 3 DOF planar manipulator
empirically [6]. These works mentioned above used robotic
manipulators fixed on the ground.

Yoshida et al. investigated impact dynamics in free-
floating multibody systems in space [7]. Yoshikawa and Ya-
mada evaluated effects of the joint stiffness against impulse
by considering frequency domain [8]. These studies focused
on trying to minimize the impulsive force since the force
causes fatal problems in space.

A few attempts on tasks applying impulsive force by a
humanoid robot have been reported in recent years. Arisumi
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and Yokoi investigated a method to push a door utilizing
impulsive force by a humanoid robot [9]. In the research, the
humanoid robot is treated as a rigid single body. However,
when a humanoid robot exerts a impulsive force by its end
effector, the effect of the servo stiffness cannot be ignored.
This paper presents a contact dynamics model of a humanoid
robot considering multibody dynamics and effect of a servo
stiffness to impulsive force.

II. ESTIMATION OF IMPULSIVE FORCE

When a robot exerts impulsive force on the environment,
the reaction force may bring the humanoid robot down.
However, the impulsive force is objective value in an impact
motion. In this research, the impact motion is planned to be
optimized under these objective functions and constraint con-
ditions by SQP(Sequential Quadratic Programming). Since
SQP execute the objective function which computes the
impulsive force exerted by the robot numerous times, it is
indispensable to estimate the force exerted by impact motions
at low computation cost.

The concept of virtual mass is the projection of the robot’s
inertia onto the contact point by using the Jacobian matrix.
The behavior of the robot during the impact phase is ap-
proximated by point mass dynamics. The concept lowers the
computational cost of contact dynamics of manipulators fixed
on the earth or space robots drastically. The contact dynamics
analysis based on the virtual mass is for high frequency
collisions, e.g. collisions with rigid objects. However, the
contact time of the desired practical tasks, e.g., nailing task,
in this research is around 10−2 (s) as stated in [10]. In this
frequency domain, the servo stiffness cannot be negligible.
Moreover, the point mass approximation poses a difficulty
to compute ZMP(Zero-Moment Point) [11] since behavior
of the robot’s links is not computed. In this section, a
dynamics computation scheme considering the servo stiffness
is proposed. Since this scheme computes behavior of the
links, ZMP can be estimated during collision phase.

A. A Model for Contact Dynamics

A humanoid robot can have two phases while standing.
It can either have both feet on the ground or one foot
lifted. In addition, it interacts with the environment using
its hands. In full-featured dynamics computation, all the
constraint forces are calculated. The spring-damper model
is commonly used for humanoid robot simulations [12],
[13]. When compared to the LCP(Linear Complementarity
Problem) based method [14], the computational cost is lower.
Still, the computational complexity of the method is linearly

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 447



Target

k

c
mt

Virtual bases
Arm 1

Arm 2

Arm k
(Arm 3)Arm l

(Arm 4)

Fig. 1. Modeling of a humanoid robot and a target object.

proportional to the number of contact points. Moreover, the
stability of the dynamics simulation is highly dependent on
configurations of the spring-damper or the integral methods.

In order to overcome these difficulties, the idea of “virtual
base,” which is a hypothetical fixed point by adding the
huge mass to the links constrained to the environment,
e.g., the soles or hands, is suggested [10]. Extra weight is
added to both soles when the robot stands on both feet as
shown in Fig. 1. This scheme can be applied for various
constraint conditions without reconstructing the robot’s struc-
ture description and computing constraint forces. The mass
properties of its end effectors are varied depending on the
constraint conditions. The virtual base link(s) is assumed to
be part of the ground by the following expression:

mi = Mg, (1)
Ii = IgE, (2)

where mi and Ii ∈ R3×3 are mass of link i and inertia
tensor with respect to its mass center respectively. Mg and
Ig are chosen to satisfy the conditions described below:

Mg � M, (3)
det [Ii] � det [Iw] , (4)

where M is total mass of the system and Iw is inertia of the
whole system. The dynamics of the robot can be solved in a
way similar to space robots dynamics with the above model.
A general form of the equation of motion of a n DOF model
with respect to joint space can be written as follows:

H∗(φ)φ̈+c∗(φ, φ̇)+g(φ)+F (φ̇) = τ +
(
J∗k(φ)

)T

Fh,

(5)
where φ ∈ Rn, H∗ ∈ Rn×n and J∗k ∈ R6×n are the
joint angle vector, the generalized inertia matrix and the
generalized Jacobian matrix of multiple serial manipulators
mounted on a free-flying space robot respectively [15]. The
Jacobian matrix is computed with respect to the contact point
and superscript k expresses the number of the colliding arm
as shown in Fig. 1. c∗, g and τ ∈ Rn are centrifugal and
Coriolis term, a gravity term and input torques respectively.
Fh ∈ R6 is external force. F (φ̇) is viscous and Coulomb
friction term.

B. Simplified Dynamics Computation

The concept of the proposed simplified dynamics com-
putation scheme is based on the assumptions described as

below.
(i) The impulsive force exerted by the whole body is

extremely large, since this research tries to utilize
impact rather than reducing it.

(ii) Contact between target object and end effector occurs
within a short time.

(iii) The joint angles of the robot are controlled by a
high gain PD(Proportional Derivative) controller in the
configuration space and the reference trajectory follows
time-series data of the joint angles and velocities.

This scheme is applied to Lagrange formulation as an exam-
ple. However, the scheme can be applied to faster forward
dynamics equations.

From (5), the joint acceleration vector can be solved in
the following form:

φ̈ = H∗−1

{
τ +

(
J∗k

)T

Fh − c∗ − g − F

}
, (6)

where H∗ contains equivalent inertia of the joints. Assuming
(i), the effects of the centrifugal and Coriolis term and the
gravity term are relatively small compared with the torques
from the contact force.

‖c∗(φ, φ̇)‖ � ‖
(
J∗k

)T

Fh‖, (7)

‖g(φ)‖ � ‖
(
J∗k

)T

Fh‖. (8)

Hence, (6) can be simplified as follows:

φ̈ = H∗(φ)−1

{
τ +

(
J∗k

)T

Fh − F

}
, (9)

where τ is the input torque vector exerted by the actuators
and calculated as follows on the assumption (iii):

τPD = Kp

(
φref − φact

)
+ Kd

(
φ̇ref − φ̇act

)
. (10)

Kp and Kd are the proportional and derivative gain matrices
and φref ∈ Rn and φact ∈ Rn denote the reference and
actual joint angles respectively.

Based on the assumptions (i) and (ii), the behavior of the
joint angles is considered below:

Joint angles φ:
The values are taken as constant immediately be-
fore and after the impact,

Joint velocities φ̇:
The changes of the values are discontinuous and
can not be ignored,

Joint acceleration φ̈:
The changes of the values are huge.

In addition, the error between φref and φact is assumed
small just before collision because the high gain servo
controller pursues the reference angle. Therefore, (10) can
be simplified as follows since the joint angles are taken as
constant during the impact:

τPD = Kd

(
φ̇ref − φ̇act

)
. (11)
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In order to consider the motor characteristics, the input
torques are limited by the maximum torques as follows:

τi =

⎧⎨
⎩

τmaxi τPDi > τmaxi

τPDi ‖τPDi‖ < τmaxi

−τmaxi τPDi < −τmaxi

, (12)

where τmaxi and τPDi are maximum torque and computed
torque of the i joint.

Fig. 1 shows the simulation model of the contact force
using the proposed simplified dynamics computation scheme.
As an example, the contact model between the robot and the
target is expressed by the commonly-used spring and damper
model. However, this scheme is not dependent on the contact
model and any contact model can be implemented. In order
to calculate the spring or damper force, the relative position
and velocity between the end effector and the target object
are necessary. The position and velocity of the end effector
can be obtained by integrating the acceleration of the tip.
The acceleration of the point in the inertial coordinate system
can be calculated using the generalized Jacobian matrix, the
relation between φ̇ and the velocity vh or angular velocity
ωh of the contact point as follows:[

vh

ωh

]
= J∗kφ̇. (13)

Differentiating (13) by time yields:[
v̇h

ω̇h

]
= ˙J∗kφ̇ + J∗kφ̈. (14)

When the Jacobian matrix is not singular, the second term of
the right hand of (14) is dominant since the joint acceleration
is assumed huge. From (9), the acceleration of the contact
point is obtained in following form:[

v̇h

ω̇h

]
= J∗kφ̈ = J∗kH∗−1

{
τ +

(
J∗k

)T

Fh − F

}
.

(15)
The acceleration of the contact point in the collision

direction can be expressed as follows:

v̇c = nT v̇h, (16)

where n ∈ R3 is a normal vector of the collision direction.
By integrating the acceleration v̇c, the position and velocity
in the collision direction can be obtained and Fh is denoted
as follows using the contact force fr calculated by the spring-
damper model:

Fh =
[

frn

0

]
. (17)

The simulation flow is expressed as follows:
Step 1a: The generalized Jacobian matrix J∗k and the

generalized inertia matrix H∗ are calculated.

Step 2a: The joint torques τ ,
(
J∗k

)T

Fh and F are
calculated.

Step 3a: The joint accelerations are solved using (9).
Step 4a: The accelerations of the contact point are obtained

using (15).

Start

Simulation loop

Calculate       ,     ,    ,     ,     and               

Simulation loop

End

Calculate constraint force

Solve

Calculate          and 

Integrate     ,         and                         

Start

Simulation loop

Calculate         and               

Simulation loop

End

Calculate constraint force

Solve for 

Calculate          and 

Integrate     ,         and                         

Calculate       and               

Calculate  

Solve for 

(a) Normal flow (b) Simplified flow

Fig. 2. Dynamics simulation flowchart.

Step 5a: The positions and velocities of the contact point,
the joint angles and velocities are obtained by the
integral function.

Step 6a: Returning to Step 1a.
Fig. 2 (a) shows a flowchart of the normal forward dynam-

ics simulation process. The computation cost of step 5a is
dependent upon the integral method. The total computation
cost of Step 1a ∼ 4a can be denoted as follows:

C1 =
{

15
2
3
n3 + 63n2 + 254

1
2
n + 88

1
1

+ 6
(
n2

1 + n2
2 + · · · + n2

l

)
+ 18nk

}
Ti, (18)

where Ti is an iteration count of the simulation. Ti is derived
as follows:

Ti =
ttotal

ts
, (19)

where ttotal and ts are the total simulation time and sampling
time respectively. n and ni are total DOF and DOF of the i-th
arm, respectively. Subscripts l and k denote the number of the
last arm and colliding arm as shown in Fig. 1, respectively.
The total computation cost denotes that sum of number of
four arithmetic operations.

Equation (15) is computed every sampling time of the
simulation. The most complex computations are calculating
the generalized inertia matrix and solving the simultaneous
equations by the Gaussian elimination method and these
computation costs are O(n3). In order to reduce the sim-
ulation cost, H∗ is regarded as a constant value in the
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simulation loop due to assumption (ii). In addition, the LU
decomposition of H∗ is calculated before starting the loop.
The modified simulation scheme is as follows.

Step 1b: The generalized Jacobian matrix J∗k and the
generalized inertia matrix H∗ are calculated by
using the joint angles just before contact and stored
in the computer’s main memory as ¯J∗k and H̄∗

respectively.
Step 2b: The LU decomposition of the H̄∗ (LU = H̄∗)

is computed and the L and U are stored.

Step 3b: The joint torques τ ,
( ¯
J∗k

)T

Fh and F are
calculated.

Step 4b: Solving Lz = τ +
( ¯
J∗k

)T

Fh − F for z.

Step 5b: Solving Uφ̈ = z for φ̈.
Step 6b:The accelerations of the contact point are obtained

by J∗kφ̈.
Step 7b: The positions and velocities of the contact point

and the joint angles and velocities are obtained by
the integral function.

Step 8b: Return to Step 3b.
Fig. 2 (b) shows a flowchart of the simplified forward

dynamics simulation process. The total computation cost of
Step 1b ∼ 6b can be denoted as follows:

C2 =
{

15
2
3
n3 + 63n2 + 242n + 73 + 6

(
n2

1 + n2
2+

1
1
· · · + n2

l

)
+ 18nk

}
+

(
2n2 + 25n− 6

)
Ti. (20)

In Step 5b and 7b, the joint angle, velocity and acceleration
can be obtained and force and moment in the inertial
coordinate system can be computed using inverse dynamics.
Therefore, ZMP can be calculated by the force and moment.

C. Computation Cost

In order to compare the complexity, the complexity ratio
Cr1 is defined as follows:

Cr1 =
C2

C1
. (21)

Fig. 3 (a) shows relationship between sampling time and
the complexity ratio Cr1. The total simulation time ttotal

is 0.1 (s). In order to compute (18) and (20), the total
DOF n is based on a humanoid robot HRP-2 [16] model
as shown in Fig. 5. HRP-2 has 28 DOF except hand joints.
The computation cost ratio is about 0.016 at the sampling
time 10−3 (s). From 10−3 (s) to 10−5 (s), the computation
cost is reduced as the sampling time is decreased. Under
the sampling time 10−5, the computation ratio is almost
constant. Fig. 4 (a) shows relationship between DOF and
the complexity ratio Cr1 under the assumption that l = 4
and nk = n/4 at the sampling time 10−4 (s).

The computation cost is compared with the O(n) forward
dynamics algorithm based on articulated-body inertias [17]
as an example. The method requires 199n− 198 multiplica-
tions and 174n−173 additions. Hence, the total computation
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Fig. 3. Relationship between sampling time and the complexity ratios.
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Fig. 4. Relationship between DOF and the complexity ratios.

cost is denoted as follows:

C3 = 373n− 371. (22)

The complexity ratio Cr3 is expressed as follows:

Cr3 =
C2

C3
. (23)

Fig. 3 (b) shows relationship between sampling time and the
complexity ratio Cr3 of the HRP-2 model. At the sampling
time 10−4 (s), the computation cost is about 1/4. Fig. 4 (b)
shows relationship between DOF and the complexity ratio
Cr3 on assumption that l = 4 and nk = n/4 at the sampling
time 10−4 (s). Under 100 DOF, the complexity ratio is under
one. Hence, the proposed algorithm has an advantage in the
computation cost for a humanoid robot such as HRP-2.

III. EVALUATION OF THE MODEL

In order to evaluate the accuracy of the estimation of
impulsive force and ZMP trajectory, nine type of motions
are designed heuristically. The virtual mass ma of each
posture is computed by the model described in [10]. The
estimation results of each motion are compared with the
simulation result using OpenHRP3 [14], [18]. The collision
speeds of each posture are 0.4 (m/s), 0.7 (m/s) and 1.0 (m/s)
respectively. Table I shows the type names of each motion.
For example, the virtual mass and collision speed vc of the
A-1 motion are 4.0 (kg) and 0.4 (m/s) respectively. Fig. 6
shows the experimented postures.

As an example, Fig. 7 shows the estimated impulsive force
history of the Type C series motions and the simulation
result in OpenHRP3. The model is expressed as shown in
Fig. 1. In order to express the constraint conditions of the
floor the extra weights are added to the both soles. All the
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Fig. 6. HRP-2 punches the target object by different postures.
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TABLE I
THE NAMES OF EACH MOTION.

Virtual mass (kg)
4.0 6.0 8.0

Collision 0.4 A-1 B-1 C-1
velocity 0.7 A-2 B-2 C-2

vc (m/s) 1.0 A-3 B-3 C-3

extra weights of the simplified model are 105 (kg) and all
the extra inertias are diag

[
105, 105, 105

]
(kgm2). HRP-2 is

controlled by the torque controller in OpenHRP3 simulator
environment and the block diagram of the controller is shown
in Fig. 8. The torque limit is given by the specifications of
the robot. The joint angles are controlled by PD(Proportional
Derivative) controller. The mass of the target object is
5 (kg). The spring coefficient k and damper coefficient c
are 104 (N/m) and 300 (Ns/m) respectively. These values
are decided in order to simulate 10 ∼ 100 (ms) collision.
The static and dynamic friction coefficients between the sole
and the floor are 5 and 5, respectively. The joint friction
is not considered in the proposed scheme and OpenHRP3
simulation in this evaluation because specifications of the
joints of HRP-2 is not disclosed.

In addition, in order to see the accuracy of the virtual
mass, simulation results of all three methods are plotted
in these figures. In these simulations, the integral method
and its sampling time are Runge-Kutta method and 10−4 (s)
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Fig. 7. Estimated impulsive force and OpenHRP3 simulation result (Type
C series motions).

respectively. Fig. 9 shows the simulation model of the contact
force using the virtual mass. The contact model is expressed
by the same spring and damper model. The virtual mass
and target object can move in the same straight line freely.
The virtual mass point, with mass ma, approaches the target
object with collision velocity vc. The target mass is 5 (kg).

In the Fig. 7, “SDC(Simplified Dynamics Computation)”
means the proposed dynamics computation scheme. In all
results, the force history by the proposed scheme is quite
similar to the OpenHRP3’s result. However, the estimation
using the virtual mass model is not similar during late phase
of collision. A conceivable reason is that the virtual mass
does not consider the effect of the servo controller. Table II
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and Table III show estimation errors of the maximum force
and impulse based on OpenHRP3’s result. In these tables,
fmax, fn, ferr and fnerr are maximum force, impulse,
maximum force error and impulse error, respectively. The
errors are computed in the form:

xerr =
xOH3 − xest

xOH3
× 100, (24)

where xOH3 and xest are OpenHRP3’s result and estimated
value by the proposed model or the virtual mass model,
respectively. The maximum force errors are minor in both
estimating methods. The impulse error of the virtual mass
method, however, is not negligible. The maximum error of
the virtual mass is about 54 (%) as shown in Table III. On
the other hand, the impulse error of the proposed method is
small. The maximum error is about 6 (%).

IV. CONCLUSIONS
This paper presents a contact dynamics model of a hu-

manoid robot considering multibody dynamics and the effect
of the servo stiffness to impulsive force. The maximum error
of impulse is about 6 (%). Therefore, the proposed model is
useful for estimating dynamic behavior of a humanoid robot.
The proposed scheme is applied to Lagrange formulation
as an example, here. However, the scheme can be applied
to faster forward dynamics equations and the computation
cost is lower than the example described in Subsection II-C.
The model will be evaluated using a real robot and used for
optimizing impact motions.
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