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Abstract— This paper presents 6-DOF monocular EKF-
SLAM with undelayed initialization using linear landmarks
with extensible endpoints, based on the Plücker parametriz-
ation. A careful analysis of the properties of the Plücker coor-
dinates, defined in the projective space P5, permits their direct
usage for undelayed initialization. Immediately after detection
of a segment in the image, a Plücker line is incorporated in the
map. A single Gaussian pdf includes inside its 2-sigma region
all possible lines given the observed segment, from arbitrarily
close up to the infinity range, and in any orientation. The lines
converge to stable 3D configurations as the moving camera
gathers observations from new viewpoints. The line’s endpoints,
maintained out of the map, are constantly retro-projected from
the image onto the line’s local reference frame. An extending-
only policy is defined to update them. We validate the method
via Monte Carlo simulations and with real imagery data.

I. INTRODUCTION

In the last years we have seen an important development
of visual Simultaneous Localization And Mapping (SLAM)
techniques. Most of these works have made use of point
features because points are easy to extract, match, and
represent. However, there is wide consensus on the fact that
punctual world representations cannot provide satisfactory
mapping results. Indeed, a map consisting of a sparse set
of 3D points is far from describing the structure of the
surrounding world. This is inherent to the dimensionless
character of points, which contain no notion of neighborhood
by themselves. Instead, segment-based landmarks include
the one-dimensional notion of connectivity, and the two-
dimensional notion of boundary, providing the map with
a much richer representativeness of reality (Fig. 1). Con-
nectivity and boundary information can be exploited to
establish useful metrical and topological descriptions of the
environment. This is effectively an important step forward
for structured scenarios with plenty of straight lines. This
work is relevant for SLAM applications intended for such
scenarios.

We present a method for undelayed initialization (UI,
otherwise named partial initialization) of straight lines in
monocular extended Kalman filter (EKF) SLAM. UI allows
low parallax landmarks, i.e., those that are remote or close to
the motion axis of the camera, to contribute to SLAM from
the first observation. This allows the exploitation of the full
field of view of the camera up to the infinity range, which
results in accurate localizations with very low angular drifts.
We encourage the reader to consult [1]–[4] for discussions
on delayed/undelayed initializations and their importance in
monocular SLAM.

For points, UI means that landmarks must be initialized
so that the uncertainty in distance – the only non-measurable
degree of freedom (DOF) – covers all the visual ray up
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Fig. 1. What is this? To reveal it, join the dots with a piecewise line,
starting from the black dot labeled “1” and proceeding in order. While
there are (approximately) the same number of points and lines, only the
line segments succeed in revealing a meaningful structure.

to infinity. EKF also requires that the observation function
be reasonably linear within the whole range of uncertainty.
These two severe requirements can be elegantly fulfilled by
parametrizing distance by its inverse, leading to the method
known as Inverse Depth Parametrization (IDP) [3], which
can be considered the standard to this date.

The problems of lines and points are somewhat similar,
and one of the aims of this paper is to make this similarity
evident. Lines, however, present additional difficulties. For
lines, UI requires the initial uncertainty to cover 2 non-
measurable DOF: distance up to infinity, and all possible
orientations. Unlike points, lines can be partially occluded,
and most edge detectors produce very unstable endpoints.
Therefore, the 3D segment’s endpoints cannot be established
from single observations. Also, line observations suffer from
the aperture problem, which means that only the measured
components that are orthogonal to the line are practicable.
And still, in the Euclidean space a well defined measure of
distance between lines is missing, making the definition of
the innovation in EKF a delicate matter.

This work retakes the track started with [1], about un-
delayed initialization of points in monocular EKF-SLAM,
which was improved by [2], [3] with the inverse depth
parametrization (IDP). Some of these studies have since
been extended to deal with segments, with either delayed
[5] or undelayed [6] initialization. They share the remarkable
asset of real-time operation. The points supporting the lines
are coded using inverse depth parameters during the ini-
tialization phase, and converted to Cartesian representations
after convergence. Being extensions of point-based systems,
both methods suffer in our opinion from a somewhat poor

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1553



representation of the linear landmarks. Ref. [5] represents
segments with their two endpoints, which are determined at
the first observation and never updated. The inverse depth
parameters are initially estimated by an external EKF until
convergence, thus delaying initialization. Ref. [6] makes use
of small edge landmarks, named ‘edgelets’, associated to a
3D point. Edgelets are typically 15 pixels long, and longer
lines must be represented by several edgelets, compromising
precisely the representativeness that we are seeking. Finally,
during the initialization phase, [5] uses 11 parameters to rep-
resent the line, and [6] uses 9 parameters. After convergence,
both systems switch to 6 parameters.

We represent infinite 3D lines with the Plücker coordi-
nates, a 6-parameter parametrization well known in pro-
jective geometry. Plücker coordinates do not rely on point
definitions, and are very easily manipulated: rotation, trans-
lation, join, incidence, intersection and pin-hole projection
are resolved with exclusively additive, cross-product and dot-
product operations. Using these operations we obtain a linear
projection function that transforms Plücker lines in 3D space
into homogeneous lines in the 2D image plane.

Our approach draws on [7], which performs SLAM with
segments using the Euclidean Plücker coordinates (a sub-
set of the Plücker coordinates where the direction vector is
normalized) to map infinite lines. The drawback of [7] is a
delayed initialization. The most remarkable insight that we
provide is that, by using the Plücker coordinates alone (not
the Euclidean Plücker), we naturally achieve inverse-depth
behavior. This allows us to use Plücker lines in undelayed
monocular SLAM directly. We keep track of the segment’s
endpoints outside the map, and define for them an extending-
only policy that adapts the method described in [7] to
undelayed operation.

This paper is organized as follows. In Section II we high-
light the most relevant properties of the Plücker coordinates.
In Section III we present the initialization algorithm. We de-
tail in Section IV the EKF updating procedures. In Section V
the whole algorithm is benchmarked via simulations, and we
present results with real images. We conclude in Section VI
with a discussion.

II. THE PLÜCKER LINE COORDINATES

A. Notation

We deal with quite a few different representations for
points, lines, motion matrices and projection matrices. The
notation used is as follows. For readability, we write vector
expressions within the text, e.g. [A>,B>]>, with the lighter
form (A,B). Points in Euclidean space E3 are specified
with bold capitals, A. Points in projective space P3 are
underlined, A = (A : A) ∼ (kA : kA), where the colon (:)
delimits the non-homogeneous part A ∈ R3, A is a scalar
and ∼ denotes equivalence up to a scale factor k. Matrices
are also in bold capitals (Plücker L, motion H, intrinsic K,
projection P). In the projective image plane P2 we use non-
capitalized fonts; points are underlined, a = (a :a), whereas
lines are not, l = (l1, l2, l3). In P5 we use calligraphic fonts;
the Plücker line coordinates, L, consist of two subvectors,
L = (n : v). The Plücker matrices: motion H, intrinsic K,

and projection P . Reference frames are also in calligraphic
font, F , C,O. Points and lines in a particular frame F take
this as a super-index, AF ,LF , except when it is irrelevant
or it corresponds to the global frame. Vectors and matrices
for frame transformation are in sans serif font: translation is
T, and we use quaternions Q to represent rotation, so the
rotation matrix is R = R(Q). A frame pose is encoded as
F = (T,Q). We finally use [a]× for the 3×3 skew-symmetric
matrix associated with the cross product, i.e., [a]× b , a×b.

B. Reminder. Homogeneous point manipulations in vision
The motion matrix H transforms homogeneous points A

from camera frame C to the global frame with

A = H·AC ,

[
R T
0 1

]
·AC . (1)

In a pin-hole model of a perspective camera, points in the
external P3 space are projected into the P2 image with

a = P·A = K·P0 ·H−1 ·A, (2)

with H−1 the transformation to camera frame, P0 the canon-
ical projection matrix, and K the intrinsic matrix. Notice that
when the point is expressed in camera frame, AC , only the
non-homogeneous part appears in the projection expression,

a = K·AC , (3)

meaning that 1 DOF, the point’s range contained in AC , is
not measurable.

C. The Plücker coordinates
A line in P3 can be defined from two points {A,B} ∈ P3

of the line by the Plücker matrix,

L = A·B> −B·A> ∈ R4×4. (4)

This is a 4×4 skew symmetric matrix, with 6 independent
entries lij = −lji, subject to the Plücker constraint,

det(L) = 0. (5)

The Plücker matrix is independent of the two selected points
of the line (more exactly, any two points of the same line
give place to a matrix L′ ∼ L, i.e., equivalent up to scale).

This line is coded as a homogeneous 6-vector L ∈ P5 with
the so called Plücker coordinates. These coordinates are any
selection of the entries ±lij , and have been defined in the
literature in a number of different ways, some of them more
fortunate (intuitive, easy to understand or manipulate) than
others. It is handy to choose a representation L = (n :v) [8]
that corresponds to writing L as

L =
[
[n]× −v
v> 0

]
, n,v ∈ R3. (6)

This yields L = (n : v) = (l32, l13, l21 : l41, l42, l43) ∈ P5,
with 6 DOF. The Plücker constraint leads

n>v = 0, (7)

leaving 5 DOF. Another DOF accounts for the irrelevant
scale factor of L. The remaining 4 DOF are required to
minimally encode a line in 3D space [8].
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d =

‖n‖

‖v‖

π
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v
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Q

Fig. 2. Geometrical representation of the Plücker coordinates and sub-
vectors n and v. Sub-vector v exhibits an inverse-depth behavior which,
proceeding with care, allows Plücker lines to be used directly for undelayed
initialization.

The Plücker coordinates, when defined as in (6), admit a
straightforward geometrical interpretation (in the Euclidean
sense, Fig. 2):
• The vector n is a vector normal to the plane π contain-

ing the line L and the origin O.
• The vector v is a director vector of the line, oriented

from A to B.
• The ratio ‖n‖/‖v‖ is the Euclidean distance d from the

origin to the line.
• The Plücker constraint trivially says that n ⊥ v.
• The point of the line closest to the origin is given by

Q = (v×n)/‖v‖2.
Remark 1 (Plücker and inverse depth): The third prop-

erty above, saying d = ‖n‖/‖v‖, is crucial for undelayed
initialization in SLAM, notably because of the inverse depth
behavior of the sub-vector v. This is not possible with the
Euclidean Plücker coordinates LE = (n : u) in [7] because
the director vector u is normalized, ‖u‖ = 1. See also
Remark 2.

D. Plücker line manipulations
It is easy to see, via (1) and (4), that the Plücker matrix

is transformed according to

L = H·LC ·H>.

This expression is linear in the components of LC and
therefore a linear expression exists for its vector counterpart
L. Having defined L = (n : v), the expression of the
transformation is amazingly simple [8]:

L = H·LC ,

[
R [T]× R
0 R

]
·LC . (8)

The inverse transformation is performed with

LC = H−1 ·L ∼
[
R> −R> [T]×
0 R>

]
·L. (9)

Similarly, the Plücker matrix is projected into a pin-hole
camera according to

[l]× = P·L·P>,

which is again linear in L. The corresponding linear ex-
pression for the projected line in homogeneous coordinates,
l ∈ P2, is also very simple:

l = P·L = K·P0 ·H−1 ·L, (10)

η

n
C

v
C

L
C

C

I

e1

e2

l

Fig. 3. Retro-projection of a segment in the image. The orthonormal base
{e1, e2} of the representation plane η permits the isolation of the 2DOF
of the line’s director vector vC . The base vector e1 is arbitrarily defined to
be parallel to the image plane.

with intrinsic and canonical projection Plücker matrices

K =
[

αv 0 0
0 αu 0

−αvu0 −αuv0 αuαv

]
, P0 =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
.

The whole transformation and projection process (10) can be
expressed in terms of T, Q, n and v,

l = K·R(Q)> ·(n− T×v). (11)

Notice that when the line is expressed in camera frame,
LC , only the plane’s normal nC appears in the projection
expression,

l = K·nC , (12)

meaning that 2 DOF, the line’s range and orientation con-
tained in vC , are not measurable.

It is worth comparing (8) with (1), (10) with (2), and (12)
with (3).

III. LINE INITIALIZATION

A. Line and uncertainty representations in E2 and P2

In order to specify the measurement noise in pixel units,
we initially express segment measurements in the image
plane with their two E2 endpoints p1 and p2, with additive
Gaussian noiseN{0;Rp} each. When needed, the segment’s
pdf can be converted to homogeneous coordinates, l ∼
N{̂l;Λ} ∈ P2, with

l̂ = p
1
×p

2
(13)

Λ =
[
p

1

]
×
·Rp ·

[
p

1

]>
×

+
[
p

2

]
×
·Rp ·

[
p

2

]>
×

. (14)

where p
i
= (pi :1) and Rp = diag(Rp, 0).

B. Retro-projection of a line

A segment l detected in an image I uniquely determines
the plane η containing the 3D line and the optical center C
(Fig. 3). This is named the representation plane. The plane’s
normal in camera frame is obtained by simply inverting (12),

nC = K−1 ·l. (15)

The non-measured vector vC is meant to lie on the plane
η. With the aim of isolating its two non-measurable DOF, we
consider vC to be generated by a linear combination of the
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vectors of an orthonormal base E = {e1, e2} of the plane η,
i.e.,

vC = β1 ·e1 + β2 ·e2, β1, β2 ∈ R,

with {e1, e2,n} mutually orthogonal and ‖e1‖ = ‖e2‖ = 1.
Doing E , [e1 e2] ∈ R3×2 and β = (β1, β2) we get the
matrix form

vC = E·β, (16)

and vC ⊂ η for any value of β. The base E spans the
null space of nC , thus the Plücker constraint is satisfied by
construction.

For convenience, we arbitrarily build the base E so that
e1 is parallel to the image plane. This yields

e1 =

[
nC2 −nC1 0

]>√
(nC1 )2 + (nC2 )2

and e2 =
nC

‖nC‖
×e1. (17)

The vector β admits the following geometrical interpreta-
tion (Fig. 4(a)):
• β = (β1, 0) is a line parallel to l, thus to the image

plane.
• β = (0, β2) is a line perpendicular to l (but generally

not to the image plane).
• The Euclidean distance from the line to the optical

center C is given by ‖nC‖/‖β‖.
Remark 2 (Role of β): When β → (0, 0), the line tends to

infinity. Its orientation is given by the relative strength of β1

with respect to β2, and it easily covers the full circumference
[−π, π]. Also, when ‖nC‖ = 1, the value ‖β‖ is the inverse
of the Euclidean distance from the line to the origin. See
also Fig. 4 on initializing the pdf of β, together with step 2)
in the algorithm that follows.

C. Initialization algorithm

Suppose we have a camera at location C = (T,Q), with
intrinsic Plücker matrix K. C has uncertainties encoded in
the map, while K is assumed to be deterministic. A segment
{p1,p2} is detected, then transformed to homogeneous
coordinates with (13–14), and we wish to initialize it in a
SLAM map. We proceed as follows.

1) Identify the known magnitudes:

• The SLAM map X = (C,M) ∼ N{X̂;P} consists of

X̂ =
[
Ĉ
M̂

]
and P =

[
PCC PCM
PMC PMM

]
,

where C is the camera pose andM the set of landmarks.
We define PCX , [PCC PCM].

• From (13–14), the measured line’s pdf is l ∼ N{̂l;Λ}.
2) Define the pdf of the non-measurable DOFs: From

arbitrary priors, build β ∼ N{β̂;B}, as follows (Fig. 4(b)):

• Initialize the line’s mean at infinity with β̂ → (0, 0).
• Make sure the pdf is isotropic and contains, at e.g. 2σ,

the lines at minimal distance, i.e. 2σβ = 1/dmin. Build
covariances matrix B = diag(σ2

β , σ2
β).

β1

β2 β = (1, 0)

β = (.7, .7)

β = (0, 1)

C

(a)

β1

β2 2σβ

3σβ

‖nC‖/dmin
(b)

Fig. 4. Defining a pdf for β. (a) Different lines in the representation plane
η (see Fig. 3) in camera frame C, as a function of β. (b) The Gaussian pdf
contains all possible lines at a minimum distance of dmin: it is isotropic
in orientation, it includes the origin which represents the line at infinity,
and dmin is at 2σ. For reference, a Gaussian shape is superimposed on the
horizontal axis to evaluate the probability values at 2σ and 3σ.

3) Compute the line estimate, L̂, and its Jacobians:
• Using (15), compute the Plücker sub-vector in camera

frame n̂C from the measured line l̂. Normalize it to a
unit vector n̂Cn.

• Using (16–17), compute v̂C from n̂Cn and β̂.
• Build L̂C = (n̂Cn : v̂C).
• Using (8), transform L̂C to the global frame. Obtain the

line estimate L̂.
• Compute Jacobians LC = ∂L

∂C , Ll = ∂L
∂l and Lβ = ∂L

∂β .
4) Initialize the line in the map:
• Compute the line’s co- and cross-variances,

PLL = LC ·PCC ·L>C + Ll ·Λ·L>l + Lβ ·B·L>β
PLX = LC ·PCX .

• Augment the SLAM map,

X̂ ←
[
X̂

L̂

]
and P←

[
P P>

LX

PLX PLL

]
.

IV. LINE UPDATES

A. Plücker line update

The quality of the Plücker line update in EKF strongly
depends on the degree of linearity of the observation func-
tion used. We already tackled the largest linearity issues
by adopting the Plücker coordinates, which exhibit inverse
depth behavior and linearity in the homogeneous observation
functions. Our problem is that homogeneous coordinates are
defined up to scale, preventing the innovation needed in EKF
to be established by a simple subtraction. Converting the line
to more suitable representations comes at the price of losing
linearity, thus compromising EKF performance, and we need
to proceed carefully.

The segment tracker returns two segment endpoints p1

and p2. Due to the aperture problem, only the measurement
components that are orthogonal to the expected line projec-
tion can be used for correction. Therefore, we define the
innovation as a 2-vector containing the signed orthogonal
distances from the endpoints to the expected line (Fig. 5).
The signed distance z from a point p = (u, v : 1) to a line
l = (l1, l2, l3) is given by

z = l> ·p/
√

l 2
1 + l 2

2 ,
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matched 
segment

predicted line

l

p2

p1
z1

z2

Fig. 5. Plücker line observation update. Direct measurement of the
innovation z = (z1, z2) as the two signed orthogonal distances from the
detected endpoints to the expected (or predicted) line.

so the innovation vector is

z =
[
z1

z2

]
=

l̂> ·p
1
/

√
l̂ 2
1 + l̂ 2

2

l̂> ·p
2
/

√
l̂ 2
1 + l̂ 2

2

 ∈ R2. (18)

The above expression reveals the fact that the innovation
can no longer be obtained from the subtraction z = y−h(X̂)
we are familiar with in EKF, but from an implicit function
z = g(X̂,y). This function is obtained by composing
line transformation and projection (11) and the innovation
measurements (18). The result is a somewhat complicated
expression with a generic form

z = g(X̂,y) = g(Ĉ, L̂,y),

where Ĉ and L̂ are the camera and line estimates from the
map X̂ , and y = (u1, v1, u2, v2) ∈ R4 is the measurement
vector, with covariance R = diag(Rp,Rp). One detail that
is worth noticing is the sign change in the Jacobians with
respect to the habitual, explicit EKF innovation definition
g(X̂,y) = y − h(X̂). It is clear that ∂ g

∂X = − ∂ h
∂X . With

this sign change, and the non trivial contribution of y in the
innovation, the EKF correction equations have to be modified
accordingly,

Z = GX ·P·G>
X + Gy ·R·G>

y (19)

K = −P·G>
X ·Z−1 (20)

X̂ ← X̂ + K·z (21)
P ← P + K·GX ·P (= P−K·Z·K>), (22)

with GX = ∂ g
∂X and Gy = ∂ g

∂y . An equivalent solution that
permits reusing existing EKF code is to define H = −GX

and R′ = GyRG>
y , and apply the regular EKF equations

with the Jacobian H and the new measurement noise R′.

B. Segment endpoints update
The line’s endpoints in 3D space are maintained out of

the filter via two abscissas defined in the local 1D reference
frame of the line, whose origin is at the point Q (see
Section II-C and Fig. 2). These abscissas are determined
by back-projecting the detected segment’s endpoints at each
frame (Fig. 6(a)). They are updated following a different
logic depending on the line having already converged or
not. This is because, in an undelayed approach, the line
estimates vary enormously (as much as from infinity to some
close distance), and the abscissas are not stable upon large
line modifications. While the line has not yet converged

Q

t1

t2

P2

P1

O

C

L

p1

p2

(a)

(b)

(c)

r1

r2

Fig. 6. Back-projection of the segments’ endpoints. (a) The detected
points pi and the optical center C define two semi-infinite rays ri. The
closest points to these rays in L are the 3D endpoints Pi satisfying
Pi = Q + tiv/‖v‖. Only the abscissas ti are stored. (b) Endpoints are
systematically updated while the line is in convergence phase. (c) Once
converged, endpoints are only updated if this lengthens the 3D segment.

(Fig. 6(b)), the abscissas are systematically updated, simply
reflecting the last observation. Once the line has converged
(Fig. 6(c)), an extending-only policy is applied: the abscissa
is updated only if this lengthens the 3D segment. Line
convergence is tested by projecting onto the image plane
the current 3D endpoints’ uncertainties. If the projected
uncertainty in the line direction is lower than a certain
threshold, the line is considered converged to a reasonably
stable 3D position. The algebra behind all these operations
is of no relevant interest and is not included here for space
reasons. It can be found almost entirely in [7].

V. RESULTS

A. Simulations

We use simulations to benchmark the algorithms under
controlled conditions. Simulation allows us to compare the
estimated values against perfect ground truth and therefore
to conclude on the consistency of the solution.

The simulated scenario consists of a wireframe of a
house built with 27 segments (Fig. 7 shows the house being
reconstructed). A robot with one perspective camera (90◦

FOV, 640×480 pix resolution, 0.5 pix error) looking forward
approaches from a certain distance at 3 m/s, gathering images
at 30 fps. In order to observe the scale factor, the robot takes
noisy odometry readings with 1 cm/

√
m and 0.25◦/

√
m

error. The video attachment shows the reconstruction process
in different conditions.

To evaluate the estimation’s consistency, we perform a
Monte Carlo analysis of the normalized estimation error
squared (NEES) of the robot position, as explained in [9]
(see Fig. 8). The averaged NEES after 50 runs shows good
consistency up to frame 100 and a riskier behavior from then
on. This is in accordance with [9], which concludes that long-
term EKF-SLAM is always inconsistent, providing evidence
of the necessity of approaches using multiple local maps
(see [10]–[12] for solutions based on points). Our solution
is therefore practicable within each one of these local maps.
Possible improvements are discussed in Section VI.

B. Experiments

To evaluate our method with real images, we incorpo-
rated into our algorithms the segment detector and tracker
described in [13]. The scene contains a 90◦ dihedral with
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Fig. 7. The simulated environment consists of a robot approaching a
wireframe of a house. The figure shows the partially reconstructed house,
after approximately 40 frames have been processed. Despite the preliminary
state of the map, the structure is already visible. With this fair amount of
data, a map made of points would convey absolutely no information.

0 20 40 60 80 100 120 frame
0

5

10

15

20

NEES

Fig. 8. 50 Monte Carlo runs (thin gray lines) showing the NEES
measures of the robot position. The averaged NEES is in thick line. The
dashed line corresponds to a NEES value of 3.59, which is the single-
sided consistency limit of 95% confidence for 3 DOF and N=50 runs, i.e.,
χ2

(3·50)(1− 0.95)/50 = 3.59, see [9].

several segments on its planes (Fig. 9 left). The camera,
controlled by a robotic arm, performs a 30×30 cm square
trajectory perpendicularly to its optical axis. The position
increments given by the arm are corrupted and used as
odometry inputs to the system, thus providing the metrics
for scale observability. The reconstructed scene is shown in
Fig. 9 right, and in the third part of the video.

We evaluate the accuracy of the resulting map. We identify
the two planes of the dihedral by optimally fitting them
on the segments endpoints, and compute two different co-
planarity errors. The first one is defined by the distances
from the segments centers to their support plane, and is of
4.5mm STD (standard deviation). The second is defined by
the angles between the segments and their support plane, of
0.56◦ STD. Finally, the angle between the two planes is of
89.72◦

Fig. 9. Experimental setup. The camera executes a perfectly square
trajectory in a plane perpendicular to its optical axis. A sample image (left)
and the reconstructed structure (right).

VI. CONCLUSION AND DISCUSSION

We have presented an undelayed method to initialize infi-
nite lines in monocular SLAM based on the Plücker coordi-
nates. We highlighted the parallelisms between homogeneous
points and Plücker lines, and saw that it is the inverse depth
behavior of the homogeneous part what makes undelayed
initialization possible. We defined the way to specify the
priors of the line’s two non-measured DOFs. We used an
EKF update formulation that uses direct measurements of
the lines innovations. Finally, we described a method to
update the segment’s endpoints. We presented a Monte Carlo
analysis to evaluate the consistency of the estimated solution,
and experimental results with real images.

The Plücker coordinates showed excellent capabilities
for holding the line uncertainties during the first steps of
undelayed initialization, when huge uncertainties combined
with non-linearity challenge EKF. Further work must be done
to investigate up to which point the Plücker coordinates,
defined in the map frame, are able to withstand non-linearity
that arises due to imprecise knowledge on the camera ori-
entation, specially when the camera is far from the map
origin. One way of improving linearity is by “anchoring”
the Plücker lines at the point of first observation, as it is
done with point landmarks in IDP [3]. This would increase
the parametrization to a 9-vector, which could be switched
back to a regular un-anchored 6-vector after passing a certain
linearity test, also as in IDP.
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[1] J. Solà, A. Monin, M. Devy, and T. Lemaire, “Undelayed initialization
in bearing only SLAM,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Edmonton, Canada, 2005, pp. 2499–2504.

[2] E. Eade and T. Drummond, “Scalable monocular SLAM,” IEEE Int.
Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 469–
476, 2006.

[3] J. Civera, A. Davison, and J. Montiel, “Inverse depth parametrization
for monocular SLAM,” IEEE Trans. on Robotics, vol. 24, no. 5, 2008.
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