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Abstract— Many applications of unmanned aerial vehicles
(UAVs) require the capability to navigate to some goal and
to perform precise and safe landing. In this paper, we present
a visual navigation system as an alternative pose estimation
method for environments and situations in which GPS is
unavailable. The developed visual odometer is an incremental
procedure that estimates the vehicle’s ego-motion by extracting
and tracking visual features, using an onboard camera. For
more robustness and accuracy, the visual estimates are fused
with measurements from an Inertial Measurement Unit (IMU)
and a Pressure Sensor Altimeter (PSA) in order to provide
accurate estimates of the vehicle’s height, velocity and position
relative to a given location. These estimates are then exploited
by a nonlinear hierarchical controller for achieving various
navigation tasks such as take-off, landing, hovering, target
tracking, etc. In addition to the odometer description, the paper
presents validation results from autonomous flights using a
small quadrotor UAV.

I. INTRODUCTION

There is a growing interest in using aerial robotic systems

for inspecting and exploring dangerous and complex environ-

ments such as disaster areas, battlefields, etc. Autonomous

guidance and navigation to the site of interest requires

accurate estimates about the vehicle’s motion. Unmanned ve-

hicles normally rely on Global Navigation Satellite Systems

(GNSS) such as GPS and GLONASS to provide position and

velocity information for navigation. However, GNSS-based

navigation depends on the existence of, and access to sig-

nals from satellites. Furthermore, most robotic missions are

defined within the environment. Terrain Relative Navigation

(TRN) is thus necessary to achieve these missions.

Terrain relative navigation can be defined as a process that

consists in determining the relative position and/or relative

velocity of a mobile agent (UAV, missile, planetary space-

craft, robot, etc.) with respect to a surrounding environment

(terrain, target, etc). This can be done by matching a priori

known information or pre-registered maps of the terrain with

measurements obtained by the vehicle in real time using

active sensors (radar, lidar, etc.) or passive imaging sensors

(single camera, stereo camera, etc.). First TRN systems were

developed for cruise missiles navigation such as TERrain

COntour Matching (TERCOM) and Digital Scene-Mapping
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Fig. 1. A quadrotor UAV during vision-based landing on a selected target.

and Area Correlation (DSMAC) which are still used inde-

pendently, or in conjunction with GNSS.

Recently, there is a growing interest in developing nav-

igation systems for small UAVs operating in GPS-denied

environments. Among many active sensors for environment

mapping and obstacles detection, Laser Range Finder (LRF)

is widely used for obstacles avoidance [1] and indoor lo-

calization [2], [3]. On the other hand, vision systems are

passive and outperform active navigation systems in terms of

cost, weight, power consumption and size, and are therefore

excellent sensing technology for many aerial platforms and

various environments. In recent years, there is an active

research in developing and applying vision systems for UAVs

guidance and navigation. Visual SLAM [4], [5], stereo vision

[6], [7] and Structure-From-Motion [8], [9] techniques are

generally used as visual navigation systems to localize and

estimate the UAV ego-motion. Target relative navigation

systems have been also successfully employed to land a UAV

on some ground target [10] or to track an aerial target [11].

This paper describes a vision-based relative motion esti-

mator that can be used for flight control, accurate landing and

target tracking. Functionally, a vision algorithm detects and
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tracks visual features based on monocular images obtained

from an on-board single camera looking downwards. By con-

tinuously tracking ground objects that appear in the camera

Field Of View (FOV) and accumulating or integrating their

image displacement, it is possible to estimate the travelled

flight distance in terms of total image displacement (in

pixels). These visual measurements are then fused with IMU

data in order to overcome the non-desired rotation effects.

Indeed, it is difficult to sense UAV translation with vision

alone since image displacements also occur with aircraft

rotation (translation-rotation ambiguity). Another ambiguity

is the scale factor or the unknown range that can not be

estimated from visual measurements alone. Therefore, the

vision algorithm has been augmented by an adaptive mecha-

nism which identifies the scale factor and estimates the range

(height) from optic flow, accelerometers data and pressure

sensor measurements. the Adaptive Visual Odometer (AVO)

generates estimates of the UAV velocity and position with

respect to some initial rotorcraft location or some selected

target. These visual estimates are then used in the guidance

and flight control laws to guide the rotorcraft relative to the

initial location or some moving/stationary target.

The proposed system is motivated by problems such as

short-range navigation in GPS-denied environments for flight

stabilization, accurate landing, target tracking, etc. To enable

accurate and robust long-range navigation with the AVO, this

latter can be combined with other terrain relative naviga-

tion techniques like landmarks recognition. An interesting

approach could consist in performing landmarks matching

and recognition in a moment-to-moment fashion (or peri-

odically) to estimate the absolute position, and integrating

the flight path between landmarks to estimate the relative

position. Therefore, computation of distance flown is re-

commenced whenever a prominent landmark is encountered.

Re-setting the AVO at each landmark facilitates accurate

long-range navigation by preventing excessive accumulation

of odometric errors. Indeed, some animals like bees seem to

use landmark-based cues as well as visual path integration to

navigate to a goal [12]. In this paper, we focus on the AVO

for estimating the vehicle’s velocity and position relative

to some known location like the initial UAV location or a

recognized landmark.

In the next section, the proposed visual navigation system

is presented. Section III provides an overview of the aerial

robotic platform, used for validating our system. Experimen-

tal results from autonomous flights of a quadrotor UAV are

presented in Section IV.

II. VISUAL RELATIVE NAVIGATION SYSTEM

The proposed vision system determines the vehicle’s rel-

ative velocity and 3D position with respect to the initial

rotorcraft location or some target which may be stationary

or moving. It relies on tracking features appearing in a

”target template” initially chosen at the image center. With

the computed template location (xi,yi) in the image frame,

the relative distance (Xi,Yi) between the rotorcraft and the

ground objects appearing in the image template ”i” is esti-

mated after compensating the rotation effects using IMU data

and recovering the range Z (or height) using an adaptive

algorithm. The rotorcraft horizontal motion (X ,Y ) in the

inertial frame is then estimated by accumulating or summing

the relative distances (Xi,Yi) for i = 1...n as shown in Figure

2.

In this section, we describe the different components of our

system which are: 1) image processing algorithm; 2) rotation

effects compensation; 3) flight path integration; 4) range

(height) sensing; and 5) velocity and position estimation.

A. Image processing for target template tracking

The main objective of this vision algorithm is to extract

useful information from images about the UAV motion and

its environment. The proposed approach relies on computing

the image location and velocity of some target template by

means of features tracking and optic flow computation.

In the beginning, an image area of 50×50 pixels, which

can be considered as a ”target template”, is initially chosen

at the image center. About 20 features are then selected

automatically in that template using the Shi-Tomasi [13]

algorithm. These features are then tracked in the successive

images using the pyramidal Lucas-Kanade algorithm [14].

The outputs of this tracker are the features positions in the

image frame. We have slightly modified that algorithm in

order to provide also estimates about the optic flow at each

feature location. The position (xi,yi) and velocity (ẋi, ẏi) of

the target template ”i” is simply computed by taking the

mean of the tracked features positions and velocities (or optic

flow). For accurate and robust image template tracking, we

have implemented simple routines that detect and handle

features dispersion (features go out of the template) and

erroneous feature correspondences which are mainly due to

image noise and large attitude changes. For example, new

features are selected in the same template when the variance

of features positions exceeds sone threshold.

As the rotorcraft moves, older features leave the camera

FOV and new features enter the FOV. Therefore, a new target

template (or new set of features) is selected at the image

center when the current template is about to go out of view.

B. Rotation effects compensation using IMU data

Image displacements occur with rotorcraft translation and

orientation. Therefore, in order to sense aircraft translation

which is essential for flight control, rotation effects must be

eliminated from the measured image displacement and optic

flow. This translation-rotation ambiguity is more significant

in rotorcraft UAVs since the vehicle translation is a direct

result of its attitude change. To overcome this problem and

compensate the rotational components of optic flow and

image displacement, onboard IMU data (Euler angles (θ ,φ)
and angular rate data (ωx,ωy,ωz)) are used.

{

xt
i = xi − (− f tanθ)

yt
i = yi − ( f tanφ)

(1)
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Fig. 2. Rotorcraft position estimation by visually tracking ground objects that appear in the camera field of view.
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ẏt
i = ẏi − (

f 2 + y2
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xiyi

f
ωy − xiωz)

(2)

where f is the camera focal length, (xt
i ,y

t
i) and (ẋt

i , ẏ
t
i) are

the translational components of the image displacement and

optic flow caused by rotorcraft translation.

C. Flight path integration by image motion accumulation

Findings on insects navigation indicate that some insects

like ants and honeybees posses a visually driven odometer

that estimates distance flown by integrating the image motion

[12]. In this research, we investigate the possibility of using

a similar mechanism for mini rotorcraft navigation.

In order to provide a pseudo1 position estimate relative to

the initial UAV location, the total image displacement (x,y)
is incremented when a template leaves the FOV and a new

one is selected. Thus, the travelled flight distance or the total

image displacement due to UAV translation can be computed

as follows (see Figure 2):



















xt =
i=n

∑
i=1

xt
i

yt =
i=n

∑
i=1

yt
i

(3)

1We write pseudo position because it is expressed in the image frame in
terms of image displacement [pixels].

with ”n” is the number of the current template and (xt
i ,y

t
i)

is the translational component of the last known position of

the template ”i” before leaving the camera FOV.

At this stage, we have visual information (xt
,yt

, ẋt
, ẏt)

about the rotorcraft position and velocity which are expressed

in terms of image displacement (pixels) and optic flow (pix-

els/s). The UAV position and velocity in the inertial frame

can not be directly deduced because of the range ambiguity.

Indeed, the translational image displacement depends on

both aircraft translation and relative distance (range) to the

perceived objects.

D. Range estimation by fusing optic flow and accelerometers

measurements

The visual odometer presented in this paper requires an

approximate measure of height above the ground in order to

transform pixels into meters and recover the UAV position

and velocity in the inertial frame.

Here, we show that under some conditions, it is possible

to recover the range using only visual measurements from a

single camera and linear accelerations data from IMU. Let us

write the relation between the translational optic flow (ẋt
, ẏt)

and the height Z:










ẋt
i = f

Vx

Z
+ xi

Vz

Z

ẏt
i = f

Vy

Z
+ yi

Vz

Z

(4)

with (Vx,Vy,Vz) are the components of the rotorcraft velocity

vector in the inertial frame and (xi,yi) is the image template

position in the image frame where optic flow is computed.
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As a first step, we propose a real-time identification

algorithm that will estimate the range Z under the following

assumptions:

1) The height changes are small (Z ≈ cst and Vz ≈ 0) when

applying the identifier.

2) The terrain or relief is smooth such that it can be

decomposed into flat segments.

By differentiating equation (4) with respect to time and

considering the above assumptions, we obtain:






ẍt
i ⋍ f

ax

Z

ÿt
i ⋍ f

ay

Z

(5)

where (ax,ay) are the UAV linear accelerations expressed in

the inertial frame which are obtained from the IMU.

Many types of on-line parameter estimation techniques

can be applied to equation (5) in order to estimate Z using

the derivatives of optic flow and linear accelerations. Our

odometer uses the Recursive-Least-Squares (RLS) algorithm

which presents many advantages for our application. For

more robustness, we have used a robust variant of the RLS

algorithm which includes a forgetting factor, dead zone and

projection [15]. A detailed description of the identification

process as well as stability analysis can be found in our

previous paper [16].

Remark 1: The height estimation process suffers from the

general well-known drawbacks of identification algorithms

like noise and poor input-output signals (non-excited system).

During real-time experiments, we have noticed performance

degradation in height estimation by the RLS algorithm when

the rotorcraft is hovering or flying at very low speeds. In

this case, input and output signals are small compared to

the noise level and do not contain sufficient information to

estimate the height. As explained in [16] and [15], this is

related to the persistent excitation (PE) property which is

not satisfied in this case.

This issue has been handled by switching off the adap-

tation process when the input and output signals are small

(stationary or slow flights). In this case, height estimate is

primary provided by the pressure sensor as a propagation

of previous estimates using a kinematic Kalman filter. We

would like to highlight that pressure sensor is lightweight

(few grams), cheep (few dollars), and can be thus easily

integrated into miniature air vehicles and combined with

vision to improve height estimation and control.

E. Adaptive observer for position and velocity estimation

Once the height Ẑ is identified, the aircraft horizontal

position (X ,Y ) and velocity (Vx,Vy) can be recovered using

the camera perspective projection model. Therefore, we can

write:














X̂ = Ẑ
xt

f

Ŷ = Ẑ
yt

f

and















V̂x = Ẑ
ẋt

f

V̂y = Ẑ
ẏt

f

(6)

Remark 2: It is important to note that (xt
,yt) in (6) is

the accumulated translational image displacement as shown

in (3). Hence, the estimates (X̂ ,Ŷ ) in (6) correspond to the

rotorcraft position in the inertial frame provided that the UAV

flies at a constant height during path integration.

For accurate position estimation even at varying height, it

is better to estimate first the relative distances between the

MAV and the tracked objects and then to accumulate these

relative distances in order to provide an estimate of the MAV

position in the inertial frame which is associated to the initial

location, Figure 2. This is mathematically equivalent to:


















X̂ =
i=n

∑
i=1

Xi =
i=n

∑
i=1

Ẑi

xt
i

f

Ŷ =
i=n

∑
i=1

Yi =
i=n

∑
i=1

Ẑi

yt
i

f

(7)

The last step of the visual odometer consists in fusing

the visual estimates (X̂ ,Ŷ , Ẑ,V̂x,V̂y) and INS data (ax,ay,az)
in order to improve the odometer accuracy and robustness,

reduce the noise and estimate the vertical velocity Vz. The

data fusion is performed using a linear Kalman filter with

choosing (X ,Y,Z,Vx,Vy,Vz) as a state vector, (X̂ ,Ŷ , Ẑ,V̂x,V̂y)
as a measurement vector and (ax,ay,az) as an input vector.

The implementation of such Kalman filter is straightforward

and thus further details are omitted here.

III. AERIAL PLATFORM DESCRIPTION AND

SOFTWARE IMPLEMENTATION

A. Quadrotor-based aerial platform

Our platform is based on a miniature (53 cm) four-rotor

helicopter, called X-3D-BL. To demonstrate autonomous

flight, we have fitted the helicopter with an embedded

autopilot that we have developed and presented in our

previous paper [17]. The hardware components that make

up the basic flight avionics of our platform include a small

micro-controller from Gumstix Inc. and the MNAV100CA

sensor from Crossbow Inc. which includes a digital IMU, a

GPS receiver and a pressure sensor in one compact sensor.

Our imaging system includes a small analog camera from

RangeVideo and a 1.3 GHz video transmitter.

The total weight of the aerial vehicle is about 650 grams

including the air vehicle, battery, Flight Control Computer

(FCC), sensors and vision system.

B. Real-time software

In order to demonstrate vision-based autonomous flight,

we have implemented the navigation and control algorithms

on the onboard FCC including some parts of the adaptive

visual odometer. We have also developed a real-time software

for the Ground Control Station (GCS) which implements the

image processing algorithm (see subsection II-A) and other

routines for flight data displaying. The visual measurements

are provided at 10 Hz and sent to the onboard FCC through

WiFi communication using UDP protocol.

The real-time embedded software is implemented as a

process within Linux OS, and it is composed of five tasks

or threads, that are called and scheduled separately, Figure

3. The adaptive visual odometer provides position, velocity
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and height estimates at an updating rate of 10 Hz, which

are then used by a nonlinear controller for achieving au-

tonomous vision-based flight. Details about the design and

implementation of the flight controller can be found in [17].

IV. EXPERIMENTS

The performance of the vision-based navigation system

is demonstrated in real flights using the quadrotor MAV

described in the previous Section. Here, we present ex-

perimental results from three test flights under autonomous

control.

A. Automatic take-off, accurate hovering and precise auto-

landing on some arbitrary target

As described in Section II, the target template is initially

chosen at the image center. However, the developed GCS

and embedded software allow to choose this target template

at any image location by just selecting the desired area/object

on the image displayed at the GCS. This flight test consists

in exploiting this useful characteristic to achieve an accu-

rate hovering above some designated ground target and to

perform a precise auto-landing on it.

The rotorcraft was put on a small box of about 50cm

x 70cm which is used as a target, Figure 1. The take-off

procedure is launched from the GCS and the target is selected

when it appeared in the camera FOV (about 1m height during

take-off). When the MAV reached the desired height of 10

m, it performed an accurate hovering by tracking the target

and keeping it at the image center. Finally, the auto-landing

procedure is activated and the MAV executed descent flight

while controlling its horizontal position to keep the target at

the image center.

Figure 4 shows the obtained MAV trajectories (position

and height). The relative horizontal position between the

MAV and the target was regulated to zero with about ±0.5m

maximum error. The height is also estimated and controlled

accurately yielding to automatic take-off and auto-landing.

The MAV achieved successfully the assigned task by relying

on the visual estimates, as it can be seen in the associated

video clip:

http://jp.youtube.com/watch?v=rbmsivw5luk&feature=channel page

B. Vision-based tracking of a moving ground target

Here, we explore the possibility of our vision-control

system to track a moving ground target. For this experiment,

we have used a small cart (see Figure 6) as a target and

placed it at about 20 m from the GCS.

Figure 5 shows that the target is accurately tracked even

when it is moving. The GPS ground-track on the first graph

shows that the MAV flied about 20m (which corresponds

also to the target movement) from the initial location while

controlling the relative position MAV-target to zero with

±1m maximum error during tracking. Video clip of this flight

(a) (b)

target

wire to move 
the target

Fig. 6. (a) onboard camera image showing visual tracking of a moving
target; (b) the quadrotor during vision-based tracking of a moving target.

test is available at:

http://jp.youtube.com/watch?v=6obHavVvJyk&feature=channel page

C. GPS-based waypoint navigation and comparison with the

visual estimates

In this test, we have performed autonomous waypoint

navigation using GPS data for motion control. The objective

of this test is to evaluate the performance of the adaptive

visual odomter for estimating the vehicle’s position during

translational flight. The obtained results from GPS and vision

system are shown in Figure 7.

One can see that the reference trajectories are tracked

and the mission is accomplished. It is also important to

note that during this translational flight, the odomter was

able to estimate the MAV position or the travelled flight

distance despite the poor texture of the terrain (play-ground).

The errors between GPS measurements and visual estimates

may be attributed to inaccuracies in path integration and

identification errors during height estimation.

V. CONCLUSION

In this paper, a vision-based navigation system for micro

air vehicles is presented. It is based on features tracking

and path integration using images from an onboard camera

and inertial measurements from a low-cost IMU. The vision

algorithm has been augmented by an adaptive observer that

fuses visual measurements with accelerations and pressure

sensor data in order to estimate the vehicle’s height, velocity

and position relative to an initial location or some selected

target. The experimental results from autonomous flights

show that the adaptive visual odometer is able to estimate

the vehicle’s motion in unknown environments and to guide

a rotorcraft MAV to achieve various navigation tasks such as

hovering, precise auto-landing and moving target tracking.

3892



60 80 100 120
−1

0

1

2

Time[s]

x 
p

o
si

ti
o

n
 [

m
]

60 80 100 120
−1

0

1

2

3

Time[s]

y
 p

o
si

ti
o

n
 [

m
]

60 80 100 120

0

5

10

Time[s]

z 
p

o
si

ti
o

n
 (

h
e

ig
h

t)
 [

m
]reference

vision
gps/ins

reference
vision
gps/ins

reference
vision/ps/ins
gps/ins

Fig. 4. Accurate hovering and precise auto-landing on some designated ground target. Visual estimates are more accurate than GPS measurements. The
MAV landed at about 25 cm from the target, but it can be seen from the video that the MAV was exactly on the target at 30 cm height and then landed
just near the target. This is due to very large image displacements when the MAV is at few centimeters from the target or ground. One approach to solve
this problem could consist in deactivating the visual odometer and decrementing the thrust when the aircraft height is under some threshold (50cm for
example).

0 50 100 150 200 250 300
−20

−15

−10

−5

0

5

Time[s]

x 
p

o
si

ti
o

n
 [

m
]

0 50 100 150 200 250 300
−5

0

5

Time[s]

y
 p

o
si

ti
o

n
 [

m
]

0 50 100 150 200 250 300
−2

0

2

4

6

8

Time[s]

z 
p

o
si

ti
o

n
 (

h
e

ig
h

t)
 [

m
]

190 195 200 205 210 215
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time[s]

x 
p

o
si

ti
o

n
 [

m
]

-1

+1

2

-2 reference
vision/ps/ins
gps/ins

reference
vision
gps/ins

reference
vision
gps/ins

Fig. 5. Application of the vision-based autopilot for tracking a moving target. First, the MAV performed automatic take-off from the target and hovered
above the target (6m height) for nearly 100 s. Then, the target is continuously moved towards the GCS by pulling some wire attached to the target. The
control objective is thus, to keep the moving target at the image center by controlling the relative position between the MAV and the target to zero.

0 20 40 60 80 100 120

0

10

20

Time[s]

x 
p

o
si

ti
o

n
 [

m
]

0 20 40 60 80 100 120
−10

−5

0

5

10

Time[s]

y
 p

o
si

ti
o

n
 [

m
]

0 20 40 60 80 100 120

0

5

10

Time[s]

z 
p

o
si

ti
o

n
 (

h
e

ig
h

t)
 [

m
]

reference
vision
gps/ins

reference
vision
gps/ins

reference
vision/ps/ins
gps/ins

Fig. 7. GPS waypoint navigation and comparison with the visual odometer estimates.

REFERENCES

[1] S. Scherer, S.Singh, L. Chamberlain, and M. Elgersma, “Flying fast
and low among obstacles: Methodology and experiments,” Interna-

tional Journal of Robotics Research, vol. 27, no. 5, pp. 549–574, May
2008.

[2] R. He, S. Prentice, and N. Roy, “Planning in information space for
a quadrotor helicopter in a GPS-denied environment,” in Proceedings

of the IEEE International Conference on Robotics and Automation,
California, USA, May 2008, pp. 1814–1820.

[3] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation
system for autonomous indoor flying,” in Proceedings of the IEEE

International Conference on Robotics and Automation, Kobe, Japan,
May 2009, pp. 2878–2883.

[4] J. Kima and S. Sukkarieh, “Real-time implementation of airborne
inertial-slam,” Robotics and Autonomous Systems, vol. 55, pp. 62–71,
2007.

[5] F. Caballero, L. Merino, J. Ferruz, and A. Ollero, “Vision-based
odometry and slam for medium and high altitude flying uavs,” Journal

of Intelligent Robotic Systems, vol. 54, pp. 137–161, 2009.

[6] O. Amidi, T. Kanade, and K. Fujita, “A visual odometer for au-
tonomous helicopter fight,” Robotics and Autonomous Systems, vol. 28,
no. 2-3, pp. 185–193, 1999.

[7] A. Johnson, J. Montgomery, and L. Matthies, “Vision guided landing
of an autonomous helicopter in hazardous terrain,” in Proceedings of

the 2005 IEEE International Conference on Robotics and Automation

(ICRA), Barcelona, Spain, April 2005, pp. 4470–4475.

[8] T. Kanade, O. Amidi, and Q. Ke, “Real-time and 3d vision for
autonomous small and micro air vehicles,” in Proc. of the 43rd

IEEE Conference on Decision and Control, Atlantis, Paradise Island,
Bahamas, December 2004, pp. 1655–1662.

[9] F. Kendoul, I. Fantoni, and K. Nonami, “Optic flow-based vision
system for autonomous 3D localization and control of small aerial
vehicles,” Robotics and Autonomous Systems (Elsevier), vol. 57, pp.
591–602, 2009.

[10] S. Saripalli, J. Montgomery, and G. Sukhatme, “Visually-guided land-
ing of an unmanned aerial vehicle,” IEEE Transactions on Robotics

and Automation, vol. 19, no. 3, pp. 371–381, 2003.
[11] E. N. Johnson, A. J. Calise, Y. Watanabe, J. Ha, and J. C. Neidhoe-

fer, “Real-time vision-based relative aircraft navigation,” Journal of

Aerospace Computing, Informatiom, and Communication, vol. 4, pp.
707–738, April 2007.

[12] M. V. Srinivasan, S. Zhang, and N. Bidwell, “Visually mediated
odometry in honeybees,” The Journal of Experimental Biology, vol.
200, pp. 2513–2522, 1997.

[13] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, ser.
Seattle, WA, USA, 1994, pp. 593–600.

[14] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. DARPA IU Workshop,
1981, pp. 121–130.

[15] P. Ioannou and J. Sun, Robust Adaptive Control. Prentice Hall Inc,
1996.

[16] F. Kendoul, I. Fantoni, and R. Lozano, “Adaptive vision-based con-
troller for small rotorcraft uavs control and guidance,” in Proceedings

of the 17th IFAC World Congress, Seoul, Korea, July 6-11 2008, pp.
797–802.

[17] F. Kendoul, Y. Zhenyu, and K. Nonami, “Embedded autopilot for
accurate waypoint navigation and trajectory tracking: Application to
miniature rotorcraft uavs,” in Proceedings of the IEEE International

Conference on Robotics and Automation, Kobe, Japan, May 2009, pp.
2884–2890.

3893


