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Abstract— Indoor location tracking of mobile robots or
transport vehicles using wireless technology is attractive for
many applications. IEEE 802.15.4a wireless networks offer
an inexpensive facility for localizing mobile devices by time-
based range measurements. The main problems of time-based
range measurements in indoor environments are errors by
multipath and non-line-of-sight (NLOS) signal propagation.
This paper describes indoor tracking using range measurements
and an Extended Kalman Filter with NLOS mitigation. The
commercially available nanoLOC wireless network is utilized
for range measurements. The paper presents experimental
results of tracking a forklift truck in an industrial environment.

I. I

Indoor location tracking of mobile systems using wireless

technology is attractive for many robotics and logistics

applications. Wireless networks offer an inexpensive facility

for communication and localization of mobile devices. The

new wireless network standard IEEE 802.15.4a specifies

two optional signalling formats based on Ultra Wide Band

(UWB) and Chirp Spread Spectrum (CSS) with a precision

time-based ranging capability [1]. Typical applications of

IEEE 802.15.4a are low power Wireless Personal Networks

(WPAN) and Wireless Sensor Networks (WSN). A WSN

consist of spatially distributed autonomous sensor nodes for

data acquisition. Besides military applications and monitor-

ing of physical or environmental conditions, robotics [2] and

logistics [3] are typical application fields of WSN.

The main problems of time-based range measurements

in indoor environments are errors by multipath and non-

line-of-sight (NLOS) measurements. For time-based range

measurements, the direct line-of-sight (LOS) path which

connects the transmitter and receiver is needed to calculate

the range between them. In indoor environments, the LOS

path can be blocked and the communications is conducted

through reflections and diffractions. This phenomenon leads

to positive bias in the range measurements and finally causes

errors in location tracking. A similar problem is multipath

fading, which occurs in indoor environments, where the sig-

nal propagates over multipath reflections. The received signal

is a superposition of the transmitted signal with different

delays. Multipath fading leads also to range measurements

with positive bias.

This paper studies the tracking of a forklift truck using

a nanoLOC WSN in conjunction with an Extended Kalman

Filter and NLOS detection and mitigation. The nanoLOC
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WSN, developed and distributes by Nanotron Technologies,

offers ranging capabilities using CSS. The video attachment

of the paper shows the movement of the forklift truck in a

tracking experiment.

The paper extends the work we have presented in [4]. The

detection of NLOS conditions is studied and techniques for

error mitigation are developed and compared by real-world

experiments. The experimental results show the effectiveness

of the proposed techniques.

II. RW

Up to now several kinds of localization techniques are

developed for the use in wireless networks. A review of

existing techniques is given in [5]. These techniques can be

classified by the information they use. These informations

are: connectivity, Received Signal Strength (RSS), Angle of

Arrival (AoA), Time of Arrival (ToA), Round-trip Time of

Flight (RToF) and Time Difference of Arrival (TDoA).

Connectivity information is available in all kinds of wire-

less networks. The accuracy of localization depends on the

range of the used technology and the density of the beacons.

In cellular networks Cell-ID is a simple localization method

based on cell sector information. In infrastructure mode of

a Wireless LAN (WLAN), the access point (AP) to which

the mobile device is currently connected, can be determined

since mobile devices know the MAC hardware address of the

AP, which they are connected to. In a WSN with short radio

range, connectivity information can be used to estimate the

position of a sensor node without range measurement [6].

RSS information can be used in most wireless technolo-

gies, since mobile devices are able to monitor the RSS as

part of their standard operation. The distance between sender

and receiver can be obtained with the Log Distance Path Loss

Model described in [7]. Unfortunately, the propagation model

is sensitive to disturbances such as reflection, diffraction

and multi-path effects. The signal propagation depends on

building dimensions, obstructions, partitioning materials and

surrounding moving objects. Own measurements show, that

these disturbances make the use of a propagation model

for accurate localization in an indoor environment almost

impossible [8].

AoA determines the position with the angle of arrival

from fixed anchor nodes using triangulation. Drawback of

AoA based methods is the need for a special and expensive

antenna configuration e.g. antenna arrays or rotating beam

antennas.

ToA, RToF and TDoA estimate the range to a sender by

measuring the signal propagation delay. The Cricket localiza-
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tion system [9] developed at MIT utilizes a radio signal and

an ultrasound signal for position estimation based on trilat-

eration. TDoA of these two signals are measured in order to

estimate the distance between two nodes. This technique can

be used to track the position of a mobile robot [10]. UWB

offers a high potential for range measurement using ToA,

because the large bandwidth (> 500 MHz) provides a high

ranging accuracy [11]. In [12] UWB range measurements

are proposed for tracking a vehicle in a warehouse. IEEE

802.15.4a specifies two optional signalling formats based on

UWB and CSS with a precision ranging capability. Nanotron

Technologies distributes a WSN with ranging capabilities

using CSS as signalling format.

The main problems of time-based range measurements

in indoor environments are errors by multipath and NLOS

signal propagation. A method to mitigate these errors is

the Biased Kalman Filter (BKF). In [13] a BKF is applied

to mitigate range errors of time based measurement for

localization of emergency callers in cellular networks. The

effectiveness of the BKF is proven by simulations.

III. T LOC L S

Nanotron Technologies has developed a WSN which can

work as a Real-Time Location Systems (RTLS). The distance

between two wireless nodes is determined by Symmetrical

Double-Sided Two Way Ranging (SDS-TWR). SDS-TWR

allows a distance measurement by means of the signal prop-

agation delay as described in [14]. It estimates the distance

between two nodes by measuring the RToF symmetrically

from both sides.

The wireless communication as well as the ranging

methodology SDS-TWR are integrated in a single chip, the

nanoLOC TRX Transceiver [15]. The transceiver operates

in the ISM band of 2.4 GHz and supports location-aware

applications including Location Based Services (LBS) and

asset tracking applications. The wireless communication is

based on Nanotron’s patented modulation technique Chirp

Spread Spectrum (CSS) according to the wireless standard

IEEE 802.15.4a. Data rates are selectable from 2 Mbit/s to

125 kbit/s.

SDS-TWR is a technique that uses two delays, which

occur in signal transmission to determine the range between

two nodes. This technique measures the round trip time and

avoids the need to synchronize the clocks. Time measurement

starts in Node A by sending a package. Node B starts its

measurement when it receives this packet from Node A

and stops, when it sends it back to the former transmitter.

When Node A receives the acknowledgment from Node

B, the accumulated time values in the received packet are

used to calculate the distance between the two stations. The

difference between the time measured by Node A minus the

time measured by Node B is twice the time of the signal

propagation. To avoid the drawback of clock drift the range

measurement is preformed twice and symmetrically. The

signal propagation time td can be calculated as

td =
(T1 − T2) + (T3 − T4)

4
, (1)

where T1 and T4 are the delay times measured in node A in

the first and second round trip respectively and T2 and T3 are

the delay times measured in node B in the first and second

round trip respectively. This double-sided measurement zeros

out the errors of the first order due to clock drift [14].

Based on the nanoLOC TRX transceiver and the micro-

controller ATmega 128L, the nanoLOC WSN can be used

for developing location-aware and distance ranging wireless

applications [16]. A mobile tag localizes itself by measuring

the distances to a set of anchors as reference points. The

anchors are located to predefined positions within a Cartesian

coordinate system. The tag position can be calculated by

trilateration.

IV. L T U  E K F

By monitoring a dynamic system, the interior process state

such as position and velocity of mobile objects is not direct

accessible. The distance measurements are subject to errors

and noise. The Kalman Filter is an efficient recursive filter,

which estimates the state of a dynamic system out of a series

of incomplete and noisy measurements by minimizing the

mean of the squared error. It is also shown to be an effective

tool in applications for sensor fusion and localization.

The equations of the Kalman Filter fall into two groups:

“predictor equations” and “corrector equations”. Based on

the system input parameters, the current state estimate and

error covariance estimate are projected forward to obtain

the predicted a priori estimates for the next time step.

This operation is called “time update”. Following an actual

measurement is incorporated into the a priori estimate to

obtain an improved a posteriori estimate. In other words

the measurements adjust the predicted estimate at that time,

so that this operation is denoted “measurement update”.

As initial values for the primary estimation x̂0 and P0 are

passed. After each time and measurement update pair, the

process is repeated with the previous a posteriori estimates.

This recursive nature is one of the appealing features of the

Kalman Filter and the essential advantage over other stochas-

tic estimation methods. The filter recursively conditions the

current estimate on all of the past measurements and can be

used in real-time applications.

The basic filter is well-established, if the state transition

and the observation models are linear distributions. In the

case, if the process to be estimated and/or the measurement

relationship to the process is specified by a non-linear

stochastic difference equation, the Extended Kalman Filter

(EKF) can be applied. This filtering is based on linearizing a

non-linear system model around the previous estimate using

partial derivatives of the process and measurement function.

Fig. 1 shows a complete picture of the operations of

the EKF by presenting the specific predictor and corrector

equations. The time update projects the a priori state and

covariance estimates forward from time step to step. The

first task during the measurement update is to compute the

Kalman gain Kk. The next step is to generate an a posteriori

state estimate x̂k+1 as the result of the filter, in this case.
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The final step is to obtain the corresponding error covariance

estimate Pk+1 for the next iteration.

Predictor Equations

x*k+1 =1f1(xk,1uk,10)

P*k+1 =1Ak+11PkAk+1
T +1Wk+11QkWk+1

T

Corrector Equations

Kk+1 =1P*k+1Ck+1
T1
	 (Ck+1P*k+1Ck+1

T1+1Vk+1Rk+1Vk+1
T),1

xk+1 =1x*k+1 +1Kk+11	 (yk+1 – h1(x*k+1,10))

Pk+11=11(I1, Kk+11Ck+1)1	 P*k+1

^

^

Initial1estimates for x0 und1P0
^

Fig. 1. Time update and measurement update equations of the Extended
Kalman Filter

A. Design of the Extended Kalman Filter

The Extended Kalman Filter is suitable to determine the x-

and y-position of the mobile tag with the measured distances

to at least three anchors. Using the trilateration method the

anchor distances ri are calculated as follow:

ri =

√

(px − ax,i)2 + (py − ay,i)2
, (2)

where (ax,i, ay,i) are the x- and y-positions of anchor i and

(px, py) represents the x- and y-position of the mobile tag to

be located.

To gain the unknown tag position, the equations in (2) are

solved for px and py, and are transformed in matrices:

H ·
(

px

py

)

= z with H =

























2 · ax,1 − 2 · ax,2 2 · ay,1 − 2 · ay,2

...
...

2 · ax,1 − 2 · ax,n 2 · ay,1 − 2 · ay,n

























,

and z =

























r2
2 − r1

2 + ax,1
2 − ax,2

2 + ay,1
2 − ay,2

2

...

rn
2 − r1

2 + ax,1
2 − ax,n

2 + ay,1
2 − ay,n

2

























,
(3)

where n is the overall number of anchor nodes. Eqn. 3 can

be solved using the method of least squares:
(

p̂x

p̂y

)

= (HTH)−1HT · z (4)

For location tracking using EKF, Eqn. (3) needs only to

be solved for the initial estimate x̂0. In this work the raw

trilateration (3) is also used as reference. The EKF addresses

the general problem of estimating the interior process state

of a time-discrete controlled process, that is governed by

non-linear difference equations:

x̃k+1 = f (x̂k,uk,wk),

ỹk+1 = h(x̃k+1, vk+1).
(5)

The state vector contains the tag position xk = (px, py)T.

The optional input control vector uk = (vx, vy)T contains the

desired velocity of the tag. These values are set to zero, if

the input is unknown. The observation vector yk represents

the observations at the given system and defines the entry

parameters of the filter, in this case the results of the range

measurements. The process function f relates the state at the

previous time step k to the state at the next step k + 1. The

measurement function h acts as a connector between xk and

yk. The notation x̃k and ỹk denotes the approximated a priori

state and observation, x̂k typifies the a posteriori estimate

of the previous step. Referring to the state estimation, the

process is characterized with the stochastic random variables

wk and vk representing the process and measurement noise.

They are assumed to be independent, white and normal

probably distributed with given covariance matrices Qk and

Rk. To estimate a process with non-linear relationships the

equations in (5) must be linearized as follow:

xk+1 ≈ x̃k+1 + Ak+1 · (xk − x̂k) +Wk+1 · wk

yk+1 ≈ ỹk+1 + Ck+1 · (xk+1 − x̃k+1) + Vk+1 · vk+1,
(6)

where Ak+1,Wk+1,Ck+1 and Vk+1 are Jacobian matrices with

the partial derivatives:

Ak+1 =
∂ f

∂x
(x̂k,uk, 0) Wk+1 =

∂ f

∂w
(x̂k,uk, 0)

Ck+1 =
∂h
∂x

(x̃k+1, 0) Vk+1 =
∂h
∂v

(x̃k+1, 0).

(7)

Because in the analyzed system the predictor equation con-

tains a linear relationship, the process function f can be

expressed as a linear equation:

xk+1 = Axk + Buk + wk, (8)

where the transition matrix A and B are defined as:

A =

(

1 0

0 1

)

, B =

(

T 0

0 T

)

,

(9)

where T is the constant sampling time.

The observation vector yk contains the current measured

distances:

yk =
(

r1 · · · rn

)T
. (10)

The initial state estimate x̂0 is calculated based on (3). For

the subsequent estimation of the tag position (px, py) the

functional values of the non-linear measurement function

h must be approached to the real position. The function

h comprises the trilateration equations (2) and calculates

the approximated measurement ỹk+1 to correct the present

estimation x̃k+1. The equation ỹk+1 = h(x̃k+1, vk+1) is given

as:
























r̂1

...

r̂n

























=



























√

( p̃x − ax,1)2 + ( p̃y − ay,1)2

...
√

( p̃x − ax,n)2 + ( p̃y − ay,n)2



























+ vk+1 . (11)

The related Jacobian matrix Ck+1 =
∂h
∂x

(x̃k, 0) describes the

partial derivatives of h with respect to x:

Ck+1 =





























∂r̂1

∂ p̃x

∂r̂1

∂ p̃y

...
...

∂r̂n

∂ p̃x

∂r̂n

∂ p̃y





























with

∂r̂i

∂p̃x
=

p̃x−ax,i√
(p̃x−ax,i)2+(p̃y−ay,i)2

∂r̂i

∂p̃y
=

p̃y−ay,i√
(p̃x−ax,i)2+(p̃y−ay,i)2

.

(12)

Given that h contains non-linear difference equations the

parameters ri as well as the Jacobian matrix Ck+1 must be

calculated newly for each estimation.
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B. Detection of NLOS range measurements

The range measurements can be modeled as

ri,k = di,k + ni,k + ei,k,NLOS, (13)

where ri,k is the range measurement to node i at sample

time k, di,k is the real distance, ni,k is the measurement

noise and ei,k,NLOS is the measurement error due to NLOS.

The measurement noise is modeled as Gaussian noise ni,k ∼
N(0, σi), where σi can be identified by experiments.

Two different techniques for NLOS detection are studied.

Both methods use the time update of the Kalman Filter to

estimate the position of the vehicle

x̃k+1 = Axk + Buk, (14)

and to calculate the range estimates as

r̂i,k+1 =

√

(p̃x,k+1 − ax,i)2 + (p̃y,k+1 − ay,i)2
. (15)

The first method compares the range estimates to the real

range measurements in order to detect NLOS:

êi,k+1 = ri,k+1 − r̂i,k+1 (16)

Assuming small tracking errors r̂i,k+1 ≈ di,k+1 and comparing

(13) with (16) leads to

êi,k+1 ≈ ni,k + ei,k,NLOS (17)

NLOS is detected, if the error is positive and larger than a

range error limit:

êi,k+1 ≥ ei,limit : NLOS

êi,k+1 < ei,limit : LOS,
(18)

where the error limit ei,limit is obtained experimentally.

The second technique use the standard deviation of the

estimated range measurement errors (16) to detect NLOS

as described in [13]. Under NLOS condition, the signal

propagation path changes quickly, when a vehicle moves.

Owing to this fact, the standard deviation of the range

measurement errors is significantly larger in case of NLOS

than in case of LOS condition. The standard deviation of

the range errors (16) is estimated periodically in a floating

window:

σ̂i =

√

√

√

1

K

k
∑

j=k−K+1

ê2
i, j

(19)

where K is the size of the floating window. Comparing σ̂i

with σi detects NLOS conditions:

σ̂i ≥ γσi : NLOS

σ̂i < γσi : LOS
(20)

The parameter γ can be find out experimentally. γ > 1

has to be chosen to reduce the probability of false alarm.

The effectiveness of both techniques depends on the tracking

performance of the EKF and on the quality of the initial state

estimate x̂0.

C. Mitigation of NLOS range measurements

Two slightly different methods for mitigation of NLOS

range measurements have been studied. Both techniques use

the Biased Kalman Filter. If NLOS is detected, the corre-

sponding elements of the measurement covariance matrix R

are increased:

R =





































σ2
r,1

0 · · · 0

0 σ2
r,2
· · · 0

...
...

. . .
...

0 0 · · · σ2
r,n





































(21)

The first technique (BEKF1) uses the estimated range error

obtained from (16) to increase the covariance of R:

σ2
r,i =















βêiσ
2
i

: NLOS

σ2
i

: LOS
, (22)

where β is chosen by experiments to give a good tracking per-

formance. The second method (BEKF2) uses the estimated

covariance to increase the elements of R:

σ2
r,i =















ασ̂2
i

: NLOS

σ2
i

: LOS
, (23)

where σ̂2
i

is obtained from (19) and α is chosen by experi-

ments to give a good tracking performance.

These techniques are compared with an EKF, which dis-

cards NLOS range measurements. The NLOS measurements

are discarded by adapting the output equation of the EKF.

Only LOS measurements are included in yk and Ck of (10)

and (12).

V. E R  P A

A. Experimental Setup

In a test series, the position of a forklift truck is tracked

using the described method. The experiments are carried out

at a demonstration storage of the Fraunhofer-Institute for Ma-

terial Flow and Logistics in Dortmund Germany. The forklift

truck moves in automatic mode along a half oval course.

It is controlled by laser triangulation, which has a tracking

performance better than a few cm. The video attachment of

the paper shows the forklift truck moving along this course.

The standard nanoLOC development kit which contains five

sensor boards with sleeve dipole omnidirectional antennas is

utilized for the experiment. Four anchor nodes are placed at

the edges of the course. The sampling time T is chosen to

0.3 s. Several experiments with different NLOS conditions

have been performed to evaluate the effectiveness of the

proposed techniques. The measured range data are logged

into a file for later analysis. The proposed NLOS mitigation

techniques are implemented in Matlab and are evaluated

offline.

B. Parameter Tuning

The effect of the Kalman estimation depends significantly

on the parameters of the covariance matrices. To preferably

gain an exact estimation, appropriate values for the process

noise covariance Qk and the measurement noise covariance
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Rk must be detected. The process noise covariance represents

the accuracy of the estimates for the interior process state.

The measurement noise covariance depends directly on the

environment of the range measurements. Several experiments

with different anchors in a static environment show covari-

ances in a range between 0.0216 m2 and 0.354 m2. The mea-

surement noise covariance is chosen with σ2
i
= 0.1328 m2 as

mean variance of all experiments. These two matrices have

a large impact in progress of the error covariance estimate

Pk, whose initial value is assumed to P0 = I · 10−2.

The parameters have been chosen by experiments to

ei,limit = 5 m, α = 1, K = 10, β = 1 m−1 and γ = 3 .

These parameters show the best tracking performance for

the associated methods.

C. Experimental Results

Several experiments with different NLOS conditions have

been performed to evaluate the effectiveness of the proposed

techniques. In all experiments anchor node 1 is blocked

manually with a sheet of metal several times during the

motion of the forklift truck. The results of three experiments

are summarized in Table I. Fig. 2 to Fig. 5 show the results of

the first experiment. The LOS was blocked manually several

times in intervals of 5 s. The red line shows the course of

the forklift truck, which is controlled by laser triangulation.

The raw trilateration is shown with green dots and calculated

with Eqn. (4). Owing to the measurement noise of the range

measurements, the raw trilateration is spread over the whole

area. In all figures the raw trilateration is calculated without

NLOS mitigation. Owing to this fact, the measured distances

to anchor 1 are too large, and the estimated positions are

displaced towards larger values of x and y. Several of the

trilateration points are out of the range of the axis.

Fig. 2 shows the results of the EKF without NLOS

mitigation. The estimated position of the EKF is shown as

blue line. Fig. 2 shows that NLOS leads to worse tracking

performance, if an unmodified EKF is applied. NLOS dis-

places the estimated position in the opposite direction of the

related anchor node.
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Fig. 2. Tracking results of EKF without NLOS mitigation

The same data are used for the EKF and NLOS measure-

ment exclusion shown in Fig. 3. The tracking performance is

much better than using an unmodified EKF. In environments

with a large number of NLOS conditions, the lack of LOS

measurements can lead to estimation failure. In this setup
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Fig. 3. Tracking results of EKF with NLOS measurement rejection

measurements with êi > 10 m are discarded. Lowering this

limit lead to a complete failure of the location estimation. In

cases where the tracking error becomes high, the range error

estimates increases and all measurements are discarded.

The BEKF uses both LOS and NLOS range measure-

ments. NLOS measurements are less weighted than LOS

measurements. Fig. 4. shows the results from using BEKF

with NLOS mitigation method BEKF1. The tracking perfor-
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Fig. 4. Tracking results of BEKF1

mance is better than using an unmodified EKF. The filter

reacts immediately after detecting a NLOS condition.

Fig. 5 shows the results from using NLOS mitigation

method BEKF2. The tracking performance is slightly better

than method BEKF1. Fig. 6 shows the distribution of the
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Fig. 5. Tracking results of BEKF2

true range errors ei of the four anchor nodes. The distribution

shows NLOS condition in anchor node 1 and biased range

errors in the other anchor nodes, which may be caused by

multipath signal propagation.
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TABLE I

M     

# EKF EKF disc. BEKF1 BEKF2

mean abs error 1 1,76 0,59 0,47 0,28
standard deviation 1,36 1,07 1,21 0,91

mean abs error 2 0,51 0,51 0,46 0,38
standard deviation 0,81 0,81 0,78 0,75

mean abs error 3 0,56 0,58 0,51 0,58
standard deviation 1,52 1,55 1,43 1,55

The mean absolute error and the standard deviation of the

errors are listed in Table I, for three experiments. In the first

experiment LOS was blocked several times in intervals of

5 s. In experiment 2 LOS is blocked for 4 s just before and

after the curve. In the third experiment LOS is blocked for

8 s in the second half of the course. BEKF2 shows the best

tracking performance in most cases.

VI. C

In this paper, location tracking of an forklift truck using

range measurements and Biased Extended Kalman Filtering

with NLOS mitigation is described. The main source for

ranging errors in indoor environments is NLOS and multi-

path signal propagation. Two different techniques for NLOS

mitigation have been evaluated and compared with an un-

modified EKF and with an EKF with NLOS measurement

exclusion. Discarding NLOS measurements is the easiest

way to handle NLOS range measurements. In environments

with a large number of NLOS conditions, the lack of LOS

measurements may lead to estimation failure. In cases where

the tracking error becomes high, the range error estimates

increases and all measurements are discarded.

The BEKF uses LOS as well as NLOS range measure-

ments. NLOS measurements are less weighted than LOS

measurements. The first technique (BEKF1) uses the esti-

mated range error directly. The second technique (BEKF2)

calculates the standard deviation of the range errors. Both

techniques are more robust than EKF and offer better track-

ing performance. The first technique reacts faster on NLOS.

The second technique leads to a slightly better tracking

performance.
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