
  

    
Abstract— This paper presents two new approaches that 

enable the use of linear landmarks for planning paths with 

uncertainty in position in outdoor environments. 

The first approach uses a combination of forward simulation 

and entropy to reduce the dimensionality of the search space, 

while still preserving most of the information required to 

propagate a full covariance matrix.    

The second approach adds incremental binning to improve 

the quality of the solution while still keeping the dimensionality 

of the search space relatively low. 

These approaches provide a better compromise of speed and 

quality of the solution than most existing approaches, and are 

able to successfully utilize linear landmarks in large outdoor 

environments.  

I. INTRODUCTION  

Planning with uncertainty in position deals with the 

problem of navigating autonomously when good prior maps 

are available but the position of the robot is not known 

precisely. Although the uncertainty in the position of the 

robot is often ignored because of the widespread availability 

of Global Positioning Systems (GPS), there are many 

scenarios where GPS is unavailable or its reliability is 

compromised.  

If GPS is not available, the position estimate of the robot 

depends on dead-reckoning alone, which drifts with time and 

can accrue very large errors. Most existing approaches to 

path planning and navigation for outdoor environments are 

unable to use prior maps if the position of the robot is not 

precisely known. Often these approaches end up performing 

the much harder task of navigating without prior 

information. 

An essential part of most approaches to planning with 

uncertainty in position is the use of landmarks. Because the 

dead-reckoning error is not bounded, landmarks are required 

to reduce the uncertainty in the position of the robot and to 

be able to travel long distances.  

However, most existing approaches are only able to use 

landmarks that reduce the uncertainty in the position of the 

robot in both x and y directions. Because these landmarks 

usually look like a point in a map, they are called point 
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landmarks. The main limitation of using point landmarks is 

that they can only be reliably detected when the uncertainty 

in the position of the robot is smaller than the sensor range 

of the vehicle. Typical sensing ranges for features such as 

trees and electric poles are in the order of tens of meters, 

which only allows for a few hundred meters of travel 

between landmarks. For example, with a sensing range 

R=10m and an uncertainty rate αu=10%, the maximum 

distance that the robot can travel without finding a landmark 

is  max / 100uD R mα= = . If the landmarks are spaced 

more than Dmax most planners cannot use them to reduce the 

uncertainty in the position because their detection becomes 

unlikely. 

In contrast, other types of landmarks can be reliably 

detected over greater ranges. Linear landmarks are 

geographic or man-made features such as walls and roads 

that can be represented in a map by a line or set of lines (a 

poly line). A linear landmark such as a wall, for example, 

can be detected reliably over all its extent. Linear landmarks 

are also often more widely available than point landmarks: 

man-made structures such as walls and roads are linear 

landmarks that can be easily identified in aerial images. 

Some geographic features such as rivers and ridges also 

constitute linear landmarks that can be easily identified from 

aerial images.  

The main limitation of linear landmarks is that they only 

provide accurate information along one direction 

(perpendicular to the feature), but very little –if any- 

information along the direction parallel to the feature.  

We propose an approach called Planning with Uncertainty 

in Position using Linear Landmarks (PUPLL) that enables 

the use of linear landmarks for localization when planning 

paths with uncertainty in position. This approach uses 

forward propagation of the full uncertainty covariance 

matrix, combined with a binning function to reduce the 

dimensionality of the search space and enable faster 

planning. While this approach cannot guarantee optimal 

paths, we show that on most problems it finds solutions that 

are as good as those found by the best existing approaches, 

while having much faster planning times.  

A. Related Work 

Most of the existing approaches to planning with 

uncertainty in position are limited to indoor environments. 

See [6] for a thorough review of exiting approaches as of 

2007.  

Most of the recent approaches are based on sampling-

based planning techniques such as Probabilistic Road Maps 
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(PRMs) or Rapidly exploring Random Trees (RRTs).   

PRMs and RRTs are well suited for solving some aspects of 

planning with uncertainty in position with full covariance 

propagation. Both handle multi-dimensional spaces well 

because of their sparse representation of the world. 

However, sampling-based techniques usually don’t handle 

continuous-cost domains well, although some approaches 

such as hRRTs, proposed by Urmson [14], have tried to 

address this shortcoming with some success. Even with 

extensions such as hRRTs, sample-based planners are 

usually unable to provide the same optimality and 

completeness guarantees that grid-based planners do. 

Missiuro and Roy’s [11] approach addresses the problem 

of uncertainty in the position of obstacles, by replacing 

obstacle’s vertices with Gaussian distributions. The 

approach, however, does not handle continuous-cost 

domains and does not model the uncertainty accrued while 

moving. Burns and Brock [4] extend Missiuro and Roy’s 

approach to enable the use of an arbitrary obstacle 

representation and many degrees of freedom. Their 

implementation is targeted to articulated robots. Alterovitz et 

al. [1][2] introduce the idea of a Stochastic Motion Roadmap 

(SMR), to steer surgical needles. The trajectory of these 

needles is uncertain to some extent because the tissue in 

which they are inserted is not completely known. However, 

the problem is formulated as one of avoiding binary 

obstacles while considering the non-holonomic constraints 

of the needle. Similarly, Pepy and Lambert [12] use RRTs to 

find safe paths considering uncertainty. Their approach uses 

a Kalman Filter to estimate the evolution of uncertainty and 

to model the effect of localization in the planning process.  

Melchior et al [9][10] have also recently proposed an 

approach that uses RRTs to propagate a full covariance 

matrix while planning with uncertainty in position for 

outdoor environments. This approach is able to handle 

multiple hypotheses in the outcome of an action as it uses an 

approach similar to a particle filter to model the evolution of 

uncertainty during the search process. Because of this 

model, the planner is not limited to solving problems with 

low uncertainty rate. Although the approach includes a 

biasing term to avoid high cost regions using hRRTs [14] its 

results don’t attempt to optimize cost. The goal is more to 

minimize the end error rather than to minimize the expected 

cost. The approach is also more tailored for short traverses, 

and it is unclear how well it would scale to larger 

environments.  

B. Planning with Uncertainty in Position (PUP) 

The approach presented here extends the planner with 

uncertainty in position (PUP) presented in [8], which takes 

advantage of the low drift rate in the inertial navigation 

system of many outdoor mobile robots. PUP uses an 

isometric Gaussian distribution to model position 

uncertainty and uses deterministic search to efficiently find 

paths that minimize expected cost while considering 

uncertainty in position. A linear error propagation model is 

used, which assumes that the dominant term in the 

uncertainty propagation is the error in the initial heading. 

In this approach a high-resolution map is translated into a 

cost map, in which the value of each cell corresponds to the 

cost of traveling from the center of the cell to its nearest 

edge. Non-traversable areas are assigned infinite cost and 

considered obstacles. This map is often called a prior map. 

PUP uses unique detection regions to disambiguate point 

landmarks.  Unique detection regions are areas in the map 

where only one landmark is visible, therefore allowing non-

unique landmarks to be uniquely identified for a given 

detection range R. 

1) State Space Representation 

The probability density function (pdf) of the error is 

modeled as a Gaussian distribution, centered at the most 

likely location of the robot at step k: 
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where ( , )
k kk x yµ µ=µ  is the most likely location of the 

robot at step k, and 
k kk x yσ σ σ= =  is the standard 

deviation of the distribution at step k. PUP defines: 

 2k kε σ= ⋅  (2) 

such that the boundary of the uncertainty region can be 

modeled as a disk centered at kµ  with radius kε . This model 

is a conservative estimate of the true error propagation 

model and, depending on the type of error that is dominant 

in the system, can provide an accurate approximation of the 

true model.  

Under these assumptions, the augmented state vector 

 ( , )ε=r µ  (3) 

defines a 3-D configuration-uncertainty state space, which is 

also a complete belief space [3].  

In the cost map, the cost Co of a cell q is defined as the 

cost to travel from the center of the cell to its nearest edge. 

PUP extends the idea of this 2-D cost map into the 3-D 

configuration space by defining the cost to move from the 

center of the 3-D cell r to its nearest edge. This cost can be 

expressed as: 

 ( ) ( ),( ) ( , )
k kk k k o i i

i

C C C pµ εµ ε= =∑r rr q q  (4) 

where Co(qi) is the deterministic traversal cost as defined by 

the 2-D cost map at location qi. 

2) Uncertainty Propagation  

Outside of Unique Detection Regions 

Outside of unique detection regions the position estimate 

of the robot is calculated using dead-reckoning. For traverses 
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up to a few kilometers and with a good dead-reckoning 

system, the dominant term in the error propagation is the 

error in the initial heading, which increases linearly with 

distance traveled. Based on this assumption, PUP uses the 

following model to propagate uncertainty: 

 1 1( , )k k u k kdε ε α µ µ− −= +  (5) 

where αu is the uncertainty accrued per unit of distance 

traveled, 1kµ −  is the previous position along the path, 1kε −  

is the uncertainty at the previous position,  and 1( , )k kd µ µ−  

is the distance between the two adjacent path locations 1kµ −  

and kµ . The uncertainty rate αu is typically between 0.01 

and 0.1 (1% to 10%) of distance traveled.  

 

Inside Unique Detection Regions 

If all the possible locations for a configuration rk are 

inside a unique detection region, then the feature that created 

the region should be visible, and no other features will be 

visible within the field of view of the robot.  

For practical purposes PUP makes the simplifying 

assumption that the disk with radius 2k kε σ= ⋅  completely 

contains all possible locations on (x,y) of a given 

configuration ( , )k k kµ ε=r . Therefore, if the disk of radius 

kε centered at kµ  is completely contained within a unique 

detection region i, we assume that the configuration rk is 

inside the unique detection region. As such, we can 

guarantee that feature i will be detected and assume that the 

uncertainty kε will be reduced to a small amount δ . 

 

3) Using Deterministic Search to Plan with 

Uncertainty in Position 

The belief space and 3-D cost map defined above define a 

graph with positive traversal costs. If the transitions between 

states are deterministic, we can use deterministic search to 

find the lowest cost path between any two points in the 

graph. 

We use the following assumptions to ensure that the 

transitions between states are deterministic. In areas outside 

unique detection regions, planning takes place without 

sensing landmarks, and can be modeled as deterministic 

transitions in belief space. If landmarks can be reliably 

detected, then the areas inside unique detection regions can 

also be modeled as deterministic transitions, as the detection 

of landmarks is guaranteed. In the transitional areas that are 

not completely contained within unique detection regions 

the detection of landmarks cannot be either guaranteed or 

ruled out. However, by assuming that landmarks will only be 

detected when the uncertainty contour is completely 

contained within the detection region, we can still model 

these regions in a deterministic fashion, at the expense of 

having an overly conservative approach.  

We search this graph using a modified version of A* in 3-

D in which the successors of each state are calculated only in 

a 2-D plane, and state dominance is used to prune 

unnecessary states.   

II. PLANNING WITH UNCERTAINTY IN POSITION USING 

LINEAR LANDMARKS 

The approach presented here extends the planner with 

uncertainty in position (PUP) in order to use linear 

landmarks for localization.  

A. Uncertainty Propagation 

The main difference between point and linear landmarks 

is that while point landmarks reduce the uncertainty in all 

directions, linear landmarks usually reduce uncertainty only 

in one direction at a time. While for point landmarks it was 

sufficient to model uncertainty as an isometric Gaussian 

distribution, for linear landmarks it is necessary to model a 

more general Gaussian distribution that represents separately 

the uncertainty in x, y and θ. 

A typical sensor configuration for a mobile robot is to 

have an odometry sensor and an onboard gyro. We can 

model the errors in the odometry and the gyro as errors in 

the inputs where  

 2: (0, )v vw N σ  and 2: (0, )ww N ωσ  (6) 

where vw  is the error in longitudinal speed v  due to the 

longitudinal speed control, and wω is the error in the heading 

rate ω  due to the gyro random walk. Using the Extended 

Kalman filter approximation we can then model the 

uncertainty propagation for these parameters as follows. 
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This model has 9 parameters for the covariance matrix Σ, 

of which 6 are independent. A complete planner that 

included Σ in its state space would require modeling the state 

space as: 
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 ( , )=r µ εµ εµ εµ ε  (11) 

where ( , , )x y θµ µ µ=µµµµ  and ,( , , , , )xx xy yy x yθθ θ θσ σ σ σ σ σ=εεεε . 

See [6] for a more complete analysis. 

1) Using entropy to reduce the dimensionality of the 

search space 

A planner in 9-dimensions is not practical for outdoor 

environments. The x and y  dimensions of the planner alone 

can be in the order of 1000x1000=10
6
 cells, and even as 

little as 10 cells in each of the additional dimensions would 

create a planner with  10
6
.10

7
=10

13
 cells.  

We propose an alternative approach that performs a 

forward search using three-dimensional bins. We define a 

binning function B such that ( ) ( , , ( ))B x y Bµ µ=r r r , where 

( )B r  is a summary statistic representing uncertainty. The 

summary statistic implicitly defines equivalency classes for 

Σ, and should be selected such that it is able to separate 

significantly different values of Σ.  

Starting with the initial state ro, states are expanded using 

the uncertainty propagation from (7) and stored in the bin 

determined by ( )Br r . This approach does not explicitly 

quantize Σ, as the full covariance matrix is propagated in 

each state expansion. The quantization of Σ takes place 

indirectly, when two states within the same bin are 

compared. As the planner expands states from the OPEN 

list, each new state rj  to be expanded is compared with the 

existing states ri at the same (x,y) location according to the 

following dominance relation: 
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where *( , )oL r r  is the lowest cost path between the start 

state ro and state r, and ( ) det( ) 0i j i jΣ ≤ Σ ⇔ Σ −Σ ≤ . 

When comparing two states ri  and rj from different bins, 

if ri dominates rj, rj is deleted with no loss of information 

(since state ri is better in cost and uncertainty). The 

covariance matrix is calculated as a forward transformation 

and its full precision is preserved. Likewise, if rj dominates 

ri, ri is deleted with no loss of information. If neither one 

dominates, both states should be preserved, as one has better 

cost, and the other one has better uncertainty. Since each one 

is in a different bin, both states can be preserved, and no 

information is lost.  

When comparing two states from the same bin, a similar 

process takes place. If one of them dominates the other, the 

dominated one is deleted and no information is lost. 

However, if neither one dominates, both states cannot be 

preserved. Since there is only one bin space available, only 

the state with lower cost is preserved, even if its uncertainty 

is higher. Only in this case information is lost, and some 

form of quantization takes place. We call this event a 

collision, and its likelihood depends on the size of the 

quantization step in the uncertainty dimension and on the 

choice of binning function. 

The extent to which quantization affects the resulting path 

depends greatly on the topology of the search space. For 

example, if the search space is homeomorphic with the xy 

plane, the planner is able to find the optimal solution no 

matter how large the uncertainty bins are. More frequently, 

however, the impact of quantization in the solution is seen 

when we try to achieve a certain uncertainty at the goal. In 

this case, the planner is only able to achieve such uncertainty 

within the tolerance of the bin size. For our experiments we 

use a bin size equal to the uncertainty accrued by traveling 

one step in the x or y direction. If the cell size is 1 meter and 

the uncertainty rate is 10%, the uncertainty bins are 0.1m 

each. While it is possible to find problems in which this 

resolution is not sufficient, it can be argued that such 

problems should not be represented on a 1-meter grid. 

A natural binning function to use is entropy, which has 

been successfully used in related approaches such as Roy 

and Thrun’s [13]. Entropy is proportional to the product of 

the major semi-axis of the covariance matrix Σ. This binning 

function effectively clusters together covariances with 

similar dimensions, and differentiates those that have 

significant differences in their semi-axes. In most 

environments this works very well, although it is not 

possible to guarantee that collisions will not take place.  

While many other binning functions can be used, we have 

found that entropy produces very good results in large sets 

of problems analyzed. It also preserves the topology of the 

search space, allowing for fast queries to find neighbors.   

2) Combining entropy and incremental binning 

The main weakness of using entropy is the possibility of 

collisions. This happens, for example, when comparing two 

ellipses with identical semiaxes but that are rotated with 

respect to each other. In this case, the ellipses have the same 

entropy (and belong to the same bin), and the higher cost 

one is discarded even if it is not dominated.  

Recently Censi [5] proposed an approach for planning 

with uncertainty in position that allows finding minimum 

time or minimum covariance paths while preserving all 

parameters from the covariance matrix. In theory, this 

approach avoids quantizing the covariance matrix by using 

state dominance to discard unnecessary states, and 

preserving all other states for a given (x,y) location. In 

practice, this approach requires a finite tolerance TOLσ  when 

comparing matrices, which should be selected to be as small 

as possible. The author utilizes a tolerance between 0.001 

and 0.005 m. While this small tolerance is apparently 

insignificant, it has important theoretical and practical 

implications.  

From a theoretical point of view, the need for this 

tolerance implies that rather than using a continuous 

representation of Σ, this approach is incrementally binning Σ 

in arbitrarily small steps and defining equivalency classes of 

covariances that have semiaxes within TOLσ  of each other.  

From a practical point of view, the selection of this 

tolerance greatly affects the performance of the algorithm. 

By selecting an arbitrarily small TOLσ  it is possible to plan 

1206



with arbitrarily high resolution in the representation of Σ. 

However, very small values of TOLσ  cause the number of 

states at each (x,y) location to increase rapidly, therefore 

significantly increasing the complexity and space 

requirements of the algorithm. 

The main weakness of incremental binning is that the size 

of the search space is not known a priori, and that it can 

become arbitrarily large depending on the complexity of the 

environment and the selection of σTOL. As the search space 

becomes larger, the complexity of the algorithm also 

becomes increasingly large. This is most noticeable in 

continuous cost worlds, where more alternatives are 

available and less pruning takes place.  

We propose an approach that combines entropy and 

incremental binning by performing a primary binning based 

on entropy, and then a secondary incremental binning. We 

define an explicit equivalence relation between covariances 

such that: 

 ' '~ ( ) ( )i j i j i jΣ Σ ⇔ Σ ≤ Σ ∧ Σ ≥ Σ  (13) 

where 
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is a version of Σ in which each eigenvalue has been enlarged 

by  σTOL (the “grow” operator described by Censi in [5]).  

Rather than having only one state at each bin, each bin rB 

is allowed to hold up to nQ  states. If there is a collision 

between two states ri and rj  at bin rB, then their covariances 

are compared. If they are equivalent, the one with the lowest 

cost dominates and no information is lost up to a resolution 

σTOL. If they are not equivalent, the second state is added to 

the bin. If another state rk also has a collision at bin rB, the 

covariance of this new state is compared with the 

covariances of ri and rj. If neither Σi~Σk or Σj~Σk then this 

state is also added to bin. This process is repeated until nQ 

states have been added to bin rB. At this point, any further 

states with the same bin rB that have higher cost and no 

dominance relationship will be discarded (in a similar way 

as the entropy-based approach). Only at this point would a 

collision cause loss of information and could compromise 

optimality. This approach is resolution-optimal if no bins in 

the search exceed their capacity. 

There are two design parameters that significantly affect 

the performance of the algorithm: nQ and σTOL. In general, 

smaller values of σTOL imply higher resolution, longer 

execution times, and require larger values of nQ. Finding the 

optimal values for these parameters is an open question. 

Experimentally, the following approach has shown very 

good results: σTOL is initially set to the uncertainty rate αu 

for each bin rB. Every time a new state is added to the bin, 

σTOL is doubled. Using this combined with an nQ of 8 usually 

prevents exceeding the capacity of the bins and produces 

results equivalent to those found by incremental binning at 

much smaller σTOL values.  

By combining entropy and incremental binning, this 

approach is able to limit the size of the search space in a 

sound manner that produces results at least as good as those 

produced by entropy alone. It also preserves the topology of 

the search space to a great extent, which is useful for 

neighborhood queries and other applications. 

B. Localization with linear landmarks 

In order to plan with uncertainty using linear landmarks 

we not only need to modify the state expansion and the 

uncertainty propagation but we also need to define a 

different approach for localization. Although there are many 

types of linear landmarks, we will only focus on straight 

linear landmarks in order to simplify the problem and to 

maintain the Gaussian distribution assumption. In the limit, 

however, these straight piecewise linear landmarks can 

approximately represent any curve. 

The information provided by linear landmarks is not as 

rich as that of point landmarks. A linear landmark provides 

accurate information along one direction (perpendicular to 

the feature), but very little –if any- information along the 

direction parallel to the feature. It can also provide 

information about heading, but this information is often very 

noisy. Since the heading errors assumed by our approach are 

very small, we will not assume that linear features provide 

meaningful heading information. 

In general, localization with a linear feature can be seen as 

a projection of the covariance matrix onto the localizing 

feature, or a marginalization of ( ),k k kpµ ε q  along the 

direction n locally normal to the linear feature.  

During the state expansion, when a state that is being 

expanded approaches a linear landmark, we calculate the 

projection of the state distribution ( ),k k kpµ ε q  onto the 2-D 

plane that represents the feature for all values of θ within 90 

degrees of the direction normal to the landmark (at the point 

of contact, the feature looks identical for all values of θ). Fig 

1 shows an example with the 3-D ellipsoid defined by the 

2σ  bounds of the covariance matrix as it approaches a linear 

feature located at x=10.  The feature creates a plane at x=10, 

and the covariance matrix is then projected onto that plane. 

In this case, the projection is equivalent to marginalizing 

( ),k k kpµ ε q  over all values of x. 

 

1) Localizing with wall-like features 

The localization approach described above assumes that, 

on execution, the robot will move towards the feature until 

the feature is found. This collapses the uncertainty in the 

direction normal to the feature and preserves the Gaussian 

assumption needed by the planner. In order to model this 

transition as a deterministic one we need the certainty that 

the feature used for localization will be detected. While this 

assumption may not hold for some types of linear features, it 

does hold for wall-like features: features that will prevent the 
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robot from moving when they are found. Examples of these 

features are walls, dense tree lines and possibly rivers. Walls 

and tree lines can be reliably detected with approaches such 

as the one proposed by Vandapel et al [15]. Rivers pose a 

much more complicated challenge as they can be obscured 

by vegetation and it may be dangerous to try to find a river 

by getting very close to it. 

 

Fig 2 shows an example world with wall-like features and 

the path found by PUPLL. The robot starts with high 

uncertainty, which would make it costly to go through the 

channel before the goal. The path, therefore, follows a low 

cost path to a vertical wall to reduce horizontal uncertainty, 

and then moves down to a horizontal wall to reduce vertical 

uncertainty. After this second localization, the uncertainty in 

the robot’s position is very small, but the uncertainty in its 

heading has not changed since we do not use the walls to 

improve heading accuracy. The robot then accrues additional 

uncertainty as it moves, but is able to pass stay within the 

low cost area in the channel on the way to the goal. 

2) Localizing with roads 

Localizing with roads poses some challenges not present 

with wall-like features. The most important challenge is that 

road detection is only reliable in limited situations. The most 

reliable type of road detection is that of structured roads 

(paved roads with lane markers). However, even in this case 

the detection is only reliable if the vehicle is on the road. 

Detecting a road when the robot is not on it is a challenging 

problem not yet solved by current approaches to road 

detection.  

Considering these limitations, the approach proposed here 

to localize with roads assumes that roads can be used for 

localization only when the robot is on a road, or when other 

means of localization can be used to reduce the uncertainty 

within the width of the road. However, this limitation stem 

from the detection model, not from the planning approach 

used. If roads can be reliably detected under more broad 

circumstances, the limitations described above can be 

relaxed or removed. 

Fig 3 shows a simple example of the planner using roads 

for localization. Notice how the uncertainty remains low in 

the direction perpendicular to the direction of travel as long 

as the robot is on a road. When the robot leaves the road the 

uncertainty increases rapidly. 
 

 
Fig 2. Path planning using wall-like features. Light gray regions are 

low cost regions, darker regions are higher cost regions and green areas 

are obstacles.  

Even with this conservative approach, localization with 

roads is a powerful approach to planning with uncertainty in 

position. Because the main source of uncertainty is the error 

in heading and roads provide localization in the direction 

perpendicular to the direction of travel, it is possible to 

navigate very long distances without the need for any other 

localization approaches.  

Fig 4 shows a more realistic example of the planner using 

roads for localization over a large area. In the example 

shown, the planner is able to find a path that optimizes cost 

and that keeps the uncertainty in position at less than 10 

meters at all times over a 4.7 km path. 

 
Fig 3. Path planning using roads for localization. Light gray areas are 

low cost roads that can be detected by the robot. Darker areas are 

higher cost regions.  

Fig 1.  Localization with a linear feature: projection of the ellipsoid 

representing the 3-D covariance matrix in x,y and θ onto the plane 

defined by a linear landmark.  
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Fig 4. Localization with roads over a large area. Aerial image with 

shaded relief of Indiantown Gap, PA. Gray lines are roads. Blue lines 

are rivers. The purple line shows the path found by the planner, which 

minimizes expected cost and maintains the uncertainty at less than 10 

meters after traveling for 4.7 km. The world size is 3.5km by 3.2 km, 

with 10 m cell spacing.  

C. Performance 

Although the computational complexity of the approaches 

presented here is similar to that of the 1-D PUP planner 

presented in [8], in practice their performance is not nearly 

as good. This is partly because of the increased overhead in 

the expected value calculations, and partly due to reduced 

ability to cache intermediate results.  

Fig 5 shows the processing time of our approaches as well 

as Censi’s incremental binning in simulated fractal worlds 

like the one in Fig 6. Our two approaches (entropy and 

entropy plus incremental binning) have similar performance, 

and are able to find a path in less than 10 seconds in worlds 

up to 300x300, and in a few minutes in worlds up to 

500x500. Censi’s approach takes between 10 and 100 times 

longer. The processing time for the 1-D PUP planner is also 

shown as a reference. 

 
Fig 5. Processing time comparison between PUP, PUPLL-entropy, 

PUPLL-entropy+IB and Censi’s approach (IB) for fractal worlds of 

sizes varying from 100x100 to 1000x1000 
 

 

In the previous example, the entropy-based approach 

found paths as good as the paths found with Censi’s or the 

entropy plus incremental binning approaches. While this is 

not uncommon, there are environments in which using 

entropy alone results in paths with higher costs. Fig 7 shows 

one of such environments, a complex world with multiple 

walls in different orientations, as well as high cost areas 

(darker areas). Notice how the planner localizes with walls 

of different orientations, while staying away from high-cost 

regions. Notice also that the localizations only take place 

when needed in order to reduce cost of to get through a 

narrow passage, instead of trying to localize continuously. 
 

 

 
 

 
Fig 7. Complex sample world with multiple walls (green obstacles) 

Fig 8 shows the path cost of Censi’s approach for this 

world with different values of σTOL as well as our two 

approaches. Notice how the entropy-based approach has a 

small error of about 1% with respect to the lowest cost path. 

In contrast, when using entropy plus incremental binning, 

the planner is able to find the lowest cost path. Fig 9 shows 

the processing time for this example. Notice how entropy is 

about 8 times faster than entropy plus incremental binning 

Fig 6.  Sample fractal world used for performance simulations.  
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and significantly faster than Censi’s approach for most 

values of σTOL. Also notice that there are no solutions for 

Censi’s approach when σTOL is smaller than 0.02. This is 

because our implementation of this approach is unable to 

handle more than 1000 bins, and this example requires 

significantly more than 1000 bin levels for σTOL smaller than 

0.02.  

 
Fig 8. Path cost error of PUPLL vs Censi’s approach for varying σTOL 

values, 
 

 
Fig 9. Processing time of PUPLL vs Censi’s approach for varying σTOL 

values. 

III. CONCLUSIONS 

The approaches presented here build on the original PUP 

approach and add the ability to localize with linear 

landmarks, which significantly improves the localization 

abilities of the planner. This is especially true in urban 

settings, since linear features are most common in man-made 

environments. 

Having a more accurate and flexible error propagation 

model also allows the planner to find solutions in situations 

where the single-parameter approximation is too limiting, 

such as in narrow corridors or when the initial uncertainty is 

not symmetric.  

However, by planning in a space that may not represent 

the full belief space for the problem makes the planner 

potentially suboptimal and incomplete. In practice, however, 

the paths found by the planner usually match the results of 

Censi’s approach (which claims to be optimal within the 

limitations of the resolution and the representation).  

The advantages of using a single parameter to represent 

uncertainty are multiple. The space and computational 

requirements of the algorithm are several orders of 

magnitude lower than what would be required to plan in the 

complete parameter space. Also, unlike Censi’s approach, 

the space requirements of the algorithm are clearly bounded.  

We also propose an approach that combines the best 

features of the entropy representation and the incremental 

binning approach. This approach is able to find optimal 

paths in more complex environments than entropy alone. 

While this approach is somewhat slower than the entropy 

approach, it is still faster than incremental binning and also 

provides clear bounds on the space complexity of the 

algorithm.  
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