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Abstract

The real time requirement is an additional constraint
on many intelligent applications in robotics, such as shape
recognition and retrieval using a mobile robot platform. In
this paper, we present a scalable approach for efficiently re-
trieving closed contour shapes. The contour of an object
is represented by piecewise linear segments. A skip Tri-
Gram is obtained by selecting three segments in the clock-
wise order while allowing a constant number of segments to
be “skipped” in between. The main idea is to use skip Tri-
Grams of the segments to implicitly encode the distant de-
pendency of the shape. All skip Tri-Grams are used for ef-
ficiently retrieving closed contour shapes without pairwise
matching feature points from two shapes. The retrieval is at
least an order of magnitude faster than other state-of-the-
art algorithms. We score 80% in the Bullseye retrieval test
on the whole MPEG 7 shape dataset [11]. We further test
the algorithm using a mobile robot platform in an indoor
environment. 8 objects are used for testing from different
viewing directions, and we achieve 82% accuracy.

1. Introduction

The intelligent systems try to match human vision in var-
ious tasks such as object recognition and shape retrieval.
When it comes to robots exploring the world, the additional
constraint of real-time computation limits the number of al-
gorithms that can be used. An efficient and effective mem-
ory organization is necessary for the robot so that it can
store and retrieve objects. In this paper, we present a shape
representation, called “Shape Memory”, for this purpose.

This representation approximates the contour of an ob-
ject as many piecewise linear segments. Starting from any
segment, we consider a “sentence” of segments in clock-
wise order. Each group of three consecutive segments is
called a Tri-Gram. Tri-Grams are proposed by Shannon
who used them to reproduce English written text [19]. A

skip Tri-Gram [4] is a generalization of a Tri-Gram, which
is obtained by selecting three segments in order while al-
lowing some segments to be “skipped” in between. In our
implementation, we skip a constant number of segments.
Skip Tri-Grams are used to implicitly encode the distant
geometric dependencies of sequential contour segments.
We store the skip Tri-Grams into a generic and compact
array that can be used for retrieval and recognition.

The advantages of our representation are:

1. Shape Memory is a very efficient representation for
retrieving closed contour shapes without pairwise
matching feature points from two shapes. Retrieval
is more than an order of magnitude faster than other
state-of-the-art algorithms, with reasonable accuracy.

2. Shape Memory is scalable because the memory size is
linear with respect to the size of the training set. When
new shapes are added, no re-training and changing of
the existing memory structure are required. Therefore,
both the training and the testing are very efficient.

3. Shape Memory has the ability to memorize shape in-
stances. We demonstrate this ability by reconstructing
shapes from contour segments.

The paper is organized as follows. A brief review of re-
lated topics is presented in Sec. 2, and our representation
is described in Sec. 3. Sec. 4 shows experiments includ-
ing shape reconstruction and shape retrieval using a mobile
platform. We conclude the paper in Sec. 5.

2. Related Work

Recognizing objects using mobile platforms recently re-
gains the attention in related fields [1]. Shape is one of
the key features of the objects. There are two major ways
to characterize shapes: landmark points and codebooks of
boundary curves. Landmark point based approaches are of-
ten applied to close contours. Points are usually obtained by
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uniformly sampling the boundaries of the silhouettes. Then
each point is described by its spatial relationships with re-
spect to all other points. The best known representation in
this category is Shape Context [2]. To handle articulated ob-
jects, Ling and Jacobs [12] extend Shape Context using the
Inner Distance. Biswas et al. [3] use the Inner Distance for
fast shape retrieval. Most existing algorithms in this cate-
gory are computationally demanding, partially because they
are based on pairwise comparison. Given two shapes, many
algorithms need to compare every feature point from one
shape against all feature points from another one. Further-
more, these point descriptors are often used in a nearest-
neighbor classification framework [2], [24].

The idea of representing shapes using codewords dates
back to the 70s. Chain Code [8] uses eight directions to de-
scribe the relationships of adjacent pixels. Fu [9] describes
boundary strings with grammars, and uses these grammars
to parse the strings. Recently, codebooks are built from
class-discriminative boundary fragments [15, 16, 20, 7, 23].
In these approaches, positions of object centroids often need
to be stored explicitly and used as additional geometric con-
straints. Our approach regards object boundaries as se-
quences of codewords, and a major difference between our
approach and previous work is that we also describe the
distant dependencies of shape using skip Tri-Grams [4] of
boundary segments.

There has been much work on organizing and retriev-
ing shapes using indexing techniques. Given a dataset of
objects, shape indexing is usually applied to store and re-
trieve each object from the dataset and compare it against
other objects in the scene. Geometric Hashing [22] uses a
hash table to store the descriptors for recognition. Rigout-
sos and Hummel [17] develop a Bayesian approach based
on hashing. Clemens and Jacobs use the hashing technique
to index 3D models from descriptors in 2D images [5]. Our
approach is different in two ways. Our descriptor encodes
distant dependency, and object retrieval is performed using
a probabilistic voting framework.

3. Representing Contours using Tri-Grams

Our goal is to have a shape representation which stores
local relationships, while still retains distant geometric in-
formation. Instead of using additional constraints such as
vectors to object centroid’s position, we propose using the
skip Tri-Gram model to achieve this goal.

By reconstructing the original shape, we show that our
skip Tri-Gram based approach retains the distant depen-
dency without explicitly storing other information. Then we
present an algorithm for shape retrieval using a probabilistic
voting framework. We call the skip Tri-Gram based mem-
ory representation “Shape Memory”, because it constitutes

a generic way to store and retrieve arbitrary shapes. In the
subsequent discussion, we borrow terms from the natural
language processing (NLP) community such as codewords,
codebook, and string.

3.1. From Shapes to Strings

Shapes are represented by pieces of contour. Given a
silhouette, it is natural to uniformly sample the boundary.
We traverse the silhouette, and simply quantize the orienta-
tion of the line segments between adjacent sample points.
We use eight different orientations, denoted by the English
characters “A” to “H”, as codewords, which together make
up the codebook. Figs. 1a and 1b display the silhouettes be-
fore and after quantization. Fig. 2 shows all the sentences
in the MPEG 7 shape dataset using this representation.

a b
Figure 1. Quantize a shape to a sequence of codewords (b). We
uniformly sample 50 points for each shape, and quantize the ori-
entation of the adjacent points using the codebook.

Figure 2. The strings of the shapes in the MPEG 7 dataset. Each
row is a string that represents the corresponding shape in the
dataset, where codewords are visualized using colors (best viewed
in color).

3.2. Brief Introduction to the Skip Tri-Gram Model

Tri-Grams of a string are a set of tuples of all possi-
ble adjacent codewords in the string1. For N = 1, 2, 3,
they are called “unigram”, “bigram”, and “trigram”, respec-
tively. Table 1a gives an example of all the “unigrams”,
“bigrams”, “trigrams” and “4-grams” of the string “AB-
CABCABDABD”. We use skip Tri-Grams to represent the
whole string and encode distant shape dependency.

1We regard the last codeword in the string to be the next to the first one.
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Table 1. Examples of N -Grams and skip Tri-Grams: a) N -
Grams (N=1,2,3,4) of the string “ABCABCABDABD”; b) skip
Tri-Grams of the string “ABCDEFG” (distance = 0,1,2).

3.2.1 Definition

• The skip Tri-Grams at distance j: Starting from any
codeword of the string S, a skip Tri-Gram is obtained
by selecting two more codewords in the sentence order
while skipping exactly j codewords in between (Table
1b).

3.3. Represent Shapes using Skip Tri-Grams

Our representation of a set of shapes is a 3D binary array
SM. As shown in Fig. 3, each vertical slice through SM is
a 2D binary array SH which represents a single shape. Each
row in SH represents a Tri-Gram. Each column represents
the same Tri-Gram at different distances. We first present
our notation, and then we describe the construction of SM.

3.3.1 Notation

• S: a shape string.

• LS : the number of landmark points when sampling a
boundary. It is also the length of the shape string.

• S[i]: the ith codeword in S.

• TGj
S : the set of all Tri-Grams of the string S at dis-

tance j.

• J : the maximum distance. Usually J ≤ �LS/2�.

• g: a Tri-Gram.

• CB: the codebook of size |CB|.
• wi, i = 1, ..., |CB|: codewords in the codebook CB.

3.3.2 Representing a Single Shape

We organize TGj
S (j = 0, ..,J ) into a 2D binary array SH

to represent a shape S. For each distance j, the number of
possible trigrams in TGj

S is |CB|3. Thus we represent S
by a binary vector of length |CB|3, whose entries are set to
“1” if the corresponding trigram occurs in TGj

S .

The J vectors are combined into a |CB|3 × J matrix
SH (Fig. 3). Each row represents all possible trigrams
from “AAA” to “HHH”, while each column represents the
distance from “0” to “J ”. This is our representation for an
individual shape. To simplify the notation, we use SH(g, j)
to access the cell in the structure corresponding to a skip
Tri-Gram g at distance j.

Figure 3. Shape Memory. A shape is represented by a set of skip
Tri-Grams at different distances. Here we illustrate a vertical slice
(SH) in the memory, which represents a single object. The entry
(i, g, j) in the memory is set to “1” when the object i has the Tri-
Gram g at distance j (black arrows). The entries in this slice can be
directly accessed using Tri-Gram g (row) at distance j (column)
(red arrows).

3.3.3 Memory Organization of All Shapes

Our goal is to organize shapes in the training dataset into a
compact 3D representation. We have a set of object shapes
with category labels, each represented by a SH. Intuitively,
shapes in the same category need to be placed together. To
sort the shapes of a category, we first compute the edit dis-
tance [10] between two shape strings using dynamic pro-
gramming. Then we apply a greedy algorithm in the same
category2.

For each sorted string of a category, we compute the cor-
responding SH using the representation in Sec. 3.3.2. We
organize the SHs of a category based on their order (see
the “Shape” dimension in Fig. 3). We repeat this procedure
for different categories, and the result is a |CB|3 × J × N
binary array. We denote this memory organization as Shape
Memory SM.

Pairwise similarity measurements are only computed for
shapes in the same category when building the Shape Mem-
ory. Given a set of N closed boundary shapes grouped in C
categories with NC shapes per category, the time complex-
ity of sorting the memory is O(CN2

C), which is O(NCN)

2We choose edit distance because it is fast, but it can be replaced by
any pairwise similarity measurement.
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because of N = CNC . When NC is small (e.g., NC = 20
in the MPEG 7 shape dataset), the sorting algorithm is
fast. The complexity of building the memory content is
O(NCN + |CB|3JN). Given a fixed codebook and the
maximum distance (e.g. |CB| = 8 and J = 14 in our im-
plementation), the complexity scales linearly with the num-
ber of training shapes N .

3.4. Algorithm for Reconstructing Shapes from
Contour Segments

Given the SH of an arbitrary shape string S, we use a
depth first search (DFS) approach to reconstruct S. Our
goal is to generate a string S of length LS that satisfies SH.
The necessary condition for a string S to satisfy SH is that
the corresponding entries of all possible skip Tri-Grams of
S are “1”. Assume that we have a substring that satisfies the
necessary condition and we want to generate the next code-
word3. For any possible choice w, we only need to check
all Tri-Grams whose last codeword is w in the new string
obtained by appending w to the substring. This approach
is equivalent to a depth first search procedure. Algorithm 1
describes this procedure.

Since a string represents a shape, the last codeword in
the string is next to the first one. Depending on the start-
ing codeword, Algorithm 1 might return multiple solutions
that are identical after shifting. The time complexity for the
depth first search depends on J . In our experiment, it only
takes a fraction of a second to generate the string.

3.5. Shape Retrieval using Shape Memory

We use a simple probabilistic voting scheme for shape
retrieval. SM is considered as a lookup table for all train-
ing shapes. We cast probability votes to existing shapes that
contain skip Tri-Grams of the test string. Note that this ap-
proach does not require pairwise matching when retrieving
shapes. Therefore, shape retrieval is very fast.

3.5.1 The Algorithm

Using the SM as the lookup table, each skip Tri-Gram g
of the test string S casts probabilistic votes for all possible
shapes that have g. In our representation, shapes of a cat-
egory are sorted based on their similarities. Therefore, we
use a Gaussian kernel to approximate the probability dis-
tribution of the similarity measurement. We normalize the
results (scorei) such that

∑
scorei = 1, and select the best

candidate for recognition.

i = arg max
i

(scorei) (1)

3The sufficient condition can be easily checked after reconstructing the
whole string. Thus, only the necessary condition is described in this paper.

Algorithm 1 Shape Reconstruction

Input :
SH : The representation of shape S

Output :
Scur : The reconstructed string

Procedure :
1) Randomly initialize Sinit ← w1w2w3w4 using the
Tri-Grams w1w2w3 and w2w3w4 of S

at distance 0;
2) execute function verify(Sinit, 1)

FUNCTION verify(Scur, n)
IF n ≥ LS

PRINT Scur and RETURN;
ELSE

O ← {w1, ..., w8};
For w ∈ CB

Obtain Sguess by appending w to Scur;
FOR possible distance j

i1 = |Sguess| − 2j − 2;
i2 = |Sguess| − j − 1;
g = Sguess[i1]Sguess[i2]w;
IF SH(g, j) == 0

O ← O − {w};
∀ w ∈ O

Obtain Snext by appending w to Scur;
Verify(Snext, n+1);

Algorithm 2 Shape Retrieval

Input :
Stest : Test string and

: its relative orientation string
SM : Shape Memory

Output :
scorei : The score vector

of all objects in memory
Procedure :
1) Compute TGj

Stest
for possible j;

2) Initialize array p to zero;
3) FOR g ∈ TGj

Stest

IF object i has g at distance j in SM
FOR object k in the same category as i

pk = pk + e−( i−k
2 )2 ;

5) scorei = pi/
∑

i pi, i = 1, ..., N ;

In addition, to evaluate the retrieval performance, we use the
Bullseye test (see Sec. 4.2). The algorithm is summarized
in Algorithm 2.

Given a test string of length Ltest, the number of Tri-
Grams to be tested in the shape retrieval is at most 2 ×
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�Ltest

2 � × Ltest, and each vote cast takes constant time.
Therefore the time complexity is O(L2

testN) on a dataset
containing N shapes. For a fixed length test sequence, the
complexity is O(N).

4. Experiments

Four experiments have been performed to show the ef-
fectiveness and the efficiency of our representation. First,
the Bullseye test is used for evaluating the performance of
Shape Memory in retrieving shapes. The second experiment
tests the Shape Memory on the UCF [13] dataset. In the
third experiment, we show that Shape Memory can effec-
tively used for real objects retrieval. Using a mobile plat-
form equipped with a quad stereo system (Fig. 7), Shape
Memory succeeds in recognizing 7 out of 8 objects from
different viewing directions. Finally, we demonstrate that
our representation also has the ability to reconstruct individ-
ual shapes in the training set from partial contour segments.

The MPEG 7 dataset [11] is used to train the Shape
Memory in all the experiments. Three additional datasets
are used for testing.

In all the experiments, we produce sentences by 1) uni-
formly sampling 50 points from each shape boundary in
clockwise direction (LS = 50), and 2) quantizing the line
segments to eight directions (|CB| = 8).

4.1. Training the Shape Memory using the MPEG
7 Shape Dataset

The MPEG 7 shape dataset is widely used for shape
matching algorithm. It contains 70 categories, each con-
sisting of 20 binary images. Fig. 4a shows some examples,
one for each category.

Figure 4. Examples of the MPEG 7 Shape dataset.

The dataset is one of the largest public shape datasets,
and contains many real world shapes. This allows us to
perform the retrieval using real world data.

4.2. Evaluating Shape Retrieval Performance using
the Bullseye Test

The performance of shape retrieval is measured by the
Bullseye test as follows. For each shape, we perform a

leave-one-out test using Algorithm 2 and we count the top
40 candidates. The retrieval rate is the ratio of correct
hits of the top 40 to the maximum possible number of hits
(20×1400).

Figure 5. Two retrieval examples of MPEG 7 dataset, compared to
the IDSC [12].

To handle mirror shapes, we compute for each object
the sequences in both the original and the reverse order
(i.e., counter-clockwise). For this experiment, we use J =
	LS

10 
. Fig. 5 shows two retrieval results, one for the IDSC
[12] and the other for our proposed method. Our false posi-
tive shapes are different from [12], and our order is different
as well.

Table 2. Performance (Bullseye) and runtime comparison on the
whole MPEG 7 CE-Shape-1 dataset. Every image in the dataset is
used to perform the leave-one-out test using Algorithm 2.

Algorithm Retrieval Rate Appr. Total Runtime
CSS [14] 75.44% > hour

Visual Parts [11] 76.45% > hour
Curve Edit [18] 78.17% > hour
Gen. Model [21] 80.03% > hour
SC+DSC [12] 64.59%
SC+TPS [2] 76.51% > hour

IDSC+DSC [12] 68.83%
IDSC+DP [12] 85.40% > hour

Shape Indexing [3] 81.8% ∼10 minutes
Hierarchical [6] 87.7% > hour

Proposed 80.01% ∼2.5 minutes

We further compare the runtime and the performance of
other existing algorithms (Table 2 ). The Bullseye test on
every shape in the MPEG 7 shape dataset is run on a stan-
dard PC with 1GB memory and a Core 2 Duo 2.8 GHz CPU.
Referring to Table 2, the total runtime of our approach is
significantly less than all others. Most previous algorithms
are based on pairwise matching, resulting in the runtimes
on the whole dataset in the order of hours4. We mark this as
“>hour” in Table. 2. Compared to [3] which is not based on
pairwise matching, our approach is faster, while the perfor-
mance is marginally worse. Since we do not explicitly han-
dle articulated objects, our performance is slightly worse

4For example, in [12] each match takes 0.31s. Thus, the total runtime
on the whole dataset would be approximately 0.31×(1400

2

)
seconds (∼ 80

hrs).
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than the performance of those techniques that handle this
problem [12], [6] with the benefit of shorter runtime.

4.3. Shape Retrieval using UCF dataset

The purpose of this experiment is to test whether Shape
Memory can correctly associate shapes in a different dataset
to similar shapes in the training dataset.

The UCF dataset [13] is one of the largest gait datasets.
Each gait image depicts the silhouette of a person. The clos-
est shape of a human being in the MPEG 7 dataset is the
silhouette of “Child”.

We randomly choose 40 sequences in UCF dataset from
persons that do not carry a briefcase. In total, 8038 gaits
from the dataset are used in this experiment.

Fig. 6 shows the top 19 retrieved images for a test gait
image. 16 out of 19 images are correctly retrieved as images
of human.

Figure 6. Retrieval using a gait image in the UCF dataset [13].
The gait image in the UCF dataset is shown on the top left. The
remaining images are the retrieval results in the MPEG 7 dataset,
sorted by rank.

In this experiment, a retrieval is correct if the top ranked
candidate in the MPEG 7 dataset belongs to category
“Child”. We present the accuracy of 10 sequences in Ta-
ble 3.

Table 3. The accuracy of persons in the UCF [13] dataset. A re-
trieval is correct if the top ranked candidate in the MPEG 7 dataset
belongs to category “Child”. We show the number of correct re-
trieval and the number of total images in the sequence.

Sequence# Accuracy Sequence# Accuracy
03506G0ARB 184/196 03629G0ARB 141/151

03510G0ALB 192/211 03635G0ARB 240/256

03523G0ARB 178/193 03652G1ALB 196/208

03572G0ALB 168/187 03657G1ARB 188/200

03605G0ALB 203/229 03661G1BLB 179/184

Figure 7. The quad stereo system on a mobile platform used in
Sec. 4.4.

4.4. Retrieving Real Objects using a Mobile Plat-
form

We test the Shape Memory using a mobile platform
equipped with a quad stereo system for depth and color seg-
mentation (Fig. 7). MPEG 7 dataset is used for training in
this experiment.

8 objects are used in this experiment for testing: two bot-
tles, two mugs, a car model, a Christmas bell, a jar, and a
shoe (Fig. 8, column 1). We captured 20 images per object
from different viewing directions. The quad stereo system
segments the object from the background, as shown in Fig.
8, column 2. Then, the silhouettes are used for shape re-
trieval using the Shape Memory. The top 3 candidates are
shown in the last 3 columns.

The speed for segmentation is approximately 1 sec-
ond/frame for 640 by 480 images, and the time for shape
retrieval is 0.05 second/frame on average. Table 4 further
shows the retrieval accuracy for all the objects. The aver-
age accuracy is 82%. 7 objects except the “jar” can be cor-
rectly retrieved statistically. The poor performance of “jar”
is caused by the imperfect segmentation.

Table 4. The accuracy of shape retrieval with real world objects.
A retrieval is correct if the top ranked candidate is in the same
class as the test. The accuracy is defined as the number of correct
retrievals divided the number of total ones. In this experiment we
captured 20 images from different viewing directions.

Object Accuracy Object Accuracy
Bottle 1 95% Bottle 2 90%
Mug 1 95% Mug 2 90%

Car 85% Shoe 85%
Bell 95% Jar 15%

4.5. Shape Reconstruction

The goal of this test is to demonstrate that the skip Tri-
Grams representation encodes the distant shape information
and can be used to reproduce the original structure. Given
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Figure 8. Shape retrieval using a quad stereo system on a mobile platform. First column: the images captured by the system; Second
column: image segmentation using the quad stereo system; Third column: the silhouettes of the objects; Columns 4-6: the top 3 retrieval
candidates using the Shape Memory. The class names of the candidates are shown on top, and the text are in red if the retrieval is incorrect
(best viewed in color).

the Tri-Grams of shape S at distance from 0 to J , we test
the Shape Memory’s ability to reproduce S for different val-
ues of J using Algorithm 1. This experiment is performed
on all the shapes in the MPEG 7 dataset, and the average
results are displayed in Fig. 9.

The accuracy is measured by:

• Hit Rate: Algorithm 1 may return different solutions,
depending on how much the distant information is en-
coded. We divide the total number of the correct re-
constructed strings by all the reconstructed results.

Intuitively, larger values of J correspond to more global
information. As shown in Fig. 9, it is likely to reconstruct

Figure 9. Performance on shape reconstruction.
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the original shape when J > 12 (e.g., the Hit Rate is greater
than 80%). It is noted that when J = 13, the distance
between the first and the last codeword in a Tri-Gram is
26, which is approximately half of the length of the shape
string. The results indicate that the skip Tri-Gram implic-
itly encodes the distant geometry of the original shapes.

5. Conclusion

We presented an efficient, effective and scalable memory
organization for fast retrieval and reconstruction of shapes.
Shape Memory implicitly encodes the geometry of shape
using the skip Tri-Gram model. The experiments using the
mobile platform show that the approach is very efficient and
its accuracy is reasonable to the best algorithms in the field.
Future studies include 1) the performance (accuracy/speed)
of more real world objects; 2) The reconstruction accuracy
with respect to the number of line segments used for quan-
tization; and 3) the maximum distance used in the skip tri-
gram model for different objects.
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