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Abstract— We report on our experiences regarding the acqui-
sition of hybrid Semantic 3D Object Maps for indoor household
environments, in particular kitchens, out of sensed 3D point
cloud data. Our proposed approach includes a processing
pipeline, including geometric mapping and learning, for pro-
cessing large input datasets and for extracting relevant objects
useful for a personal robotic assistant to perform complex
manipulation tasks. The type of objects modeled are objects
which perform utilitarian functions in the environment such
as kitchen appliances, cupboards, tables, and drawers. The
resulted model is accurate enough to use it in physics-based
simulations, where doors of 3D containers can be opened based
on their hinge position. The resulted map is represented as a
hybrid concept and is comprised of both the hierarchically
classified objects and triangular meshes used for collision
avoidance in manipulation routines.

I. INTRODUCTION

Autonomous personal robots performing everyday manip-
ulation tasks such as setting the table and cleaning up in
human living environments must know the objects in their
environments: the cupboards, tables, drawers, the fridge, the
dishwasher, the oven, and so on.

The knowledge about these objects must include de-
tailed information about the objects geometry, and structural
knowledge as: a cupboard consists of a container box, a door
with hinges and a handle. It even needs functional knowledge
that enables the robot to infer from the position of a handle
on a door the side to which the door opens.

Fig. 1. A snapshot of our kitchen lab: 16 registered scans shown in intensity
(grayscale), comprising roughly 15 millions of points. The world coordinate
system depicted on the bottom left shows X with the red color, Y with
green, and Z with blue.

We propose to extend the robot’s mechanisms for the
acquisition of environment models in order to acquire these
kinds of information automatically. To this end, we investi-
gate the following computational problem: given a 3D point
cloud model of an environment as depicted in Figure 1,
segment the point cloud into subsegments that correspond to
relevant objects and label the segments with the respective
category label (see Figure 2).

Fig. 2. Semantic 3D Object Map of an indoor kitchen environment.
The representative planar areas are shown in different colors (tables -
orange, floor - dark purple, walls - green and red, ceiling - cyan), and
3D cuboid containers are marked with their appropriated labels (cupboard,
drawer, oven, etc). The remaining unclassified points are shown in gray. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The resultant labeled object model1 is meant to represent
the environment as best as possible given the geometry
present in the input data, but its accuracy does not have to be
absolute with respect to the true world model. Instead, the
object model is considered as an intermediate representation
that provides candidate objects which are to be validated
through subsequent processing steps. These steps include
vision based object recognition, active exploration like for
example opening the drawers and doors that were suggested,
and classifications based on the role that an object has in
a certain activity (i.e. activity recognition). For this reason,
the main objective of our mapping system is to compute the
model as quickly as possible using solely the geometric in-
formation contained in the point cloud, and have results that

1See attached video for details.
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approximate the true world model. However our experience
as well as the illustration in Figure 2 suggests that most
objects can be segmented and labeled correctly.

These concepts constitute incremental work from our
previous work [1], and form the basis of our 3D mapping
system. The key contributions of the research reported in
this paper include the following ones: i) a multi-LoD (Level
of Detail) planar decomposition mechanism that exploits
the regularities typically found in human living environ-
ments; ii) efficient model-fitting techniques for the recog-
nition of fixtures (handles and knobs) on cupboards and
kitchen appliances; and iii) a learning scheme based on a
2-levels geometric features extraction for object classes in
the environment.

The remainder of this paper is organized as follows. The
next section briefly describes related work, followed by the
architecture of our mapping system in Section III. Section IV
present the planar decomposition, region growing, and level-
1 feature estimation, while in Section V we discuss the
fixture segmentation for furniture candidates and the level-2
feature estimation. Section VI presents the machine learning
model used to train the features, followed by a discussion
of the system’s overall performance in Section VII. We
conclude and give insight on our future work in Section VIII.

II. RELATED WORK

The concept of autonomously creating maps with mobile
robot platforms is not new, but so far it was mostly used
for the purpose of 2D robot localization and navigation,
with few exceptions in the area of cognitive mapping [2],
[3], but also including [4]–[9]. A workaround is represented
by maps built using multimodalities, such as [2], [10],
[11], where 2D laser sensors are used to create a map
used for navigation and additional semantics are acquired
through the use of vision. For example in [10] places are
semantically labelled into corridors, rooms and doorways.
The advantages of these representations is straightforward:
it keeps computational costs low enough and base their
localization and pose estimation on the well known 2D
SLAM (Simultaneous Localization and Mapping) problem,
while the problem of place labeling is solved through the
usage of feature descriptors and machine learning. However,
by reducing the dimensionality of the mapping to 2D, most
of the world geometry is lost. Also, the label categories need
to be learned a priori through supervised learning and this
makes it unclear whether these representations scale well.
[8] classifies 3D sensed data from a laser sensor into walls,
floor, ceiling, and doors, but their segmentation scheme relies
on simple angular thresholds. In [9], the authors use a graph
representation to detect chairs, but the relation descriptions
are manually estimated, and thus it is unclear whether the
proposed method scales. The work in [12] is closer to our
approach as they use probabilistic graphical models such as
Markov Random Fields to label planar patches in outdoor
urban datasets. Their work is based on [13], [14], which
define point-based 3D descriptors and classify them with
respect to object classes such as: chairs, tables, screens, fans,

and trash cans [14], respectively: wires, poles, ground, and
scatter [13].

Our mapping concept falls into the category of semanti-
cally annotating 3D sensory data with class labels, obtained
via supervised learning or learned by the robot through expe-
rience, to improve the robot’s knowledge about its surround-
ings and the area in which it can operate and manipulate. The
resulting models do not only allow the robot to localize itself
and navigate, but are also resources that provide semantic
knowledge about the static objects in the environment, what
they are, and how they can be operated. Thus, static objects
in the environment such as cupboards, tables, drawers, and
kitchen appliances are structurally modeled and labeled, and
the object models have properties and states. For example, a
cupboard has a front door, handles and hinges, is a storage
place, and has the state of being either open or closed.

III. SYSTEM OVERVIEW

We approach the map learning problem by designing a 2-
levels geometric feature set for a machine learning classifier,
that is capable of generating labeled object hypotheses only
using the geometric data contained in the point clouds while
scanning the environment.

Figure 3 presents the overall architecture of our system.
The integration of individual point cloud scans into the
hybrid model follows the geometrical processing pipeline
described in [1], [15], and includes: statistical gross outlier
removal, feature estimation for each point in the dataset,
a 2-step registration [16], and finally a local resampling
of the overlapping areas between scans [1]. Their result is
an improved point data model, with uniformly resampled
3D coordinates, and partially noiseless. This constitutes the
input to the Semantic Mapping system. Since these general
geometric mapping topics have already been covered in our
previous work [1], [15], [16], they fall outside the scope of
this paper.

Fig. 3. The architecture of our mapping system, and the 2 different types of
maps produced. The input data is provided from the laser sensors installed
on the robot’s arms via the Point Cloud Data Acquisition module, and is
processed through a Geometric Mapping pipeline resulting in a PCD world
model [1]. This model constitutes the input for the separate components of
the Semantic Mapping module.
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The term hybrid mapping refers to the combination of
different data structures in the map, such as: points, triangle
meshes, geometric shape coefficients, and 2D general poly-
gons. Different tasks require different data structures from
this map. For example, 3D collision detection usually re-
quires either a triangle mesh representation or a voxelization
of the underlying surface, while object classification might
use the geometric shape coefficients. The hybrid Semantic
Object Map in our implementation is comprised of 2 different
types of maps:
• a Static Semantic Map comprised of the relevant parts

of the environment including walls, floor, ceiling, and
all the objects which have utilitarian functions in the en-
vironment, such as fixed kitchen appliances, cupboards,
tables, and shelves, which have a very low probability
of having their position in the environment changed (see
Figure 2);

• a Triangulated Surface Map, used for 3D path planning,
and collision avoidance for navigation and manipula-
tion, using the techniques presented in [17].

The Semantic Mapping pipeline includes:
• a highly optimized major planar decomposition step,

using multiple levels of detail (LOD) and localized
sampling with octrees (see Section IV-A);

• a region growing step for splitting the planar compo-
nents into separate regions (see Section IV-B);

• a model fitting step for fixture decomposition (see
Section V-A);

• finally a 2-levels feature extraction and classification
step (see Sections IV-C and V-B).

Figure 4 describes the 2-levels feature extraction and
classification framework employed in our Semantic Mapping
system. Instead of learning a single global model, we make
use of proven geometrical techniques for splitting the data
into clusters first, and compute separate features and a
separate model for each of these clusters. The two defined
level-1 clusters are composed of the horizontal planes, and
the vertical planes respectively. By treating them separately,
we simplify the features that need to be computed, remove
false positives, and in general improve the classification
results. Additionally, once we obtain a set of furniture
faces labels from the classifier for vertical planes, we pro-
ceed at extracting object fixtures (e.g. handles and knobs)
and estimate a level-2 set of features which will help at
separating furniture object types into drawers, cupboards,
kitchen appliances, and vertical side faces respectively. A
final advantage of this scheme is that we do not need to
estimate all possible features for all planar candidates, but
rather proceed at segmenting and computing features as
needed, starting with simple ones (i.e. horizontal planes).
Therefore, the overall system will benefit from a reduced
computational complexity.

IV. PLANAR DECOMPOSITION AND LEVEL-1 FEATURE
ESTIMATION

The Semantic Object Map includes semantically annotated
parts of the environment, which provide useful information
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Fig. 4. The 2-levels feature extraction and object classification framework
used in our mapping system. The light red boxes represent the output
classification labels.

for our mobile personal assistant robot in fulfilling its tasks.
These parts are thought of as being unmovable or static,
that is with a very low probability of having their position
changed in the environment, though this is not a hard
constraint for our system, in the sense that model updates
are possible. To separate the objects functions, we devised
three categories:
• structural components of the environment: walls, floor,

ceiling;
• box-like containers which can contain other objects

and have states such as open and closed: cupboards,
drawers, and kitchen appliances;

• supporting planar areas: tables, tops of sideboards,
shelves, counters, etc.

After the Geometric Mapping processing steps are applied
on the raw scanned data, as shown in in Figure 3, the
resultant point data model is transformed into the world
coordinate frame, with the Z-axis pointing upwards. Figure 1
presents a 360◦ view, comprised of 16 registered scans of
our kitchen lab. The world coordinate frame is presented on
the left side of the figure, and depicts the general XY Z
directions (X - red, Y - green, Z - blue).

A subsequent processing step is to segment the pointcloud
into planar areas. Once all the major planar areas are found,
and split into regions, we employ a 2-levels feature extraction
and classification scheme (see Figure 4).

A. Planar Segmentation

The assumption that our kitchen environment is mostly
planar and can thus be decomposed into areas of interest
using plane fitting techniques can be verified by looking at
the Extended Gaussian Image (EGI) of the point cloud. As
presented in the left part of Figure 5, most of the estimated
point normals are found as being parallel with the principal
XY Z directions, accounting for approximately 85% of the
entire dataset. These exact numbers are not important as they
will vary for other datasets, but in general they will prove
the planarity tendency in indoor environments.

The planar model decomposition in the pointcloud data
with near realtime performance, is achieved using a hier-
archical multi-LoD (Level of Detail) scheme. Instead of
using the entire data, we decompose the cloud using an
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Fig. 5. Left: the Extended Gaussian Image (EGI) of the point cloud dataset.
As seen, most of the estimated point normals are found around the principal
XY Z directions, accounting for approximately 85% of the entire dataset.
Right: the remaining points after major planar area segmentation in our
kitchen dataset.

octree scheme, and perform a RMSAC [18] (Randomized M-
Estimator SAmple Consensus) based search for planar areas,
using the centroid of the leaves at the highest levels of detail
in the tree. To optimize the search even further, we make
use of the estimated point normals while rejecting planar
candidates.

The multi-LoD scheme uses a localized sampling strategy
similar to the one proposed in [19]. Let N denote the size
of the point cloud, d denote the depth of the octree for this
point cloud, and let the biggest modelM consist of n points.

The first sample point p1 is chosen randomly from the
complete point cloud. The probability of finding a planar
model M can be expressed as follows:

Plocal(n) =
n

N
· P(p2,p3 ∈M), (1)

where the fraction denotes the probability for picking the
first sample point from M. The second term stands for the
probability of picking the remaing sample points from the
model.

For every level l in the octree, there exists a cell containing
p1. Assume there exists a cell such that M is supported by
at least half of the points in it, then uniform sampling will
select this cell with a probability of 1

d . The other two samples
points p2,p3 are then drawn from this cell. The second term
in Equation 1 is therefore:

P(p2,p3 ∈M) =
1
d
·
(|C|/2

2

)(|C|
2

) ≈ 1
d
·
(

1
2

)2

. (2)

Equation 1 can then be rewritten:

Plocal(n) =
n

4Nd
(3)

If we were sampling all three points uniformly from the
point cloud, the corresponding probability could be estimated
as follows: ( n

N )3, so the described sampling strategy im-
proves that probability by a factor of 1

4d (N
n )2. With d =

7, this factor ranged from 10 to 350 in our experiments,
considerably improving with decreasing model sizes.

Once a plane model is computed at a certain level of
detail, we refine its equation by including points from a
higher octree level, and refit the model. Once all the levels
have been exhausted we refine the resultant equation by

including the original points in the scan. This scheme has
the advantage that it constraints the rough planar equation
from the beginning and computes an initial solution very
early, while keeping the overall computational costs low.

Since the world coordinate frame is defined with the Z
axis pointing upwards, in general we are always interested
in dividing the planar models into two categories:
• horizontal planes, i.e. those whose normal is parallel

with the Z axis;
• vertical planes, i.e. those whose normal is perpendicular

to the Z axis.
The first category will include structural components of

the environment such as the floor and the ceiling, as well
as planar areas which can support movable objects, such as
tables, shelves, or counters (see Figure 6 left). The second
category will devise the walls of the room, and all the faces of
the furniture and kitchen appliances in the room (see Figure 6
right).

Fig. 6. Left: all horizontal planes found in the scene; right: all vertical
planes found in the scene.

B. Region Growing

After all the planar areas have been found, our pipeline
proceeds at breaking the resultant regions into smaller parts
using a region growing method. The algorithm is based
on two factors, namely: i) the Euclidean distance between
neighboring points, and ii) the changes in estimated surface
curvature between neighboring points. The second factor
is enforced by the use of boundary points, which will be
considered as having an infinite curvature, and thus act as
stoppers for the region growing algorithm.

To do this, first the boundary points of each region are
computed as explained in [1]. The left part of Figure 7
presents the resultant boundary points for the vertical planar
areas presented in the right part of Figure 6. Then, a random
non-boundary point p is chosen and added to a list of
seed points, and a search for its k closest 3D neighbors is
performed. Each neighboring point pk is individually verified
whether it could belong to the same region as the seed point
and whether it should be considered as a seed point itself
at a future iteration of the algorithm. A region is said to be
complete when the list of seed points for the current region
is empty and thus all point checks have been exhausted.

In contrast to our previous implementation in [1], the new
region growing algorithm expands the regions until boundary
points are hit instead of looking at the estimated surface
curvature at each point. This has the advantage that we do not
need any additional computations or curvature thresholds. A
second optimization uses an octree decomposition to speed

3604



Fig. 7. Left: vertical planar areas shown with their estimated boundary
points (marked with red); right: the resultant filtered regions after segmen-
tation.

up the region growing, that is, if no boundary points are
found within an octree leaf, all points are automatically
added to the current region. A final filtering step is applied
to remove bad regions, such as the ones where the number
of boundary points is larger than the number of points inside
the region. The segmentation results are shown in the right
part of Figure 7.

In our implementation, we impose that one piece of
furniture should contain only one handle (we treat drawers
and cupboards as individual units and not just as part of a
cabinet), and thus multiple handles indicate that underseg-
mentation occurred in that area. Therefore, after fixtures are
detected (see Section V), we proceed in re-segmenting these
areas by looking to fit horizontal lines to the boundary points
that might split the candidate into multiple parts that contain
only one handle.

C. Extracting Level-1 features

As presented in Figure 4, our mapping scheme implements
two sets of geometric features at level-1, one for horizontal
planes and one for vertical planes. Their description is given
in Tables I and II. Throughout their definitions we use the
notations |p− q| and |p− q|z , which denote the Euclidean
distance between the points p and q over XY Z, respectively
the length of the segment formed between p and q over Z.

The first set of features will be computed for horizontal
planes. Once a model that can separate horizontal planes
into the object classes mentioned in Figure 4 is learned,
the resultant ceiling and floor object models will be used
to generate the level-1 features for vertical planes.

TABLE I
LEVEL-1 FEATURES FOR HORIZONTAL PLANES.

Feature Notation Description
Height Hh the height of the planar model on Z with respect

to the world coordinate frame
Length Lh the length along the first principal component
Width Wh the length along the second principal component

The vertical planar classification separates walls from
furniture candidates. Since we already know the planar
equations of the ceiling and the floor from the horizontal
planar classification, we use these to determine the height
of the vertical region with respect to them. The goal is
to differentiate between walls and other types of vertical
planes which will be considered unanimously as possible
furniture candidates. Therefore, the vertical regions which

contain points close to the ceiling might be classified as
walls. In our case, it is not extremely important if these are
actual walls or not – what matters is that those regions are
high enough that they are unreachable by the robot anyway.
Notice that the regions do not have to be continuous, as
all the points which have the same plane equation will be
marked as walls.

TABLE II
LEVEL-1 FEATURES FOR VERTICAL PLANES.

Feature Notation Description
Height Hv the actual length along the Z axis (i.e.

|Mz −mz | where Mz and mz are
the points with the maximum respec-
tively minimum Z values)

Floor distance Df
v the distance to the floor model (i.e.

|mz − pf |z where mz is the point
with the minimum Z value, and pf is
a point on the floor)

Ceiling distance Dc
v the distance to the ceiling model (i.e.

|mz−pc|z where mz is the point with
the maximum Z value, and pc is a point
on the ceiling)

Width Wv the length along the biggest principal
component, excluding Z

Since the feature spaces are relatively simple, the choice
of using the right machine learning classifier is greatly
simplified. In our implementation, we decided to use a
probabilistic undirected graphical method for training the
models, namely Conditional Random Fields (see Section VI).

V. FIXTURE SEGMENTATION AND LEVEL-2 FEATURE
ESTIMATION

The classifiers constructed using the level-1 features pre-
sented in the previous section separate the planar regions into
object classes such as tables and shelves (on horizontal) or
walls and furniture faces (on vertical).

Following the architectural framework depicted in Fig-
ure 4, our mapping pipeline employs a segmentation of
fixtures (e.g. handles and knobs) on vertical planar regions
classified as possible furniture faces.

A. Fixture Segmentation

For each of the classified furniture faces candidates, we
perform a search for points lying in their vicinity, which
could contain fixtures such as handles and knobs. The
algorithm for extracting fixtures consists in the following
steps:
• compute the boundary points of each furniture face

candidate;
• obtain the 2 directions perpendicular to the normal of

the planar area, and find the best (i.e. highest numbers
of inliers) 4 oriented lines, 2 in one direction and 2 in
the other direction using RMSAC;

• get the 4 points which form the 3D rectangle approxi-
mating the planar region;

• get all points which are lying on this rectangle but are
not inliers of the planar face and compute their boundary
points;
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• finally, fit 3D lines and 3D circles to these boundary
points using RMSAC, score the candidates, and select
the ones which minimize the Euclidean distance error
metric. To refine the final shape parameters, we apply
a non-linear optimization using Levenberg-Marquardt.

Figure 8 presents the segmentation and classification of
all handles and knobs found on candidate furniture faces in
the kitchen dataset presented in Figure 1.

Fig. 8. Segmentation and classification of fixtures (handles and knobs) on
furniture faces (see Figure 11). Handles are drawn with blue lines over their
inlier points (in magenta), knobs with orange circles, and each planar area
is bounded by 4 corners (in black) and 4 perpendicular lines (in cyan). The
red dotted-lines represent the convex boundaries of each point region. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

B. Extracting Level-2 features

To differentiate between various possible furniture types,
our mapping scheme implements a secondary type of features
which are to be computed only for the vertical planar regions
classified as furniture candidates. This set of features (see
Table III) take into considerations constraints such as the
number of handles and knobs present as lying on the planar
region, as well as the distance between the center of the
fixture and the center of the region.

TABLE III
LEVEL-2 FEATURES FOR FURNITURE CANDIDATES.

Feature Notation Description
Height Hf the height of the furniture candidate
Width Wf the width of the furniture candidate
Nr. handles Nh the number of handles present on the fur-

niture candidate
Nr. knobs Nk the number of knobs present on the furni-

ture candidate
Min distance Dm the minimum distance between the center

of the planar face and the closest fixture
(handle or knob)

Following the classification results for object types which
employ fixtures towards one of the edges of the planar face
supporting them (e.g. cupboards), our system will estimate
the door opening hinge as being on the opposite edge.

VI. LEARNING OBJECT CLASSES

We use Conditional Random Fields for the classification of
our models. CRFs have mostly been used for segmenting and

labeling sequence data [20] but have lately shown excellent
results in other research areas as well. A Conditional Random
Field is an undirected graphical model with vertices and
edges. In contrast to generative graphical models, like Naive
Bayes or Hidden Markov Models, a Conditional Random
Field is a so called discriminative graphical model which
doesn’t represent a joint probability distribution p(x, y).
Instead it uses a conditional probability distribution p(y|x) to
provide a method to reason about the observations x and the
classification label y. The performance outcome of generative
models often suffer from potentially erroneous independence
assumptions made during modeling the observations x in
connection to the labels y. By using a discriminative graph-
ical model like Conditional Random Fields, there is no need
in modeling the features of y at all, which results in a
superior classification speed and performance compared to
generative models.

Applying the product rule and the sum rule on the condi-
tional probability p(y|x), we get:

p(y|x) =
p(y, x)
p(x)

=
p(y, x)∑
y′ p(y′, x)

=
∏

c∈C ψc(xc, yc)∑
y′
∏

c∈C ψc(xc, y′c)
(4)

where the factors ψc are the potential functions of the random
variables vC within a clique c ∈ C.

Finally we can derive a general model formulation for
Conditional Random Fields [21]:

p(y|x) =
1

Z(x)

∏
c∈C

ψc(xc, yc), Z(x) =
∑
y′

∏
c∈C

ψc(xc, y
′)

(5)
By defining the factors ψ(y) = p(y) and ψ(x, y) = p(x|y)

we can derive an undirected graph with state and transition
probabilities.

The potential functions can be written as:

ψC(xC ,yC) = exp

{∑
k

(λCkfCk(xC ,yC))

}
(6)

for some parameter vector λC and some set of feature
functions fCk. Due to the cliques in the graph the partition
function Z(x) can easily be calculated with the Forward-
Backward algorithm. Learning in a Conditional Random
Field is performed by estimating the weights λCk by maxi-
mizing the log-likelihood of p(y|x).

y
1

H
h

L
h

W
hFeatures

Classification 
output

y
2

H
v

D
v

c W
v

D
v

f H
f

W
f

N
h

N
k

D
m

y
3

Fig. 9. From left to right: CRF for model 1 (Horizontal L-1 Features),
2 (Vertical L-1 Features), and 3 (L-2 Features). The classification output
labels yi are shown in Figure 4.

Figure 9 shows the Conditional Random Fields for our
three different models. Each of the models’ features is used
as an input variable. The variable nodes are named after the
corresponding notations in Tables I, II, and III.
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VII. DISCUSSIONS AND EXPERIMENTAL RESULTS

An important factor in the classification accuracy of the
CRF model, is the amount and type of training data used for
learning. Due to physical constraints in moving our mobile
robot to a different kitchen environment, or changing the
kitchen furniture to obtain multiple datasets, the amount of
training data available was small. To circumvent this prob-
lem, we proceeded as follows: we created realistic kitchen
models in our Gazebo 2 3D simulator, and used virtual
scanning techniques, followed by synthetic data noisifica-
tion to acquire additional point clouds representing kitchen
environments (see Figure 10). After acquiring a few of
these datasets, we processed them through our pipeline and
extracted the 2-levels features for training the CRF model.
Table V presents a few examples of virtually scanned kitchen
environments (left) and their respective fixture on furniture
candidate faces segmentation (right).

Fig. 10. An illustration of the simulated 3D environments and the process
of acquiring training datasets, using the Gazebo 3D simulator.

The classification results of the trained CRF model for the
kitchen dataset presented in Figure 1 are shown in Table IV.
The table shows the recall, precision and F1-measure values
of all labels and the macro-averaged statistic of each model.
The item accuracy is based on the overall correct classified
items against the wrong classified items in the test data set.

TABLE IV
PERFORMANCE OF THE CRF MODELS

Horizontal planes Vertical planes Furniture candidates
Label Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 1.00 0.50 0.67 1.00 0.91 0.95 0.94 1.00 0.97
2 1.00 1.00 1.00 0.97 1.00 0.98 0.97 0.89 0.93
3 0.96 1.00 0.98 0.50 0.75 0.60

Macro
accuracy 0.99 0.83 0.88 0.99 0.95 0.97 0.80 0.88 0.83

Item
accuracy 0.97 0.98 0.91

The labels for the models given in the above table
represent (in order): floor, tables, and ceiling (horizontal
planes); walls, and furniture candidates (vertical planes);
respectively cupboards, drawers, and kitchen appliances (fur-
niture candidates). As it can be seen, the lowest accuracy
of the classification results is represented by the kitchen
appliances. The variety in the models we trained our model
with is simply too large, and our proposed level-2 features
cannot capture the modeling process correctly. We plan to

2Gazebo is a 3D simulator - http://playerstage.sourceforge.net

investigate this further by redesigning our features as well
as using more training datasets.

Figure 11 presents the classification of vertical planar areas
into walls (left) and furniture candidates (right) using the
aforementioned CRF model.

Fig. 11. Vertical planar regions classified as: walls (left); furniture
candidates (right); for the dataset presented in Figure 1.

After classification, the resulted objects are incorporated
into the map and using a XML-based representation, we
can import them back in the Gazebo simulator, where it
is possible to perform a validation of the estimated door
hinges and object classes. Figure 12 presents the automatic
environment reconstruction of the real world dataset.

Fig. 12. Left: automatic environment reconstruction of the real world
dataset from Figure 2 in the Gazebo 3D simulator; right: the estimation and
evaluation of door hinges from geometry data.

To support mobile manipulation and 3D collision avoid-
ance, our mapping pipeline creates a second type of map
comprised of triangular meshes: the Triangulated Surface
Map. By using the acquired object classes, the surface recon-
struction methods can be applied in parallel on each object
separately, leading to the creation of a decoupled triangle
map. The straightforward advantages of such a representation
(see Figure 13 for an example) are that: a) changes in the
world can be now be modelled separately on a subset of
objects without loading or working with the rest; and b) it
supports environment dynamics natively, as picking up an
object from a table simply means moving the triangular mesh
representing the object from the table into space, without the
need to recreate it.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a comprehensive system for the ac-
quisition of hybrid Semantic 3D Object Maps for kitchen
environments. Our hybrid mapping system includes 2 com-
ponents, namely: i) a Semantic 3D Object Map which
contains those parts of the environment with fixed positions
and utilitarian functions (walls, floor, kitchen appliances,
cupboards, tables, etc); and ii) a Triangulated Surface Map
updated continuously. The Semantic Object Map is built

3607



Fig. 13. Surface reconstruction example with mesh decoupling for all
furniture candidates and objects supported by planar areas.

TABLE V
VIRTUALLY SCANNED TRAINING DATASETS.

Virtually scanned environment Segmentation and model fitting

by classifying a set of planar regions with estimated 3D
geometrical features, and serves as a semantic resource for an
assistant mobile personal robot, while the Triangulated Sur-
face Map supports 3D collision detection and path planning
routines for a safe navigation and manipulation.

As pure geometrical reasoning has certain limits, we plan
to switch to a multimodality sensing approach, in which
fast stereo cameras are combined with accurate laser mea-
surements, and texture and color based reasoning will help
disambiguate situations which geometry alone cannot solve.
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