
A Tale of Two Planners: Modular Robotic Planning with LDP

Michael De Rosa
Seth Copen Goldstein

Peter Lee
School of Computer Science
Carnegie Mellon University

[mderosa,seth,petel]@cs.cmu.edu

Padmanabhan Pillai
Jason Campbell

Intel Research Pittsburgh
[padmanabhan.s.pillai,jason.d.campbell]@intel.com

Abstract— LDP (Locally Distributed Predicates) is a dis-
tributed, high-level language for programming modular recon-
figurable robot systems (MRRs). In this paper we present the
implementation of two motion-planning algorithms in LDP, and
analyze both their performance and ease of implementation.
We present multiple variations of one planner, including a
novel resource allocation algorithm. We then draw conclusions
about both the utility of the motion-planning algorithms and
the suitability of LDP to the problem space. Our experiments
suggest that metamodule-based planning approaches have a cost
in time and/or energy terms, but that the cost can be worth
paying in exchange for the additional generality and separation-
of-concerns offered by these techniques. The particular tradeoff
for a given system will depend upon its goals and the details
of the underlying modules.

I. MRRS AND MOTION PLANNING

The problem of reconfiguration / shape planning for mod-
ular robotic systems (MRRs) presents several challenges over
and above those found in non-modular robots. The large
number of discrete modules results in a correspondingly
large number of degrees of freedom, and creates a very large
state space that a planner may have to explore. Furthermore,
the motions of individual modules are often restricted in
non-trivial ways, e.g., moving a module to an adjacent
empty space may require many other modules to move out
of the way due to blocking constraints. Essentially, two
configurations that are similar in state space, may actually
be separated by a long reconfiguration path.

Two recent approaches attempt to overcome blocking
constraints and allow scalable, disconnection-free, stochastic
planning in large MRRs. A scaffold-based technique [1]
restricts modules to a specific grid structure that allows
other modules to pass through unhindered. More recent
work [2] groups modules together into metamodules and
provides a high-level set of primitives that are not subject
to blocking constraints. Both allow greedy or stochastic
shape planning to succeed. However, the metamodule system
is more general, and can be implemented on a variety of
different MRR designs. The question we seek to answer is
what price does one pay, if any, for this added generality? In
this paper, we compare these approaches to scalable shape
change, using LDP [3], a system for concisely representing
distributed programs for MRRs. As part of this study we
illustrate the capability of LDP to enable rapid and concise

Fig. 1. Scaffold-based shape change: 4x4x4 subunit of scaffolding.

expression of MRR algorithms.

A. The Shape Change Problem

The shape change problem considered in this paper is the
reconfiguration of a large lattice-style MRR from a starting
shape to a target shape. We assume that the system is
provided with a target shape (e.g., list of desired module
positions, variably-sized blocks [1], or isosurface equations).
Furthermore, we assume that the modules are aware of
their locations in the initial shape, either through a-priori
knowledge (e.g. from the structure of the lattice), or from a
localization algorithm [4], [5].

All communication within large MRRs is performed using
neighbor-to-neighbor links between adjacent modules. Local
communications are relatively inexpensive, while broadcast
and multi-hop communication scale in cost with the size
of the ensemble. The complexity of planning and expense
of global communication make online centralized planning
impractical. However, any distributed solution must con-
tend with network topology changes as the ensemble shape
changes, creating the potential for unwanted disconnections
and asynchronous operation of the individual modules.

Finally, the modules are restricted to a particular lattice
arrangement, and limited motion primitives. In this paper, we
use the corner-turning cubes motion model [6], [7], which
uses a cubic lattice and provides two basic movements: an
axis-aligned slide, and a 2D corner turn (see Figure 3). This
motion model is assumed by the scaffold planner, and is one
of many models supported by the metamodule planner.

B. Scaffold-Based Shape Change Algorithm

The first planning algorithm that we evaluate is the
scaffold-based self-repair and self-reconfiguration algorithm

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5267

Fig. 2. Metamodule shape planner: Full and empty 2x2x2 metamodules.

developed by Støy and Nagpal [1]. The algorithm begins with
the modules in an arbitrary configuration, and maintains an
internal scaffold (Figure 1) to allow for unrestricted module
movement within the shape.

Shape change is accomplished through the use of vector
gradients, emitted by modules adjacent to locations that
require additional modules to complete the target shape. The
gradients propagate from module to module (decaying at
each step), and modules that are not in the target shape
move in the direction of the strongest gradient. Once the
open locations have been filled, the gradient is deleted.
Disconnection of the ensemble is prevented through the use
of simple local rules based on the gradient values and states
of a module’s immediate neighbors, as discussed in [8].

C. Metamodule Shape Planner

The second planner we evaluate is the generalized meta-
module shape planner described by Dewey et. al. [2]. This
system uses particular arrangements of modules, called meta-
modules as the basis for constructing shapes and planning.
This abstraction allows metamodules to be created and
destroyed, like pixels being turned on and off. In contrast
to movement of modules, this approach eliminates nonholo-
nomic constraints, greatly simplifying planning.

Of course, the modules that are used to build metamodules
cannot just appear and disappear. Metamodules are designed
to contain empty space that can hold additional modules, or
resources. A metamodule is either empty or full depending
on whether it contains resources. When a metamodule is de-
stroyed, its modules are treated as resources, and transferred
to k empty metamodules. Likewise, the resources from k full
metamodules are used to construct a new empty metamodule
in an unoccupied location. The value of k depends on the
specific metamodule implementation.

The metamodule system permits the separation of con-
cerns between three software components: a low-level meta-
module controller, a high-level shape planner, and a resource
manager. The low-level metamodule controller actually im-
plements the metamodule create, destroy, and resource trans-
fer operations as a sequence of module movements. This
is the only component that is tied to the specifics of the
particular MRR hardware, the lattice used, and the meta-
module structure. Only this component needs to be modified
to use this planning framework with different hardware or
lattice types, making the metamodule approach a general and
broadly applicable shape planning framework.

Fig. 3. Motion primitives for the corner-turning cubes model. Top: Corner-
turning move. Bottom: linear slide.

The high-level shape change planner is conceptually sim-
ple. It uses resources held by existing metamodules to con-
struct new ones in adjacent, unoccupied spaces that are in the
target shape. Similarly, it attempts to destroy metamodules
that are not in the target shape. The planner maintains
connectivity during deletion by constructing logical trees that
extend from the target shape into the deletion region. By
destroying metamodules only at the leaves of these trees,
the planner provably ensures connectivity.

The final component is the resource manager, whose
purpose is to transfer resources, moving them from the
deletion region where they are produced, to the creation
region where they are consumed.

In this paper, we use a metamodule composed of 4 cubic
modules, occupying half of the locations in a 2x2x2 cube
(Fig. 2). This metamodule has space for 4 additional modules
as resources, so a single metamodule can hold all of the
resources to create a new metamodule (i.e., k = 1). This
metamodule design mimics the scale and geometry of the
scaffold-based planner; a shape constructed from empty
metamodules creates a structure identical to that of the
scaffold used in Støy’s algorithm. The difference between
the two algorithms is thus primarily the choice of atomic
motion units for the planner: for Støy’s algorithm it is
individual modules, which the metamodule planner operates
on structured groups.

For our resource management algorithm, we used a naı̈ve
random swap manager. At each timestep, a metamodule with
a resource will attempt to transfer the resource to an empty,
randomly selected neighboring metamodule. As a trivial
optimization, we forbid resources from traveling toward the
leaves of the deletion tree.

II. LOCALLY DISTRIBUTED PREDICATES

The shape planners studied in this paper have been im-
plemented using Locally Distributed Predicates (LDP). LDP,
first described in [9], is a technique for concisely and effi-
ciently representing distributed programs that can be describe
in terms of fixed-sized, connected subgroups of a larger
ensemble. By abstracting such concerns as variable storage,
consistency, and messaging, LDP allows programmers to
concentrate on the details of their particular distributed
algorithm, rather than on support code. A brief overview
of LDP’s syntax and operation is presented beginning in
Section II-A, with more extensive treatment of the language
and runtime having been presented in [3].

5268

a b

slots

expression tree

and

=
a.state 0

and

=
b.inside 0

!=
b.state 1

Fig. 4. Schematic representation of a PatternMatcher object, the fundamen-
tal LDP data structure used for both data sharing and condition detection.
To continually find all possible instances of a condition, PatternMatchers
are generated at every timestep on every module, and are passed between
modules. At each module that the PatternMatcher visits, the next available
slot is filled with the module’s id, and corresponding data is used to populate
the expression tree. Partially filled PatternMatchers are propagated to all
neighbors, until the expression tree is decidable.

A. LDP Syntax

An LDP program consists of two components: variable
declarations and action predicates. Each module is assumed
to contain some set of named member variables and func-
tions, and these must be declared before use (Figure 5). Vari-
ables may be managed by the runtime system, or they may
be pass-through, and rely on a user-supplied implementation
for read and write. Pass-through variables allow for the easy
abstraction of such values as sensor readings and joint angles
(in the case of MRRs) into simple scalar variables. Variables
may be either scalar or set-valued.

Action predicates can be thought of as distributed if-
then clauses. Predicates define a distributed condition that is
monitored at runtime, and an action to be executed on each
successful match of the predicate. Each predicate begins by
declaring the named, ordered set of modules participating in
the predicate. As an example, forall(a,b,c) declares
a predicate over all size-3 connected subgroups, whose
members are (in order) a,b,c.

After the declaration follows a boolean predicate over the
state of the participating modules. LDP provides access to the
current snapshot value of each state variable through C-style
variable access (e.x. module.variableName). Predicates
can also access previous values of a variable (via prev())
and the immediate value of a variable (via current). The
utility of these temporal access modes is described more fully
in Section II-C. LDP supports a full set of mathematical,
boolean, and set operators for use in predicates.

The final component of an action predicate is one or
more action clauses. LDP supports three types of action
clauses: function calls, variable assignments, and topology
manipulations. All action clauses for any single predicate
must take place on the same module, to avoid having to
implicitly synchronize distributed actions.

B. LDP Operation

The core of the LDP execution model is the Pattern-
Matcher (Figure 4). A PatternMatcher is a mobile data struc-
ture that encapsulates an instance of a distributed search at-
tempt for a particular statement. This object migrates around
the sub-ensemble until either it fails to match or it matches.
A new PatternMatcher is created for each predicate on each
robot at every time tick. The PatternMatcher is an object
that encapsulates a search attempt for a particular predicate,
including an expression tree encoding the predicate, and
storage for state variable values that allow for comparison
of state between multiple modules.

When a PatternMatcher is created, the current module id
is bound to the first slot and the values of its state variables
populate the expression tree. The expression tree is then
examined for success or failure of the boolean predicate.
If the expression tree is successful, then the action clauses
of the statement are executed. If the tree is unsuccessful,
the PatternMatcher is discarded. If no determination can be
made, the PatternMatcher is forwarded to all of the module’s
neighbors, where the above process is repeated.

PatternMatchers provide numerous opportunities for op-
timization, allowing for boolean short-circuiting, as well as
more intelligent search strategies than spreading to all neigh-
bors. Additionally, PatternMatchers allow for backtracking
in search paths, allowing for the detection of nonlinear
configurations of matching modules. These extensions, as
well as a full description of the distributed predicate detection
algorithm, are presented in detail in [10].

C. Snapshot Consistency Model

LDP utilizes a virtual timestep model of execution: pro-
gram execution at each module is divided into timesteps,
where the module can take a snapshot of the local state,
process received messages, perform computation and actua-
tion, and then send outgoing messages. Any LDP statements
that execute during a timestep will read state variables
only from the local snapshot, thus preventing action clauses
from creating inconsistent state. Access to previous local
snapshots is available via temporal operators, which allows
for reasoning over the state history of a group of modules.

LDP programs capture the state of multiple robots using
distributed snapshot semantics. The data used in a particular
LDP search attempt is equivalent to that obtained by a
distributed snapshot of the participating modules. As we
place no restrictions upon the length of a module’s timestep,
or the variance of timesteps between modules, there arises a
natural question: how can a predicate that uses state variables
from multiple modules ensure that it has obtained consistent
state?

In a fully asynchronous distributed system, there is in
general no means to obtain state from multiple modules
at the same instant in time. There is, however, a weaker
guarantee that can be satisfied: that distributed state is
consistent. Consistency is the property that the gathered state
reflects some valid linearization of the distributed events
occurring at the modules. In particular, if module A sends a

5269

scalar parent = INVALID ID;
scalar id;
scalar is root;
scalar depth = MAX INT;

forall (a,b) where (a.is root == 1) do b.parent = a.id & b.depth = 1;
forall (a,b) where (b.depth > a.depth + 1)

do b.parent = a.id & b.depth = a.depth + 1;

Fig. 5. A Simple LDP Example: Spanning Tree Formation

message M to module B, all events that occur on B after M is
received must occur after any event on A that occurs before
the transmission of M. This happens-before relationship was
formally defined by Chandy and Lamport [11]. As we show
in [10], the PatternMatcher mechanism of the LDP runtime
preserves consistency.

D. A Simple LDP Example

Figure 5 demonstrates the various features of LDP using a
simple example that constructs a depth-minimizing spanning
tree with a fixed root. The spanning tree declares 4 scalar
state variables: id,is root,parent,depth. id and
is root are pass-through variables, and are assumed to
have been set by some other software component. The
first predicate begins propagation of the spanning tree by
detecting all connected pairs that include the root. The non-
root member of the pair then has its parent and depth set
appropriately. Construction of the tree proceeds iteratively
in the second predicate, with each module attempting to
minimize its depth in the tree.

III. IMPLEMENTATION LESSONS

An important result of the exercise of implementing the
two planners in LDP was the discovery of several common
design patterns and language requirements for implementing
distributed algorithms. These design patterns, combined with
other implementation lessons from the two planners, are a
valuable resource for developing distributed algorithms using
LDP in the future.

A. LDP Enhancements

A key challenge in the implementation of the metamodule
planner is integrating the low-level metamodule controller
and high-level planner operations, and providing an abstrac-
tion that makes multi-step actions of the lower layer appear
atomic to the high-level planner. Our solution relies on
a hierarchical implementation that completely isolates the
variables and statements of the planner from those of the
low-level controller. To mediate between the two levels of
the hierarchy, we add a lock variable, which specifies the
currently active layer. When the planner initiates a low-level
operation, the lock is acquired by the low-level controller,
blocking any further planner-level activity by the affected
metamodules. Once the low-level action has completed or
aborted, the lock is released, and planner-level activity re-
sumes.

Under the strict consistency model used by LDP (as
described in Section II-C), it is impossible to ensure reliable

two-party locking with a simple lock variable. This stems
from the use of timestep-driven snapshots to gather data to
evaluate predicates — values from the previous snapshot are
used to predicate any write actions, the results of which
are not visible until the next timestep. This means that
if two competing write actions are executed in the same
timestep, one will overwrite the other, potentially leading to
inconsistent state. To allow correct implementation of lock
variables, we introduce the current temporal quantifier.
The current quantifier instructs the runtime to use the
actual value of a particular variable, as opposed to the most
recent snapshot. This allows writes to the lock variable to
be immediately visible to other potential writers within the
same timestep. The use of current does potentially violate
the snapshot consistency model, but in practice does not have
any noticeable effect on the operation of programs.

B. Design Patterns in LDP

Several common design patterns emerged repeatedly in the
implementations of the two planners in LDP. These repeated
structures shed light on both the challenges inherent in MRR
programming, and the suitability of LDP for the task.

Dissemination Trees: The first frequently occurring pat-
tern was the use of communication trees for dissemination
of data. At the ensemble level, these trees were used to
propagate vector gradients for the scaffold planner, and to
construct deletion trees for the metamodule planner, which
ensured the ensemble remained connected during reconfig-
uration. At a smaller scale, distribution trees were used
within a metamodule to provide movement commands to the
constituent modules.

Aggregation Sets: A second repeated design pattern we
observed was was the use of set variables (specifically, sets
of module id numbers) to ensure reliable aggregation and
parent/child relationships. To use sets in this manner, we
first create a set containing all of the module’s children or
neighbors (as appropriate). When a child reports information
back to the parent, its id number is added to a second set.
By using set intersection, it is trivial to determine when
all children have reported back. We use this technique to
decide which modules can move (both in the metamodule
and scaffold planners) and to determine when a low-level
operation has finished (in the metamodule planner).

Hybrid Coding: A final design decision which we ob-
served to be of great help was the use of hybrid (multi-
langauge) coding. LDP supports the execution of arbitrary
C++ functions, both in action clauses and as part of variable

5270

Fig. 6. Experimental configuration for shape change evaluation. Start
configuration (regions 2 and 3) is 8:4:2, end configuration (regions 1 and
2) is 4:4:4.

reads. We found this functionality invaluable, as it made
implementing table-based lookups for low-level metamodule
operations trivial. Hybrid coding greatly reduces the set of
functionality that must be present in the high-level language
(LDP), allowing specialized operations to instead be imple-
mented in C++ rather than cluttering the base syntax of
LDP. In this way, LDP works as a coordination language,
in the same vein as Delirium [12]. Hybrid coding allows
us to reduce the amount of code necessary to implement
the planning algorithms. The original implementation of the
scaffold planner required approximately 700 lines of Java
code, while the implementation in LDP required only 10
statements, plus 50 lines of C++. Similarly, the implemen-
tation of the more complex metamodule planner was also
concise: only 40 lines of LDP and 650 lines of C++, with
the latter primarily used to encode metamodule movement
lookup tables in the metamodule controller.

IV. EXPERIMENTAL METHOD

We evaluated both the scaffold and metamodule planners
on ensembles of simulated robots using DPRsim [13]. The
modules start out arranged as a rectangular solid, with an
aspect ratio of 8:4:2, and are tasked to form a rectangular
solid of aspect ratio 4:4:4. Figure 6 illustrates these starting
and final configurations, as well as their overlap. Note that
50% of the ensemble begins in the intersection of the start
and final shapes, there are the exact number of modules
needed to form the desired shape, and that the initial packing
density of both the metamodule and scaffold shapes is 50%.

Trial runs of the two planners were conducted on 8x4x2
(32 module), 16x8x4 (256 module), and 24x12x6 (864
module) ensembles. Experiments were run until the target
shape was completed.

V. RESULTS AND DISCUSSION

A. Metamodule vs. Scaffold Planner Comparison

We compared the performance of the scaffold planner
against that of the metamodule planner (with random re-
source movement), measuring the total number of messages,
moves, and simulated timesteps before completion (see Table
I). In the smallest experiments, with only 32 modules, the
metamodule planner took 45% more timesteps to complete,
and almost double the number of messages. As the scale of
the experiments increased, we saw a widening of the gap

between the scaffold planner and the metamodule algorithm.
This was especially noticeable in the number of timesteps for
the metamodule planner to complete. The number of moves
required by the two planners also diverged as the scale of
the experiment grew.

We observed three key reasons for this performance gap:
1) Planner decision quality differences—The random

(rather than gradient-directed) resource movement used by
the basic metamodule planner is less efficient, particularly
when measured by completion time. We explore this quality
factor in some detail below.

2) Metamodule implementation overhead—Both the
distributed locks required during metamodule operations and
the messaging latency associated with low-level resource
transfer and metamodule creation/deletion routines add delay.
Our metamodule operations are implemented optimally, but
our simulation parameters likely dramatically overstate the
cost of these overheads (see next).

3) Measurement bias—In order to fairly schedule com-
munication, DPRsim routes messages on a tick-to-tick basis
and thereby exacts the same latency penalty for communica-
tion as for motion. Although communication in a distributed
system is never free, parity with motion is almost certainly
too high a cost estimate. We are presently working on an
extension to DPRsim which would allow us to parameterize
the relationship between messaging cost and movement cost.

B. Beyond Random Resource Allocation

In an effort to improve the performance of the metamodule
planner, we implemented two variant resource managers,
which use gradient techniques similar to those found in the
scaffold planner. The first resource manager is a straight-
forward port of the scaffold planner’s gradient algorithm to
the metamodule environment, a planner which we designate
MM+Gradient.

Our second variant on metamodule resource management
is based on the observation that the scaffold planner’s gra-
dient has a uniform start value, which ignores the number
of resources needed at a particular growth site. By making
the starting value of the gradient proportional to the distance
form the creation site to the boundary of the target shape, the
gradient can potentially provide guidance as to both the need
for resources, as well as the number of resources needed. We
designate this second planner MM+Gradient2.

Both of these planners improve on the results seen with
the random resource manager, and while neither is close to
the performance of the scaffold planner in time, both are
well within a factor of 2 in terms of the amount of energy
required (moves commanded).

C. Analyzing Progress over Time

Each planner exhibited an abrupt slowdown in forward
progress. This can be seen most clearly by plotting moves
or completion percentage versus time. See Figures 7 and 8
for the corresponding plots for the largest of the simulation
experiments. The knee (slowdown) in each curves occurs at

5271

TABLE I
PERFORMANCE OF PLANNING ALGORITHMS (AND VARIANTS).

Qpath IS PATH LENGTH QUALITY, DA IS TOTAL ASSIGNMENT DISTANCE.

Experiment # modules # timesteps # moves # messages Qpath Da

Scaffold 8x4x2 32 124 109 32 545 0.607 152.3

MM+Random 8x4x2 32 180 110 57 733 0.577 146.3

MM+Gradient 8x4x2 32 180 110 65 742 0.577 146.3

MM+Gradient2 8x4x2 32 180 110 65 742 0.577 146.3

Scaffold 16x8x4 256 287 1 802 746 601 0.555 2 434.9

MM+Random 16x8x4 256 2 581 4 106 7 935 802 0.362 2 481.6

MM+Gradient 16x8x4 256 2 094 2 936 7 922 922 0.426 2 494.5

MM+Gradient2 16x8x4 256 1 924 3 522 7 591 609 0.362 2 458.2

Scaffold 24x12x6 864 1 973 13 508 18 746 742 0.533 11 958.4

MM+Random 24x12x6 864 >6 000 >34 000 >72 000 000 <0.272 12 119.4

MM+Gradient 24x12x6 864 5 230 19 332 74 571 924 0.426 12 226.5

MM+Gradient2 24x12x6 864 4 168 21 754 63 386 489 0.311 12 351.8

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 1000 2000 3000 4000 5000

Timesteps

M
od

ul
e

M
ov

es

Scaffold
MM + Random
MM + Gradient
MM + Gradient 2

Fig. 7. Planner performance: Module moves over time.

the point where physical contention and resource exhaustion
limit the rate at which target destinations can be filled.

Below the knee, each algorithm proceeds at a rate set
by the degree of parallelism it can command. Maintaining
the metamodule structures limits the number of simulta-
neous motions possible and results in a shallower initial
curve. Above the knee, Metamodules+random resource man-
agement exhibits a particularly long and slow climb to
completion as the number of free resources in circulation
dwindles and the time it takes for each resource to find an
available target location on its random walk lengthens. The
gradient-based approaches, both metamodule and scaffold,
waste no time/motion on random walks and so complete
faster. Again, the degree of potential parallelism is higher
for the scaffold approach than for the metamodule+gradient
approaches, meaning the scaffold case has a steeper slope
after the knee on its curve and completes more rapidly.

When we consider completion percentage as measured by
the proportion of target locations filled the picture changes
somewhat. The metamodule based planners again complete
more slowly than the scaffold planner, but performance
among the three metamodule planners is very similar. That is,
the three fill target locations with similar rapidity, but random

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 1000 2000 3000 4000 5000

Timesteps

C
om
pl
et
io
n

Scaffold
MM + Random
MM + Gradient
MM + Gradient 2

Fig. 8. Planner performance: Completion percentage over time.

resource allocation in particular expends a large amount of
effort moving the last few free resources around (randomly)
in search of the few remaining empty target locations.

D. Path Quality and Planner Performance

To more explicitly quantify the performance impact of
planner decision quality, we examined two more statistics:
total assignment distance (DA) and path length quality
(Qpath). DA is the sum of Cartesian distances between
starting and ending module locations for each final module
location. This estimates the minimum amount of work an
optimum path planner algorithm might require to effect the
same mapping between module initial and final positions
as selected by each planner. Qpath is defined for each
module as the total distance moved, divided by the distance
between start and end positions. Qpath measures the relative
efficiency of each algorithm in selecting a path for each
module from start to destination. Neither of these is an exact
measure as the direct Cartesian path may not be feasible due
to missing support or interfering modules, and in any case
the set of all per-module optimal paths may not result in
a globally optimal plan. Nonetheless, both provide useful
approximations for comparing the different planners.

5272

0

20

40

60

1 10 100 1000 10000

Path Length (Log Scale)

C
ar

te
sia

n
D

ist
an

ce

0.5 0.25 0.1Qpath =

(a) Scaffold

0

20

40

60

1 10 100 1000 10000

Path Length (Log Scale)

C
ar

te
sia

n
D

ist
an

ce

0.5 0.25 0.1Qpath =

(b) MM+Random

0

20

40

60

1 10 100 1000 10000

Path Length (Log Scale)

C
ar

te
sia

n
D

ist
an

ce

0.5 0.25 0.1Qpath =

(c) MM+Gradient

0

20

40

60

1 10 100 1000 10000

Path Length (Log Scale)

C
ar

te
sia

n
D

ist
an

ce

0.5 0.25 0.1Qpath =

(d) MM+Gradient2

Fig. 9. Path length traversed vs. Cartesian distance between start and end positions for individual modules for the different planners

When we consider the total assignment distance for each
algorithm we see a high degree of similarity across all the
trials at each scale (Table I, rightmost column). This means
there is very little difference in algorithm performance in
terms of assigning modules from the initial shape to module
locations in the target shape. (Note that without further
information we cannot say whether all the algorithms do
well or all do poorly, we can only say their performance is
comparable to one another.)

When we compare the Qpath figures we see a different
story. At the smallest scale there is little difference because
motion in such a small ensemble is highly constrained, but
as scale increases the scaffold algorithm clearly outperforms
the random-walk behavior of Metamodules+Random. This
shouldn’t come as a surprise, but since one of the great
strengths of the metamodule planner is its modularity we can
readily insert other resource management policies to study
their impact. We see that with a gradient-based resource man-
ager Qpath is substantially improved and falls somewhere
between that of the scaffold planner and a random walk.
Interestingly, MM+Gradient2 completes in fewer timesteps
than MM+Gradient, but at the cost of additional moves,
which is indicative of a more aggressive algorithm.

By plotting the components of Qpath against one another
for each module in each scenario (Figure 9), we can un-
derstand the performance differences in greater detail. The
scaffold planner achieves very tight clustering around its
mean Qpath value, indicating a very controlled, homoge-
neous strategy. However a few outliers far to the right con-
sume substantial energy. These outliers appear consistently
in particular experimental scenarios at several scales and are

similar to those observed in the original implementation of
the algorithm [14].

When we look at the scatter plots for the metamodule-
based planners we see a wider spread of Qpath values, with
lower mean. One subtle difference to note is the somewhat
wider distribution for MM+Gradient2 versus MM+Gradient.
We hypothesize the the additional gain factor introduced
with Gradient2’s scaling of gradient messages by the number
of modules needed at the target location induces additional
oscillation of free resources/modules between multiple target
destinations. The additional gain drives somewhat faster
completion time but at a cost of somewhat greater overshoot
and hence energy consumption. We can also clearly see in
the plots for MM+Random and MM+Gradient a few modules
which struggle to reach their final locations and hence appear
isolated as outliers to the right of the distribution. These are
the reason for the long tails seen for these algorithms in
Figure 8.

E. Implications for Module and Metamodule Design

The differences between scaffold and metamodules can
be seen as the cost of generality vs. specialization. The
scaffold planner can be seen as a version of the metamodule
algorithm, with a basic gradient resource manager, and size-
1 metamodules that obey a particular set of movement con-
straints. The cost of moving from single modules to 2x2x2
metamodules is clearly seen in the path quality measures, and
makes a compelling argument for developing MRR systems
that do not require large metamodules in order to avoid
motion constraints. Additionally, we see that a random-walk
resource manager is totally unsuitable for systems without
an overabundance of resources, as the resulting starvation of

5273

creation sites dramatically slows completion of the shape-
change.

Still, we note that more intelligent resource managers,
either with more expressive gradients or other mechanisms,
can potentially increase the performance of metamodule-
based planners to a level that approaches that of the scaffold
algorithm. Combined with the potential for a metamodule-
based approach to permit more design freedom at the module
level, hence enabling faster, lower-power, more reliable,
or smaller modules, it is certainly possible (though not
inevitable) that metamodules could be a net benefit at the
MRR system level.

VI. CONCLUSIONS

Metamodule-based approaches greatly simplify motion
planner construction for modular reconfigurable robots due
to metamodules’ ability to remove holonomic constraints.
This can improve the generality of the planning units (meta-
modules) when compared with a planner for the underlying
modular system (modules). In this paper we have shown
that this generality comes at a price in both energy and
time: Effectively, metamodules drive up the cost of planner
mistakes because each “primitive” operation at the planner
level actually requires execution of a sequence of operations
at the underlying module level. This disparity is likely to
increase as the metamodule size increases.

In making this comparison we chose to evaluate systems
where both the metamodules and the underlying modules
offer the same motion capabilities. This makes our compar-
ison “fair” in one sense, but also removes a key advantage
of metamodules from the picture, namely, their potential to
make a highly-non-holonomic module design tractable from
a planning perspective. Thus, despite our finding that the
particular metamodule planner we tested required more time
and energy than a non-metamodule planner in the test sce-
narios used, a metamodule-based approach may nonetheless
be the best choice for a given MRR system – for instance,
in cases where a non-metamodule planner is intractable, is
too complex, proves too difficult to write, or where use
of metamodules can allow the underlying modules to be
simplified such that they move more quickly, more reliably,
or using less energy.

Ultimately, the performance of any motion planner is
limited by the quality of its decisions. A still-open question
is how metamodule and non-metamodule planners might
compare given optimal decision criteria for each. Because
optimal planners are, in general, impractical (and often
intractable) for the numbers of degrees of freedom presented
by even small MRR systems, we chose to compare real,
published planners in this study.

Our results also demonstrate that all planner decisions are
not of equal importance. In particular, we have observed
that the choice of resource manager (random walk, gradient,
or otherwise) plays a large role in a metamodule-based
planner’s performance, whereas the assignment from starting
to final location for each module seems to play a much
smaller role (at least at the scales we have tested).

Finally, implementing both planners in LDP has shown
that the use of a high-level language can result in dramati-
cally shorter code, with a corresponding increase in clarity.
As a consequence we have readily been able to explore
the impact on planner performance of a variety of resource
manager strategies. Our work has highlighted the utility
of such a hybrid coding approach, while illustrating some
shortcomings of the LDP language.

VII. ACKNOWLEDGEMENTS

This work was partially funded by the National Science
Foundation (NSF) under grant no. CNS-0428738, Intel Labs
Pittsburgh, Carnegie Mellon University, and a generous con-
tribution from the Microsoft Corporation. Special thanks to
Kasper Støy for the use of his existing gradient planner
implementation. The views and conclusions contained in
this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

REFERENCES

[1] K. Støy and R. Nagpal, “Self-repair through scale independent self-
reconfiguration,” in Proceedings of IEEE/RSJ International Confer-
ence on Robots and Systems, (IROS), 2004, pp. 2062–2067.

[2] D. Dewey and S. Srinivasa, “A metamodule shape planner for modular
robots,” in Proceedings of the IEEE International Conference on
Robotics and Automation ICRA ’08 (in submission), 2008.

[3] M. De Rosa, S. C. Goldstein, P. Lee, P. S. Pillai, and J. Campbell,
“Programming modular robots with locally distributed predicates,” in
Proceedings of the IEEE ICRA, 2008.

[4] S. Funiak, P. Pillai, M. P. Ashley-Rollman, J. D. Campbell, and S. C.
Goldstein, “Distributed localization of modular robot ensembles,” in
Proceedings of Robotics: Science and Systems, June 2008.

[5] G. Reshko, “Localization techniques for synthetic reality,” Master’s
thesis, Carnegie Mellon University, August 2004. [Online]. Available:
http://www-2.cs.cmu.edu/ reshko/thesis/

[6] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized
control for a class of self-reconfigurable robots,” in Intl Conf on
Robotics and Automation (ICRA). IEEE, 2002, pp. 809–816.

[7] R. Fitch, Z. Butler, and D. Rus, “Reconfiguration planning for hetero-
geneous self-reconfiguring robots,” in Intelligent Robots and Systems
(IROS). IEEE, 2003, pp. 2460–2467.

[8] K. Støy, “Controlling self-reconfiguration using cellular automata and
gradients,” in Proceedings of the 8th international conference on
intelligent autonomous systems (IAS-8), March 2004, pp. 693–702.
[Online]. Available: http://www.mip.sdu.dk/ kaspers/publications.php

[9] M. De Rosa, S. Goldstein, P.Lee, J. Campbell, and P. Pillai, “Dis-
tributed watchpoints: Debugging very large ensembles of robots (ex-
tended abstract),” in RSS’06 Workshop on Self-reconfigurable Modular
Robotics, August 2006.

[10] M. De Rosa, S. C. Goldstein, P. Lee, J. Campbell, and P. Pillai,
“Distributed watchpoints: Debugging large modular robotic systems
(in preparation),” International Journal of Robotics Research, vol. 27,
no. 3, Special Issue on Modular Robotics 2008.

[11] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states in distributed systems,” ACM Transactions on Computer
Systems, vol. 3, no. 1, pp. 63–75, February 1985.

[12] S. Lucco and O. Sharp, “Delirium: an embedding coordination lan-
guage,” in Supercomputing ’90: Proceedings of the 1990 conference on
Supercomputing. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1990, pp. 515–524.

[13] Dprsim. [Online]. Available: http://www.pittsburgh.intel-
research.net/dprweb/

[14] K. Støy, “Emergent control of self-reconfigurable robots,” Ph.D. disser-
tation, AdapTronics Group, The Maersk Mc-Kinney Moller Institute
for Production Technology, University of Southern Denmark, 2003.

5274

