
Probabilistic motion planning among moving obstacles following typical

motion patterns

Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier

LIG, INRIA Rhône-Alpes, France

Abstract— The paper presents a navigation algorithm for
dynamic probabilistic environments. The static environment is
unknown; moving pedestrians are detected and tracked on-line.
Pedestrians are supposed to move along typical motion patterns
represented by HMMs. The planning algorithm is based on an
extension of the Rapidly-exploring Random Tree algorithm,
where the likelihood of the obstacles future trajectory and
the probability of collision is explicitly taken into account.
The algorithm is used in a partial motion planner, and the
probability of collision is updated in real-time according to the
most recent estimation. Results show the performance for a car-
like robot in a simulated environment among multiple dynamic
obstacles.

I. INTRODUCTION

Autonomous navigation in populated environments repre-

sents still an important challenge for robotics research. The

key of the problem is to guarantee safety for all the agents

moving in the space (people, vehicles and the robot itself). In

contrast with static or controlled environments, where global

planning techniques are suitable [1] [2], highly dynamic

environments present many difficult issues: the detection

and tracking of the moving obstacles, the prediction of the

future state of the world and the on-line motion planning and

navigation. The decision about motion must be related with

the on-line perception of the world and take into account

the limits of the perception system (occluded zones, limited

range, accuracy and sensibility, sensor faults), the future

behavior of the moving agents and the eventuality of new

agents entering the workspace during navigation.

We address the problem to take into consideration a realistic

sensor input to perform on-line motion planning in an

environment which is only partially known. We consider

the case when moving obstacles follow typical pattern in

the environment. this hypothesis is well suited in office-like

environments and road scenarios, and in particular open-

areas like transit halls [3], [4]. This information can be

used to improve the navigation performance of mobile robots

navigating in the environment [5], [6]: the prediction based

on typical motion patterns is in fact more reliable in the

medium term that what can be expected by the kinematic

models issues by target tracking only.

Take as an example the entrance hall of a building. We

suppose that the environment is observed by a fixed platform

and that typical patterns are learned by a batch process [5]

or a learn and predict process [4]. The typical patterns are

passed to the robot which detects and tracks the moving

obstacles and perform reliable medium term prediction on

the basis of the motion patterns model. In [3] and [5] a

navigation strategy based on typical patterns and probabilistic

prediction is used in a planning algorithm based on a

discrete optimization method, A∗ . The representation of the

environment is probabilistic, however, the problem of A∗ and

of all systematic - optimal methods is that the computational

time depends on the environment structure: these methods

are more adapted to a low dynamic environments, where

the information does not change frequently, the obstacles

velocity is limited and the robot can stop often and plan

its future movements. Also, they require a discretization of

both the state and the control space, which reduces drastically

the space for finding feasible solutions, especially for robots

with non-holonomic or car-like constraints. Finally, the static

environment is supposed to be a priori known.

Many real world applications in high dynamic environments

rely on reactive strategies [7]–[9] or combine a global plan

computed for the static environment (which is supposed to be

a priori known) with a reactive method to avoid unexpected

moving obstacles [10]–[13]. These techniques avoid the

explicit representation of the velocity of the obstacles and

the uncertainty about the present and future state of the

environment. In [13] a sampling-based algorithm is used

for the fast computation and re-computation of paths in a

partially known environment. The representation of the world

is deterministic and while the time needed for computation is

short when compared to systematic methods, it is not explic-

itly modeled and limited by the environmental constraints.

In this paper we propose an algorithm which computes safe

partial paths at anytime given a probabilistic representation

of the static environment and a probabilistic prediction of the

moving obstacle trajectories. The proposed method is based

on an extension of the well known RRT algorithm [14] to

probabilistic environment and Partial Motion Planning [15].

The algorithm computes the risk of collision of randomly

drawn partial trajectories and chooses the best one when it is

asked to. With respect to previous work [5] [13] the real-time

constraints inherent to navigation in dynamic environment

are explicitly taken into account: at the loss of completeness

and optimality in unknown dynamic environment, the algo-

rithm computes safe partial trajectories in the available time,

which is directly related to the environmental condition and

on-line perception. Also we consider the case when the static

environment is initially unknown: the robot explores it and

builds an occupancy grid. While in previous work [6] motion

patterns were represented by Gaussian Processes, in this

paper we consider the case where pre-learned motion patterns

are represented by Markov chains and prediction is based

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4027

on Hidden Markov Models. We present how we adapted the

algorithm to the new kind of prediction, new ideas to take

into account new entering obstacles and simulation results.

The reminder of this paper is structured as follows: section

III describes the representation of the static and dynamic

world and how the probability of collision of a configuration

is computed. Section IV recalls the RRT basic algorithm and

the proposed approach. Section V recalls the PMP method

and describes the planning and navigation algorithm devel-

oped. Section VI presents results in a simulated environment

with a growing number of moving obstacles. Section VII

ends the paper with remarks and ideas for future work.

II. THE ROBOT AND THE STATE SPACE

We consider a car-like robot moving in R
2. The con-

figuration space C = {x, y, θ, v, ω} described respectively

by the position, orientation, linear and angular velocities

of the robot in the workspace. The robot moves according

to its motion model q(t + 1) = F (q(t), u(t)) where input

u is given by pairs (a, α) with a the linear and α the

angular acceleration. The robot is subjected to kinematic

and dynamic constraints: the linear velocity v is limited in

the interval [0, vmax] and the angular velocity ω is limited

in [−ωmax, ωmax]. a and alpha are also bounded: a ∈
[amin, amax] and α ∈ [αmin, αmax].
Time is represented by the set T = (0,+∞), which is the

infinite set of discrete instants with measure unit the time

step τ . We define state space X of the robot, the space that

represents the configuration of the robot at a certain instant

in time X = C × T . In the workspace there are static and

moving obstacles. The task of the robot is to move from

the initial configuration q0 to a goal configuration qgoal in

finite time without entering in collision with any obstacle. A

solution trajectory is a sequence of states from q0 to qgoal

that is feasible according to the motion model of the robot

and that is collision free: ie each configuration and each

transition of the sequence are collision free. We assume that

the position of the robot is known at each instant and that the

robot moves following according to its motion model without

error. In the deterministic case, the configuration space C
can be divided in Cfree, the set of free configurations of the

robot and Cobs, the set of configurations where the robot is in

collision with an obstacle. In our case instead we want to give

a probabilistic representation of environment perception and

prediction uncertainty and we need to define a probability

of collision for each robot configuration. In the following

paragraphs we explain how this probability is computed for

a considered state of the robot Xr.

III. PROBABILITY OF COLLISION

A. The Static environment

The 2D static environment is represented by an occu-

pancy grid [16]: the space is divided in square cells. The

environment is initially unknown, and the probability of

occupation Pocc of each cell is fixed at 0.5. During navigation

the space is observed by mean of a distance sensor (laser

range finder). Assuming static environment, the probability

(a) (b)

Fig. 1. (a) The cycab in the parking at INRIA Rhône-Alpes; (b) occupancy grid

with the robot (green rectangle) and 2 moving obstacles (colored circles) along with

their estimated trajectories.

of occupation of each cell is recursively updated according

to the observations and estimated using a Bayesian filter. The

probability of occupation of a point in the space is retrieved

by the probability of the correspondent cell. For the set of

N cells S = (i, j)N covered by the robot in state Xr the

probability of collision Pc with static obstacles is given by

the max probability over the set.

Pc(Xr,G) = max
S

(Pocc(i, j)) (1)

Since the grid represent the static world, there is not need of

prediction and the probability of collision does not depend

on the time at which the robot is in a certain configuration.

B. Moving obstacles

Lets assume that the moving obstacles Oi can be approx-

imated by circles of fixed radius. The state of an obstacle is

X = (x, y, θ, v), its position in the 2D space, orientation and

linear velocity. Given an object observation Z, the belief state

X and the prediction are estimated using Bayesian inference.

We consider obstacles moving according to Hidden Markov

Models as in [4]. The 2D plane is non uniformly partitioned

in Voronoi regions. The probability that an obstacle Oi is in

a specific region sk is given by the integral of the probability

distribution over the area of the region enlarged by the radius

of the obstacles:

P (Oi ∈ sk) =

∫∫

S

P (Ot
i) =

M
∑

m=1

∫∫

sk

N (X̂t
m,Σt

m)

The integral is approximated sampling the distribution uni-

formly with the probability and considering the ratio between

the number of samples inside and outside area S.

Now, the belief of the state at time t is given by a discretized

distribution over the states of the Markov model. The predic-

tion at time horizon t+k is recursively estimated propagating

the estimated state:

P (Xt+k|Zt) =
∑

Xt+k−1

P (Xt+k|Xt+k−1)P (Xt+k−1|Zt)

where the first term in the sum is the probability to pass

from state Xt+k−1 to state Xt+k specified by the edges in

the Markov model and the second is given by the observation

model. Considering a state of the robot Xt
r and the moving

4028

obstacle Oi, the probability of collision is given by the

integral of the probability distribution over the area S(Xt
r)

covered by the robot and enlarged by the radius of the

obstacles:

P (Oi ∈ S(Xt
r)) =

∫∫

S(Xt
r)

P (Ot
i) =

K
∑

k=1

P (Oi ∈ sk) (2)

The integral is obtained summing the probability that the

obstacle is in one of the regions sk for which sk∩S(Xt
r) 6= ∅.

Considering multiple moving obstacles, the total probability

of collision is given by the probability of colliding with one

or another obstacle. Under the assumption that the collision

with each obstacle is conditionally independent of all others,

the following equation is obtained:

Pc(Xr, O) = 1 −
∏

i

(1 − P (Oi ∈ S(Xt
r))) (3)

The probability of collision considering both the static en-

vironment and the moving obstacles is obtained in the same

way:

Pc(Xr, O,G) = 1 − (1 − Pc(Xr,G)) · (1 − Pc(Xr, O)) (4)

C. New obstacles entering the scene

In dynamic environments, obstacles can enter or exit the

workspace during the navigation task. Also if partial planning

is used, it should be taken into account that new obstacles can

enter the the workspace and interfere with the next motions

of the robot. If it is possible to predict from where and when

some obstacle may enter the scene, a more robust planning

can be performed. The robot must:

– Distinguish from where a new obstacle may come.

– Apply a probability to the fact that an obstacle may

enter and a motion model.

For the first problem the robot searches for specific areas

from where an obstacle may enter (doors). This technique

is based on some assumptions about the observed space

and the size, shape and behavior of the obstacles. In the

general case, the robot must be able to recognize on-line the

doors with its perception only. In Fig. 2, a local occupancy

grid obtained with a laser range finder in a car park is

shown. We assumed that obstacles may enter only traversing

hidden areas: i.e. they cannot pass through static obstacles.

The distance between the points on the scan is studied and

intervals bigger than the minimal size of an obstacles are

kept as possible doors (green lines). The red circles are

hypotheses of new entering pedestrians. In the case where the

obstacles follow typical patterns, they are supposed to enter

from points along or around the pattern prototypes. In Fig.

3, given the point of view of the robot and the pre-learned

patterns, new entering obstacles hypotheses are initialized on

th nearest hidden points of the patterns.

The probability of a new obstacle entering in the workspace

during a certain time interval can be modeled as an homo-

geneous Poisson process. The probability that at least one

obstacle enters the scene, is given by the following equation:

P [N(t + τ) − N(t) ≥ 1] = 1 − e−λτ (5)

The rate parameter λ, is the expected number of arrivals per

unit time. This parameter is learned from the observation

dataset, at the same time as the typical patterns. The prob-

ability of occupation correspondent to the obstacle grows

with the length of the time period of prediction according to

equation 5.

Fig. 2. A partial grid map, the extracted doors (green lines) and the
supposed new entering obstacles (red circles).

0

10

20

40 50 60 70

Fig. 3. Hypotheses of new entering obstacles (red dots) given the known
typical patterns (colored lines) and the current field of view of the robot.

IV. PROBABILISTIC-ENVIRONMENT RRTS

A. Basic Algorithm for RRTs

The Rapidly-exploring Random Tree (RRT) is a well

known randomized algorithm to explore large state space

in a relatively short time. The pseudocode of the algorithm

is given in Algorithm 1. The algorithm chooses a point p

Algorithm 1: basic RRT

Data: T
while qgoal /∈ T do1

p = ChoosePoint (qgoal);2

q = T. NearestNeighbor (p);3

qnew = extend (q, p);4

if qnew ∈ Cfree then5

T. addSon (q, qnew);6

end7

q = qgoal;8

path = add (q);9

while q 6= T.root do10

q = T. parentNode (q);11

path = add (q);12

end13

in the state space and tries to extend the current search tree

toward that point. p is chosen randomly, but in single-query

4029

(a) (b) (c)

Fig. 4. (a) RRT basic algorithm applied to a point holonomic robot in a known

static environment; (b) Perception given by a distance sensor at the initial position:

white, black and gray represent respectively free, occupied and occluded zones; (c)

Probabilistic RRT built in limited time: the search tree and the likelihood of the nodes

in blue (lighter color is for lower likelihood) and the chosen partial path in red.

planning, some bias toward the goal is generally applied in

order to speed up the exploration. p is chosen in the limited

Cfree (line 2). The nearest neighbor q of p within the nodes

of the search tree is chosen for extension. A new node is

obtained applying an admissible control from the chosen

node q toward p (line 3). If q is collision-free, it is added

to the tree. The algorithm can be stopped once the goal is

found (line1) or it can continue to run to find a better path.

The algorithm lies on a deterministic representation of the

environment, so that both in the static and dynamic case

we have a priori information on if a node is collision

free or not and add it or not to the search tree. Once the

goal state is reached, the path from the initial state to the

goal is retrieved. Fig. 4(a) shows a point holonomic robot

in a known environment with static obstacles. The initial

position of the robot is in the left corner at the bottom

while the goal is in the upper right corner. An example of

the search tree (blue lines) and the found path (red line)

is shown; different running of the algorithm would give

different results. In this case, the robot is supposed to move

along straight lines, so that the Euclidean distance can be

used to determine the nearest neighbor in the current tree.

The algorithm can be generalized for car-like robots setting a

different NearestNeighbor(.) function. and limiting the set

of possible actions to the admissible controls of the robot

from the node configuration.

B. Introducing probabilistic uncertainty

As stated in previous sections, the robot knowledge about

the environment is incomplete in both space and time (sensor

range, occlusions, new moving obstacles) and uncertain

(sensor accuracy, motion model of the moving obstacles). On

the basis of the RRT algorithm we developed an exploring

algorithm which takes into account probabilistic uncertainty.

For each configuration q of the space, a probability of col-

lision Pc(q) is computed considering the static and moving

obstacles and the perception limits as in equation 4. The

probability of reaching a particular configuration qN is then

given by the probability to cross the tree from the root q0

to the considered node, i.e. the probability of not having

collision in each of the traversed nodes:

Ps(π(qN)) = Ps(q0...qN) (6)

Ps(q0...qN) = (1 − Pc(qN)) · Ps(q0...qN−1)

=

N
∏

n=0

(1 − Pc(qn))

where we have considered that collision in subsequent nodes

is statistically independent. We call this probability the

probability of success Ps of the path. The probability falls

exponentially with the length of the path. This is a sign

that longer path are more dangerous, as the uncertainty

accumulates over subsequent steps. All nodes can be added

to the tree or a minimum threshold Psmin1 can be chosen in

order to avoid keeping in the tree very unlikely paths. Once

a point p is chosen in the configuration space, the node to

grow next q is chosen in dependence both on a measure

of the expected length of the path dist(q0, q, p) and on the

probability of success of the path. More precisely, Ps(qN)
is normalized by the length N of the path and multiplied by

the inverse of the distance to the chosen point to obtain a

weight for each node. This normalization is taken out so that

the probability of success doesn’t depend on the length of

the path, which is taken instead into account by the distance

term, as in the following equation:

w̃q =
1

dist(q0, q, p)
N
√

Ps(q) (7)

The function dist(q0, q, p) is a sum of the length of the path

from the root q0 to the considered node and of the shortest

path from q to p, which is a lower limit for the length of

the eventual path to p. The weights are normalized over the

set of nodes in the tree, and the result is a distribution over

the nodes. The node to grow next is then chosen taking the

maximum or drawing a random node proportionally to the

probability. In our implementation we choose the second case

which appeared to be more robust to local minima. Even

if a path to the goal is found, the algorithm can continue

to search for a better/safer path, until a path is asked for

execution. However, is not guaranteed that a path that could

be considered safe enough can be found even in infinite

time, because of the environment uncertainty. The chosen

path is then the best path that is safe enough, i.e. for which

Ps(qN) ≥ Psmin2. Note that this threshold can be defined

only for the choice of the path or can be different from

Psmin2 if the same tree is updated and grown after different

observation as we will explain in the next section, Fig. 4(b)

shows the perception given by a distance sensor in a static

environment: areas behind the obstacles are unknown to the

robot (Pc ≃ 0.5). Fig. 4(c) shows the tree grown by the

described algorithm for an holonomic point robot. The color

of the edges of the tree depends on the likelihood of the

associated path: the lighter the color the lower the likelihood.

In red, the best path chosen.

4030

Fig. 5. The search tree is updated and grown during environment exploration

V. ON-LINE NAVIGATION

A. Related work: the Partial Motion Planning

In a dynamic environment the robot has a limited time

to perform planning which depends on the time-validity

of the models used and on the moving objects in the

environment. The conditions used for planning could be

invalidated at execution time: for example an obstacle could

have changed its velocity or some new obstacle could have

entered the scene. The idea of Partial Motion Planning [15]

is to take explicitly into account the real-time constraint

and to limit the time available for planning to a fixed

interval. After each planning cycle, the planned trajectory

is generally just a partial trajectory. The exploring tree is

updated with the new model of the world and the final

state of the previous trajectory becomes the root of the new

exploring tree. The planning algorithm works in parallel

with execution. Each node of the tree is guaranteed to be

not an Inevitable Collision State (ICS, [17]) by checking if

it exists a collision free braking trajectory from the node.

This is a conservative approximation that doesn’t allow the

robot to pass an intersection before an approaching moving

obstacle. Our approach presents an adaptable time horizon

for planning. The time for the planning iterations depends

on the length of the previous computed trajectory and on the

on-line observations. Safety of a path is guaranteed studying

braking trajectories only for the last state of the path.

B. Developed Algorithm

When the robot moves, it observes the environment and

updates its estimation with the incoming observations. The

cost of crossing the tree changes and the tree needs to be

updated. The update consists in three steps:

1) Prune the tree: the new root is the position of the

robot and nodes that are in the past are deleted; the

probability of reaching the nodes is updated, taking

into account that the robot has already crossed part of

the tree.

2) Update the weight of the nodes: when a change in

the probability of collision is detected, the weight of

the correspondent nodes (and of their subtree) must be

updated.

3) Retrieve the best path.

If the considered environment is dynamic we need the robot

to do these operations in real-time. In better words we need

to know how much time is available for updating and how

to allocate it. In the first step, the present state of the robot

is considered. The tree is pruned so that only the subtree

attached to the state of the robot is maintained. When the

probability to pass from a configuration q0 to qi changes,

the weight of the subtree attached to qi is updated using the

following equations:

P (qN |qi) = (P (qN |q0) − P̂ (qi|q0))
1

1 − P̂ (qi|q0)
(8)

P (qN |q0) = P (qi|q0) + (1 − P (qi|q0))P (qN |qi) (9)

The first equation gives the probability of traversing the tree

from qi to qN , assuming that the probability of reaching qi

changed from P̂ (qi|q0)) to 1. This equation is used once

when the tree is pruned. This first update is due to the fact

that the robot has already moved from q0 to qi, so that the

new P (qi|q0) is 1. In the equation q0 is the old root, qi is the

new root and qN is one node in the family of qi. The second

equation gives the probability to traverse the tree from q0 to

qN when the probability to pass from q0 to qi changes from

1 to P (qi|q0). Equation 9 is used after equation 8 when the

observations revealed some difference with the prediction.

The zones in which some difference have been detected are

considered and the affected nodes are updated. In this case

q0 and qi are respectively the start and ending configuration

in which a change in the probability of collision has been

detected.

In Fig. 5, the on-line updating of the tree is shown at 3

instants during navigation. At the beginning, the most likely

paths are explored in the two possible directions and the

most promising one is chosen. Fig. 5(b) shows the tree after

some steps: the tree has been updated: the branch in the right

direction has been cut has is not reachable anymore and the

tree has been grown. Fig. 5(c) shows the tree and the new

partial path found when a bigger portion of the space is

visible

VI. EXPERIMENTAL RESULTS

The planning algorithm has been tested with real data

acquired on the car-like vehicle (Cycab) shown in Fig. 1(a).

To test the algorithm we define a goal 20 meters ahead the

Fig. 6. (a) The Pe-PRRT grown in a static occupancy grid: lighter blue is for lower

likelihood.

robot at each observation cycle and let the algorithm run in

parallel with the online mapping and tracking (Fig. 1(b)).

The planning algorithm runs at 2Hz. The prediction used

4031

is the linear prediction given by the tracking algorithm. An

example of the grown tree and the chosen path is shown in

Fig. 6. The best path is shown in red. Each sequence is then

tested with the real data, letting a virtual robot move through

the estimated map. Results have proven that the algorithm is

able to compute safe trajectories in real time taking into ac-

count the static environment, the moving obstacles perceived

and their velocity and the uncertainty which arise from a

real dataset. However, the reliability of linear prediction is

limited to a short time range, especially for moving obstacles

as pedestrians. The computed trajectories are safe only in

the short period in which the prediction is reliable; the

probabilities of the tree and the chosen path changes often as

the obstacles change their directions. In the next simulated

experiments we show that the use of typical patterns allow

the robot for most robust planning and more intelligent

decisions. The navigation algorithm has been tested in the

(a) (b)

(c)
Fig. 7. Navigation results in simulated environment. (a) The Cycab simulator (b)

The trajectory dataset. (c) Avoidance sequence based on HMM prediction.

Cycab simulator (7(a)). A rectangular environment has been

simulated. A certain number of doors is simulated for the

two long sides of the rectangle. Obstacles are supposed to

enter from a door and to exit by another door in the opposite

side. The space has been discretized in a uniform cell grid

of step 0.5m. An 4-connected HMM graph has been built on

the grid for each goal: the probability to pass from a state to

another depends on the decrease of the distance to the goal

between the origin state end the destination one. A certain

amount of noise is applied so that states that present nearly

the same decrease in distance are given the same probability.

The probability is then normalized over the set of edges

coming out from the origin node. A set of trajectories has

been randomly simulated on the basis of the graph: for each

trajectory the enter door and the exit door are chosen (Fig.

7(b)). Given a state of the obstacle, the next state is drawn

proportionally with the edges probability. The position of the

obstacle inside the cell is chosen by a smoothing filter.

The simulated robot has the same dimensions and kinematic

and dynamic constraints of the Cycab. Perception is assumed

perfect: the obstacles are represented by circles of 0.30m

radius whose position is always known. The robot has to

cross the environment and successively reach goals which

are positioned randomly in the environment, with some

bounds near the walls. The robot knows the Markov graph

correspondent to the simulated trajectories and performs

prediction on the basis of HMMs. The robot reached 100
goals with various numbers of pedestrians simulated in the

space. Fig. 7(c) show the robot (green rectangle) traversing

the environment to reach the goal: the red line is the partial

path computed at the time-step in the shot, while red circles

represent the moving obstacles with their previous trajectory

attached. The experiment was repeated 10 times and average

results are shown in Fig. 9. No collision with the robot

in motion was detected during the experiment, while the

number of collisions as 0 velocity grows with the number of

objects in the space (Fig. 9(a)). To understand these results,

we must notice that the simulated obstacles do not have any

knowledge of the robot and that its kinematic possibilities

are strongly limited if compared to those of the obstacles:

as the robot cannot go backward, it tends to avoid obstacles

and get stacked with the walls of the environment, while

the obstacles continue to move around it. Fig. 9(b) shows

the average time occurred to complete the navigation task

with the different numbers of moving obstacles compared

with the time needed in the free environment. Fig. 8 shows

some significant screen shot of the navigation task. The two

columns in Fig. 8 show respectively the robot stopping to let

an obstacle pass and the robot moving out from the possible

paths of an obstacle before reaching the goal.

VII. CONCLUSIONS AND FUTURE WORK

The paper presents a navigation algorithm which integrates

perception uncertainty and incompleteness in the planning

strategy using a probabilistic framework. The tests prove that

the robot is able to navigate in real-time reacting properly

to unexpected changes of the environment and reaching

the given goal positions. The use of an adaptable time

horizon for planning makes the algorithm both reactive to

unexpected changes of the environment and forward looking

when previously planned trajectories are not invalidated by

observation.

Immediate work will deal with testing the navigation al-

gorithm to have a measure of its performance in more

complex and realistic scenarios. Future work will deal with

the integration of the localization and execution uncertainty

in the planning algorithm and with testing the navigation

with the real robot.

4032

stop and go move out

t = 0 t = 0

A

t = 6 t = 10

A

t = 8 t = 20

A

(a) (b)

Fig. 8. (a) The robot stops to let obstacle A pass. (b) The robot moves out from

the way of obstacle A before reaching the goal.

(a) (b)

Fig. 9. Average results for 10 experiments with 100 goals reached: (a) collisions

between a moving obstacle and the stopped robot; (b) time needed to complete the

navigation task.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Dordrecht, The Netherlands:
Kluwer, 1991, vol. SECS 0124.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press
(also available at http://msl.cs.uiuc.edu/planning/), 2006.

[3] M. Bennewitz and W. Burgard, “Adapting navigation strategies using
motion patterns of people,” in In Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA. IEEE, 2003,
pp. 2000–2005.

[4] D. Vasquez, “Incremental learning for motion prediction of pedestrians
and vehicles,” Ph.D. dissertation, INP de Grenoble, February 2007.
[Online]. Available: http://emotion.inrialpes.fr/bibemotion/2007/Vas07

[5] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning mo-
tion patterns of people for compliant robot motion,” The International

Journal of Robotics Research (IJRR), vol. 24, no. 1, 2005.
[6] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic

navigation in dynamic environment using rapidly-exploring random
trees and gaussian processes,” Intelligent Robots and Systems, 2008.

IROS 2008. IEEE/RSJ International Conference on, pp. 1056–1062,
Sept. 2008.

[7] J. Borenstein and Y. Koren, “The vector field histogram - fastobstacle
avoidance for mobile robot,” IEEE Transaction on Robotics and

Automation, vol. 7, no. 3, June 1991.
[8] R. Simmons, “The curvature-velocity method for local obstacle avoid-

ance,” in IEEE International Conference on Robotics and Automation,

ICRA, 1996.
[9] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, Mar. 1997.

[10] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning
and control,” in IEEE International Conference on Robotics and

Automation, ICRA, 1993.
[11] C. Stachniss and W. Burgard, “An integrated approach to goal-

directed obstacle avoidance under dynamic constraints for dynamic
environments,” in IEEE International Conference on Intelligent Robots

and Systems, IROS, 2002.
[12] F. Large, “Navigation autonome d’un robot mobile en environnement

dynamique et incertain,” Ph.D. dissertation, Université de Savoie,
2003.

[13] D. Ferguson and A. T. Stentz, “Anytime rrts,” in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, 2006.(IROS

2005). Proceedings, October 2006, pp. 5369 – 5375.
[14] S. LaValle and J. Kuffner, J.J., “Randomized kinodynamic planning,”

in IEEE International Conference on Robotics and Automation, 1999.

(ICRA 1999). Proceedings, vol. 1, 1999, pp. 473–479 vol.1.
[15] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-

ments,” in IEEE IROS, 2005.
[16] A. Elfes, “Using occupancy grids for mobile robot perception and

navigation,” Computer, vol. 22, pp. 46–57, June 1989.
[17] T. Fraichard and H. Asama, “Inevitable collision states. a step towards

safer robots?” in IEEE IROS, 2003.

4033

