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Abstract—Self-location capability is a very useful and infor-
mative attribute for wearable systems. This paper proposes a
method for identifying a user’s location from an omnidirectional
image sensor, a GPS data source and wireless LAN data.
Azimuth-invariant features are extracted from an omnidirec-
tional image by integrating pixel information circumferentially,
thus enabling a user to independently recognize his/her location
from the omnidirectional image feature, the GPS data and the
wireless LAN data projected into a sub-space made from the
learning data. We show the effectiveness of our method by
experimental results in real data.

I. INTRODUCTION

In recent years, the potential for developing “wearable”
computers has significantly increased because of the progress
in science and technology. Typical wearable computers
which are small and unobstructive[1] include watches[2],
rings[3], and headphones[4]. The concept of “wearable
computers” is gaining socially acceptability. Most wearable
computers have hands-free capability and can support various
tasks. In particular, they are widely used for providing
wearer’s location information in various applications. In
medical practice, a monitoring system for patients has been
developed by using wearable computers[5]. Such a system
can recognize the patient’s states and in an emergency pro-
vide the patient’s location to a doctor. Thus, self-location is
very informative for supporting various tasks. Many different
sensors can be used to acquire environmental information
for obtaining the self-location information such as range
finders[6], image sensors[7], the GPS[8], and the wireless
LAN[9]. In this paper, we propose a method for identifying
a user’s location from an omnidirectional image sensor[10],
GPS data and wireless LAN data.
In self-location recognition by using image sensors, 3D

reconstruction methods are frequently used[11]. These meth-
ods, however, have problems of huge computational cost and
other difficulties in 3D reconstructions. To minimize these
problems, a memory based navigation approach has been
proposed[12]. Memory based navigation keeps the training
images as a location database, and recognizes self-location
changes by comparing an input image with the location
database. This method need not reconstruct a 3D scene from
the images, and can improve the location recognition rate
even in complex scenes by adding training images into the
location database.
Self-location recognition by using the GPS is widely used

in car navigation systems, airplanes and ships. The GPS can
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acquire self-location information directly from satellites, and
can recognize the location anywhere where the signal of the
satellites can be received. The identification method by using
GPS and other sensors can recognize the location even in
indoor environments[8]. The main problem with the GPS,
however, is that the accuracy of location information varies
because of the number of the “visible” satellites. More GPS
satellites are required to improve the accuracy, but satellites
are costly to launch.
Recently self-location recognition by using wireless LANs

has been proposed. This method uses signal strengths
and the network names of wireless LANs for location
recognition[13]. Self-location recognition by using wireless
LANs can recognize self-locations in subways, buildings,
and so on. The method can accurately recognize locations in
cities because there are many wireless LAN access points;
however the recognition rate becomes less effective where
wireless LAN access points are sparse.
As describe above, each of the sensors has advantages

and disadvantages. We therefore propose a method for iden-
tifying a user’s location by using a combination of multiple
sensors: the omnidirectional image sensor, the GPS, and the
wireless LAN to combine the advantages of each of these
sensors. We also propose to use the azimuth invariant feature
extracted from the omnidirectional images, and we show the
effectiveness of our method by experimental results with real
data.

II. AZIMUTH INVARIANT FEATURES

In this paper, we use an omnidirectional image sensor as
shown in Figs. 1 and 2. The sensor consists of a downward
facing camera and an upward facing hyperbolic mirror. The
sensor has the same optical characteristics as a common
camera, and captures 360 degrees panoramic view at any
given time. We can extract azimuth invariant features from
the omnidirectional images by using these characteristics.
In general, the omnidirectional images captured at the same
position differs form each other when the sensor’s orientation
changes as shown in Fig. 3. This problem is also resolved
by using the azimuth invariant features.
As shown in Fig. 4, we consider the polar coordinate

system (r,θ ) with the origin fixed at the center of the image.
For any feature f (r,θ ) extracted at the position (r,θ ), we can
calculate the azimuth invariant feature X(r) by the following
integral transform:

X(r) =
∫ 2π

0
f (r,θ )dθ =

∫ 2π

0
f (r,θ +Δ)dθ , (1)
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Fig. 1. Hyperbolic mirror

Fig. 2. Omnidirectional image
sensor

Fig. 3. Omnidirectional images captured at the same point with different
orientations

where Δ is the perturbation of the azimuth θ . For any
Δ , the above equation is always satisfied. This integral
transform is difficult to calculate for a common camera
because a common camera cannot capture a 360 degrees
panoramic image at any one time. However, by using an
omnidirectional image sensor, we can easily calculate such
an integral transform. Therefore, the azimuth invariant fea-
ture is a suitable feature for omnidirectional image sensors.
We can use autocorrelation or differentiation as the function
f . In the following section, we describe the self-location
recognition system as an application of invariant features and
show experimental results.

III. SELF-LOCATION RECOGNITION SYSTEM

In this section, we describe a self-location recognition
system using the azimuth invariant features, the GPS data,
and the wireless LAN data.

A. Overview of the system

Fig. 5 shows the process flow of the self-location recogni-
tion system from capturing the wearable sensors’ positional
information to outputting the recognition result. We use an
omnidirectional image sensor[10] for capturing image data,
and use the GPSMAP60CSx (Garmin) for acquiring the GPS

Fig. 4. Polar coordinate system
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Fig. 6. A user wearing a prototype sensor system

data. For the wireless LAN data, we use a notebook computer
to get signal strengths and network names. Fig. 6 shows a
user wearing a prototype sensor system.
After data acquisition, image features are extracted from

the captured omnidirectional images, and extracted image
features are compressed by the KL transform. The GPS
data contain elevation, latitude, longitude and time, and the
wireless LAN data contain signal strengths and network
names. After feature extraction, the training data are clus-
tered by the k-mean clustering algorithms and then, each
cluster is labeled. The center of each cluster is calculated
after the clustering. At the clustering phase, recently acquired
training data can be considered as positional near data, so the
GPS data are clustered with corresponding time information.
Finally, all labeled clusters and training data are separately
stored into a location database. Self-location recognition is
independently achieved by comparing input data with data
in the location database. When the recognition results differ,
the system checks the confidence of the recognition results,
and then makes the final decision on any positional changes.

4758



The recognition and discrimination methods are described in
section III-D.

B. Features

In this section, we describe features used in the system.
We use normalized RGB features and differentiation features
as image features and these features are considered azimuth
invariant. We also use elevation, latitude, and longitude in
the GPS data, and signal strengths and network names in
the wireless LAN data.
1) The normalized RGB feature: The normalized RGB

features are autocorrelations of the RGB pixel values on
the circle C(r,θ ) as shown in Fig. 4. To avoid effects of
illumination changes, we use a color vector (R′,G′,B′)T that
normalizes the RGB values so that its length is 1. Autocor-
relation of (R′,G′,B′)T on the circle C(r,θ ) is approximated
by the Monte Carlo method and calculated by the following
equation:

X(r)RGB =
∫
C

⎛
⎝R′(r,θ )
G′(r,θ )
B′(r,θ )

⎞
⎠

⎛
⎝R′(r,θ )
G′(r,θ )
B′(r,θ )

⎞
⎠
T

dθ

�
k

∑
i=0

⎛
⎝R′(r,2π i/k)
G′(r,π i/k)
B′(r,π i/k)

⎞
⎠

⎛
⎝R′(r,2π i/k)
G′(r,π i/k)
B′(r,π i/k)

⎞
⎠
T

=
k

∑
i=0

⎛
⎝R′R′i R′G′

i R′B′i
G′B′i G′G′

i G′B′i
B′R′i B′G′

i B′B′i

⎞
⎠

=

⎛
⎝RRRGB RGRGB RBRGB
GRRGB GGRGB GBRGB
BRRGB BGRGB BBRGB

⎞
⎠ , (2)

where k is the number of samples. The autocorrelation matrix
X(r) is a symmetric matrix, so X(r) is vectorized to a feature
vector φ(r)RGB by using 6 components as follows:

φRGB(r) =

(RRRGB,RGRGB,RBRGB,GGRGB,GBRGB,BBRGB)
T . (3)

For a single omnidirectional image, the normalized RGB
feature ΦRGB is generated by varying the radius from r1 to
rn as follows:

ΦRGB = (φRGB(r1),φRGB(r2), · · · ,φRGB(rn))T . (4)

2) The spatial differentiation feature: The spatial dif-
ferentiation feature is calculated in the same way as the
normalized RGB feature by using differential values instead
of pixel values. The differential value of the RGB pixel is
calculated as follows:

X(r)di f =
∫
C

⎛
⎜⎝

∂R(r,θ)
∂ r

∂G(r,θ)
∂ r

∂B(r,θ)
∂ r

⎞
⎟⎠

⎛
⎜⎝

∂R(r,θ)
∂ r

∂G(r,θ)
∂ r

∂B(r,θ)
∂ r

⎞
⎟⎠
T

dθ . (5)

The above calculation is performed by a Monte Carlo ap-
proximation and finally, by varying the radius from r1 to rn,
we get:

Φdi f = (φdi f (r1),φdi f (r2), · · · ,φdi f (rn))T , (6)

where φdi f (ri) is a spatial differentiation feature vector on
the circle with radius ri.

3) Data compression: The number of dimensions of the
azimuth invariant features extracted from an omnidirectional
image is still high, and it takes considerable computation
time to recognize the self-location position. Therefore, the
azimuth invariant features are compressed by using the
KL transform. By means of the transformation matrix Q
calculated by the KL transform, all azimuth invariant features
are compressed as follows:

Ψx = QTΦx,(x= RGB,di f ). (7)

We use the compressed vectors ΦRGB, and Φdi f as the image
features extracted from an omnidirectional image, and store
them in the location database. The distance function in the
image feature space, which is used in the clustering and
classification processes, is defined as follows:

dimg(Φi,Φ j) =
M

∑
k=0

∣∣ψi,k−φ j,k
∣∣ , (8)

where M is the number of dimensions of the compressed
features, and satisfies M < N, i.e. L1−norm is used for the
metric in the image feature space.

4) The GPS feature: We use the elevation, latitude, longi-
tude and time outputs. The units of latitude and longitude are
in degrees, and the unit of elevation is in meters. The GPS
time is the atomic time scale implemented by the atomic
clocks. The GPS time was zero at 0000 hours on 6th January
1980 and since it is not perturbed by leap seconds, GPS is
now ahead of UTC by 15 seconds. We, therefore, compensate
for the time difference in advance. The number of dimensions
of the GPS data is only 4, so we need not compress it. The
distance function between two points Xgps,Ygps is defined
as follows:

dgps(Xgps,Ygps) = ||Xgps−Ygps||
=

√
Δ12+Δ22+(xele− yele)2,

Δ1 = AΔα cosxlon,

Δ2 = AΔβ ,

Δα = ylat − xlat,

Δβ = ylon− xlon, (9)

where xlat ,xlon,xele,A are latitude, longitude, elevation, and
equatorial radius, respectively.

5) The wireless LAN feature: We use the signal strengths
and network names of the wireless LAN as the wireless LAN
features. Network names are expressed by character strings,
and signal strength is expressed by percentage. The distance
function between two wireless LAN features Xlan,Ylan is
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defined by the following equation:

dlan(Xlan,Ylan) =
n

∑
i=0

m

∑
j=0

δ (xname,i,yname, j)g(xsig,i,ysig, j),(10)

δ (x,y) =
{
1 x= y,
0 otherwise

,

g(x,y) =

⎧⎨
⎩
0 x · y= 0,
x/y x� y∩ x · y �= 0,
y/x otherwise

,

where xname,i,xsig,i are i-th network name and signal strength
of the wireless LAN, respectively. n,m are the numbers of
received signals.

C. Clustering

For self-location recognition, we label clusters of training
data, and the minimum area of location recognition corre-
sponds to these clusters. Input data taken by wearable sensors
are classified into the clusters, which provide the self-location
information. We use the k-mean algorithm for clustering, and
the distance functions described above are used for the k-
mean algorithm. We denote Wj( j = 1,2, · · · ,c) as a cluster
obtained by the algorithm.

D. The Classification Method

In the proposed system, self-location recognition is inde-
pendently performed for each feature: the azimuth invariant
feature, the GPS feature and the wireless LAN feature. When
three classification results are same, the system outputs the
same result, but when the classification results are different,
the final decision is made by the procedure shown in Fig. 7.
We describe each classification method in the following
sections.
1) Classification with the azimuth invariant feature:

Classification with the azimuth invariant feature is performed
by the k-nearest neighbor method which uses image features
compressed by the KL transform. The decision rule is
expressed by the following equation:

W = max
j=1,··· ,c

#Wj →Ximg ∈W, (11)

1: Faculty of Engineering Science (South side)

2: Faculty of Engineering Science (West side)

3: Computer Center 

4: Athletic Field (Front)

5: Athletic Field 

6: Library 

7: Main Street

8: Main Street and Auditorium

9: Auditorium

10: Auditorium and Gate

11: Gate

12: Restaurant

13: Student Hall

14: Faculty of Law and Economics

15: Faculty of Science

Indoor: Faculty of Engineering Science

Fig. 8. Experimental area (outdoor)

where Ximg is an input image feature, #Wj is the number
of samples among the k-th nearest neighbors in the location
database. W is the most frequent class label among the k
nearest samples, and an input image feature Ximg is assigned
to the class W .
2) Classification with the GPS feature: Classification

with the GPS feature is performed by the nearest-neighbor
method. The distance between the input GPS feature Xgps
and the center C(Wj) of the cluster Wj in the location
database is calculated by (9). The decision rule is expressed
by the following equation:

W = arg min
j=1,··· ,c

dgps(C(Wj)−Xgps) ⇒Xgps ∈W. (12)

3) Classification with the wireless LAN feature: Classifi-
cation with the wireless LAN feature is performed by the
k-nearest neighbor method. The distance between the input
wireless LAN feature Xlan and the cluster center C(Wj) in
the location database is calculated by (10). The decision rule
is expressed by the following equation:

W = max
j=1,··· ,c

#Wj → Xlan ∈W. (13)

W is the most frequent class label among the k nearest
samples, and an input image feature Xlan is assigned to the
class W .

IV. EXPERIMENTS

We conducted self-location recognition experiments to
show the effectiveness of our method. Omnidirectional video
sequences were captured by a walking person, and a number
of selected still images per second. The still images and
the corresponding GPS and wireless LAN data were used
as training data. The training data were captured on 24th
September, 2008 at our University, and the verification
data were captured on 4th October, 2008. 500 items of
training data and associated verification data were recorded.
25 clusters of training data are shown in Figs. 8 and 9.
Numbers 1 to 15 are outdoor scenes, and Numbers 16 to
25 are indoor scenes. We also compared the recognition
accuracy of the normalized RGB feature with that of the
spatial differentiation feature.
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Fig. 11. Recognition rates of the proposed system using normalized RGB features and other sensor data
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TABLE I

CONFUSION MATRIX OF THE PROPOSED SYSTEM USING NORMALIZED RGB FEATURES
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Fig. 9. Experimental area (indoor)

A. Effects of feature dimension

We compressed the azimuth invariant features, because
of the high dimensionality of the feature vector. The high
dimensionality results in a sparseness of the feature space,

FRR (Normalized RGB)

FRR (Spatial Differentiation)

FAR (Normalized RGB)

FAR (Spatial Differentiation)

The number of dimensions

R
ec

o
g

n
it

io
n

 r
at

e 
(%

)

Fig. 10. Recognition rate by image features

and affects the accuracy of the clustering and the recognition
rate. Therefore, we conducted an experiment to investigate
the accuracy change against the change of the dimensionality
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Area No.

TABLE II

CONFUSION MATRIX OF THE PROPOSED SYSTEM USING SPATIAL DIFFERENTIATION FEATURES

of the image features. The recognition in this experiment is
performed by the image features only. The experimental re-
sult is shown in Fig. 10. According to the result, recognition
rates of both features increase when the dimensionality of
features is low, but when the number of dimensions of feature
is greater than 10, the recognition rate does not increase and
deteriorates. Therefore, we decided to use 10 dimensional
image features in all future experiments on balancing useful
results versus computation cost.

B. Self-location recognition

We have conducted self-location recognition experiments
using two systems: one uses the normalized RGB features
and the other uses spatial differentiation features. The recog-
nition rates of both systems are shown in Figs. 11 and 12, and
the confusion matrices are shown in Tables I and II. The i-th
row and the j-th column element expresses the percentage
that the i-th area datum is recognized as the j-th area.
From Figs. 11 and 12, the proposed system achieves a

high accuracy rate by using multiple sensors throughout.
Comparing the results using normalized RGB features, with
the results using spatial differentiation features, the for-
mer system has better performance than the latter system.
Normalized RGB features can express the characteristics
of places from the omnidirectional images irrespective of
illumination changes. The recognition performance of indoor
scenes is not good using the azimuth invariant features,
because of the lack of variety in indoor scenes. The azimuth
invariant feature is a feature extracted by integral transform,
so slight changes of indoor scenes cannot affect the trans-
form. Therefore, in order to recognize indoor scenes more
accurately, we need to extract image features sensitive to
local image changes, but this is a trade-off problem that is
affected by the noise.

V. CONCLUSION

This paper proposes a method for self-location recognition
using an omnidirectional image sensor and other wearable
sensors. The proposed method uses azimuth invariant fea-
tures extracted from the omnidirectional images, the GPS

data and the wireless signals from the wearable sensors.
The results demonstrate that through wearable sensors the
method can recognize self-location indoors and outdoors
with a high accuracy rate. In future work, we will improve
the recognition method so that it is more accurate and robust
against noisy data.
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