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Abstract— Mass parameters of the human body segments are
mandatory when studying motion dynamics. In orthopedics,
biomechanics and rehabilitation they are of crucial importance.
Inaccuracies their value generate errors in the motion analysis,
misleading the interpretation of results. No systematic method
to estimate them has been proposed so far. Rather, parameters
are scaled from generic tables or estimated with methods
inappropriate for in-patient care. Based on our previous works,
we propose a real-time software and its interface that allow to
estimate the whole-body segment parameters, and to visualize
the progresses of the completion of the identification. The
visualization is used as a visual feedback to optimize the
excitation and thus the identification results. The method is
experimentally tested and obtained results are discussed.

I. INTRODUCTION

The appropriate knowledge of segment parameters is

of crucial importance when one studies the human motions

dynamics. With an accurate knowledge of the subject specific

segment parameter is is possible to refine diagnosis and

personalize health-care; on the contrary it is shown in [1]

that errors in the body-segment mass-parameter affect sig-

nificantly the analysis results. In orthopedics, biomechanics,

neurology, musculoskeletal disorders studies is an important

information, it allows to monitor directly the parameters,

and also to compute the position of the whole body center

of mass (COM). Its trajectory is often use in gait studies;

the computation of the segment parameters (SP): inertia and

the position of the COM of each link, is a key-step in

gait analysis and to monitor the variations of muscle mass

due to disease, hospitalization, rehabilitation or training [2].

Systems to estimate in-vivo the position of the whole-body

COM have been recently released thanks to the developments

in portable technologies [3], [4]. Nevertheless, the inertias are

usually not estimated in-vivo, by lack of accurate method-

ologies, and are computed by interpolations of literature

data [5], [6]. These data are obtained by photogrammetry

[7], known to be poorly accurate, or more recently by 3D

imaging (CT-scan or MRI) and 3D modeling interpolations,

known to be expensive (equipment and time) and hazardous

(radiations) [8], [9]. Discrepancies in body landmarks and

in models of the human-body [10] as well as the profusion

of references make an adequate choice difficult. In addition,

proper interpolations of the available data require hundreds
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of geometric measurements which are often inaccurate. Con-

sequently, there is a urge of reliable and robust methods to

estimate in-vivo the SP of the human body.

Based on our previous works on identification of human-

body base-parameters [11], we present in this paper a

methodology to perform real-time estimation of the whole-

body SP. The required measurements are motion and contact

force [12]. We have also developed a graphic interface

that is used to generate optimal exciting trajectories from

visual feedback thanks to which we obtain more accurate

results in a shorter time. This method allows in-vivo subject-

specific identification of the SP with a fast, safe and robust

environment. It makes use of both the identification of the

base-parameters and an interpolation from the data-base of

the human body dynamics [13].

II. BASE PARAMETERS IDENTIFICATION FROM CONTACT

FORCES AND MOTION DATA

A. General identification model of legged systems

From [14], [15] and [16], [17], the inverse dynamics is

written in a linear form with respect to the SP as shown

in [11]. And by separating the vector of constant inertial

parameters, we obtain the identification model Eq. 1.

Y φ =

[

Y O

Y C

]

φ =

[

0

τ

]

+

Nc
∑

k=1

[

JT
Ok

JT
Ck

]

F ext
k (1)

where:

• τ ∈ RNJ−6 is the vector of joint torques,

• Nc is the number of contact points with the environ-

ment,

• F ext
k ∈ R6 is the vector of external forces exerted to

the humanoid at contact k,

• Jk = [JOk JCk] ∈ R6×NJ are the basic Jacobian ma-

trices of the position at contact k and of the orientation

of the contact link with respect to q0 and qc, which are

used to map F ext
k to the vector of generalized forces.

• φ ∈ R10n is the vector of segment parameters (SP).

• Y =

[

Y O

Y C

]

∈ RNJ×10n is the regressor, a function

matrix of generalized coordinates q0 of the base-link,

the joint angles qc, and their derivatives q̇0, q̇c, q̈0, q̈c.

Y O ∈ R6×10n is the regressor corresponding in the six

equations of motion of the base-link.

Only the minimal set of inertial parameters that describes

the dynamics of the system can be identified. This set is

called base parameters φB ∈ RNB . It can be computed

symbolically or numerically from the vector of SP φ by
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eliminating those that have no influence on the model and

regrouping some according to the kinematics of the system

[18]–[20]. The base parameters φB ∈ RNB can be calculated

symbolically from the standard parameters φ ∈ R10n as

follows:

φB = Zφ (2)

Where, Z ∈ RNB×10n is the composition matrix of base

parameters [21].

We obtain the minimal identification model given by Eq.

3. Y B ∈ RNJ×NB is called the regressor for the base

parameters and is of full-rank.

Y BφB =

[

Y OB

Y CB

]

φB =

[

0

τ

]

+

Nc
∑

k=1

[

JT
Ok

JT
Ck

]

F ext
k (3)

B. Identification model from base-link dynamics

Most identification methods are based on solving Eq.

3, consequently they require the measurement of:

• the base-link information q0,

• the chains information qc and τ ,

• the external forces F ext
k for the Nc contact points.

However it is difficult to measure accurately τ as this is

a function of the muscle forces and the joint visco-elastic

characteristics of the joint. In [11] we proposed to identify

φB using only the upper-part of the identification model

Eq. 3: the equations of motion of the base-link, and thus

to estimate the pure SP.

Y OB φB =

Nc
∑

k=1

JT
Ok F ext

k (4)

We obtain a system given by Eq. 4 that is not function of

the joint torque τ . Consequently to estimate the set of base

parameters φB , the measurement of the joint torques is not

required. Solely the measurement of the k contact forces

F ext
k , the joint angles qc and the generalized coordinates q0

are required. This information is measured by motion capture

and force-plates. As we directly measure the contact forces

F ext it is not necessary to discriminate the support phases.

However, this method stands only if the reduction of the

system to these six equations keeps unchanged the number

of parameters that are structurally identifiable. This has

been demonstrated mathematically in [21]; thus the structural

identifiability of the base parameters is maintained and Eq. 4

leads to similarly identify the whole set of base parameters.

The estimate of the vector of base parameters φ̂B is

obtained by solving Eq. 4 with the least square method,

or the weighted least square method. This correspond in

minimizing the optimal criterion given by Eq.5

min
φ

B

‖
Nc
∑

k=1

JT
OkF ext

k − Y OBφB‖2 (5)

III. ESTIMATION OF WHOLE-BODY SP

The base parameters φB are the necessary and sufficient

information to compute the equations of motion, thus the

only parameters identifiable straightforwardly from Eq. 3

and Eq. 4. They are obtained by eliminating and regrouping

the standard parameters φ according to the kinematics [12],

so they are too complicated terms to be comprehended

naturally and to provide a sufficient physiological meaning.

Therefore, for medical applications the standard SP φ are

more comprehensible than the base parameters φB .

After identification of the base parameters φ̂B as shown

in section II-B it is possible to compute the standard pa-

rameters φ by projecting the identified base-parameters in

the standard-parameters space and extrapolating the missing

information from literature data or data-base, to obtain finally

the whole set of SP with certainty. The estimated standard

parameters meet the base-parameters without distortion, and

minimize the error of information from data-base for the

standard parameters.

For the linear equation (2), the general form of the least-

squares solution for a rank-deficient regressor is given by

[22]:

φ = Z#φB + (E − Z#Z)z (6)

where z ∈ R10n is an arbitrary vector, and E is the identity

matrix. When using the identified base parameters φ̂B , the

main problem resides in determining the vector z projected

to the null space of the composition matrix Z

We choose the vector z = φref , where φref is the infor-

mation found in the data-base for the standard parameters or

reference standard parameters, and finally the subject-specific

standard parameters φ̂ can be obtained as follow:

φ̂ = Z#φ̂B + (E − Z#Z)φref

= φref + Z#(φ̂B − φB
ref ) (7)

Where, φB
ref = Zφref .

Eq. 7 satisfies Eq. 2. Eq. 7 also implies that φ̂ minimizes

||φ−φref ||, which means the error of the reference standard

parameters φref .

IV. REAL-TIME VISUALIZATION OF IDENTIFICATION

RESULTS

We present the outline of the application to visualize the

identification result using the real-time identification method.

Each step is then detailed in the following subsections. The

human motions are recorded every 5[ms] by a commercial

optical motion capture system consisting in 10 cameras

(Motion Analysis) and 35 reflective optical markers, and

the contact forces are measured every 1[ms] by the force-

plates (Kistler). The model of human consists in 34 degrees

of freedom [11]. The motion-data and the force-data are

synchronized. The identification process is as follows (Fig.

1):

1) the geometric model of human is defined, measure the

geometric parameters of the model from motion cap-

ture, and estimate the prior standard inertial parameters

from geometric parameters and the data-base.
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2) From the motion capture and force-plates, we identify

the base parameters and the standard parameters using

the real-time method.

3) Using colored presentation to specify the links yet

not to be identified, we can improve the quality of

identification results.

Visualization

Motion Feedback

Human Body Data-base

Geometric parameters

Calibration data

Whole body SP

estimation

SP Base
parameters

Prior
data

Computations

Measurements

Fig. 1. Conceptual diagram of the proposed approach of real-time
identification and visualization

A. Estimation of the geometric model and initial estimation

of standard inertial parameters

To obtain good results it is important to define the

kinematic model used to describe the human body, and

to obtain its characteristic geometric parameters. As dis-

cussed in our previous work, the modeling depends on the

purpose of identification and the real constraints such as

the measurement facility [11]. We consider a model of the

human body consisting in 34 DOF and 15 rigid links as

follows: the waist, the neck, the shoulders, the wrists, the

hip joints and the ankles are modeled with spherical joints.

The elbows and the knees are modeled with rotational joints.

They represent the most important DOF that are used in

daily activities such as locomotion. DOF can be added and

removed according to the needs, keeping in mind that a

compromise is necessary between the number of DOF and

the identifiability (smallness, excitation) of the SP.

Geometric parameters are by nature measurable directly.

Usually they are measured manually, here we propose to use

an automatic method making use of the defined positions

of the optical markers. They are located at the defined

anatomical points to insure the accuracy when computing the

inverse kinematics, thus we can automatically compute the

geometric parameters of each link by calculating the relative

position of the markers.

The standard inertial parameters (reference) are then es-

timated from the obtained geometric model, in order to

build the model shape. In this paper, we apply the method

described in [13] and that makes use of the data-base of the

human body available from [23], to estimate the standard

inertial parameters of the human body. The data-base consists

in the 49 diagnostic measurements and the total body mass

of 308 Japanese. The initial estimation of the standard

parameters is performed as follows:

1) We automatically measure 49 diagnostic measurements

and the total mass (from marker positions and force-

plates data) to use as inputs of the initial estimation

routine to compute the other items using a linear

regression.

2) The geometric shape of the human body is modeled

by simple primitive shapes. For example, oval sphere,

truncated cone, and boxes as shown in Fig. 2.

3) The size and volume of each primitive is computed

from the 49 measurement items, and the inertial param-

eters are obtained, assuming that the density of each

link is uniform.

An example is given in Fig. 2 for 3 male subjects of

different morphologies. From left to right the body height and

weight are: 1.73m 58Kg, 1.62m 54Kg and 1.76m 76.3Kg.

The differences in body shape are clearly visible from the

obtained model shapes.

Fig. 2. The geometrically approximate shape of human in 3 different cases:
from left to right the body height and weight are: 1.73m 58Kg, 1.62m

54Kg and 1.76m 76.3Kg

B. Real-time implementation of the identification of the base

parameters

From the inverse kinematics computations of marker po-

sitions, the generalized coordinates and their derivatives are

obtained, and the regressor in Eq. 4 is calculated in real-time.

The total external force exerted to the frame of the base-link

is calculated from the force-plates data using Eq. 4.

For real-time computation, the on-line least squares algo-

rithm is implemented, however with this method an initial

value for φB0 is necessary. Actually, the forces and moments

of the 6-axis external force in Eq. 4 have different physical

units, and different measurement accuracies. To avoid dis-

crepancies in the results the weighted least squares method

is used, attributing a different weight to the 6 components. In

addition, some parameters may be time-varying, for example

when a human handles or releases an object during the

measurements, to identify appropriately the parameters an

exponential forgetting coefficient λn is used [24]. The above

features are implemented as follow: At times t = [1 · · ·n],
the estimated parameters φB,n at t = n is computed from
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φB,n−1 at t = n − 1 as follow.

φ̂B,n = λnφ̂B,n−1 + Kn(F n − Y OB,nφ̂B,n−1) (8)

Where,

• λn(0 ≤ λn ≤ 1) is the time-varying forgetting factor.

• Y OB,n and F n are the regressor and the external force

in Eq. 4 at the time t = n.

• Kn ∈ RNB×NB is the gain matrix as follow:

Kn = P n−1Y OB,n
T V n

−1 (9)

• V n ∈ R6×6 is defined as follow:

V n = λnΣn + Y w,tP n−1Y w,t
T (10)

• P n ∈ RNB×NB is defined by defined by:

P n =
n

∑

n=i

(Y OB,i
T
ΣiY OB,i)

−1 (11)

And the on-line inverse matrix calculation is given by:

P n =
1

λn

(P n−1 −P n−1Y OB,n
T V n

−1Y OB,nP n−1)

(12)

• Σn ∈ R6×6 is the weighted matrix.

The weighted matrix Σn is chosen as the covariance

matrix for the disturbance of F . We consider that the 6 axis

elements of F are independent and thus Σn is diagonal.

The i-th diagonal element σ2
ii,n(1 ≤ i ≤ 6) is the variance

of the estimated error of each component of F . σii,n can be

calculated using Ai,n ∈ RNB×NB , bi,n ∈ RNB , ci,n ∈ R,

dn ∈ R as follow, where fi,n ∈ R, yi,n ∈ R1×NB (1 ≤ i ≤
6) are the each component of respectively F n and Y OB,n.

σi,n
2 =

1

dn

(φB,n−1
T Ai,nφB,n−1 − 2φB,n

T bi,n + ci,n) (13)

Ai,n = yi,n
T yi,n + λ2

nAi,n−1 (14)

bi,n = fi,nyi,n
T + λ2

nbi,n−1 (15)

ci,n = fi,n
2 + λ2

nci,n−1 (16)

dn = 1 + λndn−1 (17)

From Eq. 8, Eq. 12, and Eq. 13 - (17), we can compute

V n, P n, and φ̂B,n every time, and also obtain φ̂n from Eq.

7. The initial value for P 0, φ̂B0 and φ̂0 can be chosen as a-

priori knowledge. If they are unknown, we choose φ̂B0 = 0,

φ̂0 = 0 and P 0 = γE. Similarly, Ai,0, bi,0, ci,0, di,0 are

chosen as zeros without a-priori data. A large value of

γ(> 0) leads to a fast convergence of the identification

procedure, nevertheless P n becomes unstable with lack of

exciting motion data. The forgetting factor λn is often chosen

with a constant value from 0.995 to 1. If the parameters are

constant (no object carried) λ = 1 is chosen (no forgetting);

if the parameters are to change (when handling and releasing

objects) we chose λ < 1.

V. OPTIMAL EXCITING TRAJECTORIES

The accuracy of the identified base parameters highly

depends in the motion used to sample the identification

model. It is important to sample the identification model

along a motion that excites the system dynamics to be

estimated. Such motions are called Persistent Exciting Tra-

jectories [25]. A criterion to define an appropriate motion is

to consider motion leading to small value of the condition

number of the obtained regressor. However, a large number

of DOF and time-varying contact situation complicate the

definition of persistent exciting trajectories [26]. In addition

optimal exciting trajectories guaranty the robustness of the

on-line least square convergence with respect to the initial

parameters φB0.

We make use of the real-time identification to visualize the

identification as well as adjust the persistent exciting move-

ments. During the measurement, we display the model using

a colored representation for the identified link parameters and

the not yet identified link parameters. It allows to intuitively

recognize which links need to be excited. The examinee

gets the feedback from the display and can generate the

adequate persistent exciting trajectories in order to improve

the identification results. the colors are chosen according

to the relative standard deviation calculated for each base

parameter. In fact, he relative standard deviations computed

for each parameter [25], [27] are a statistical indicator of the

identification results quality. Considering that the regressor

Y OB of the linear system Eq. 4 is a deterministic one,

and the modeling error ρ = F − Y OBφ̂B is a zero mean

Gaussian noise, the covariance matrix Cn ∈ RNB×NB of

the estimation error of φ̂B,n are computed as follow:

Cn = E((φB − φ̂B,n)(φB − φ̂B,n)T ) = P n (18)

where E is the expectation operator. Eq. 8, Eq. 9, and Eq. 12

of the on-line least squares algorithm are similar to equations

of a Kalman filter without the system noise , and P n is

equivalent to the covariance matrix of Cn.

cn,(i,i) is the diagonal elements of Cn, and the relative

standard deviation σφj% is thus computed as follow:

σφj ,n% = 100

√
cn,(i,i)

φ̂Bj,n

(19)

We consider that a parameter with a relative standard

deviation σφj% lower than a specified threshold is well

identified, keeping in mind that this is only an indicator

based on statistical assumptions. However for parameters

with small values, they may be well identified although σφj%

is large.

The results are visualized in an active interface using the

3D representation of the human figure defined in section IV-

A. The color of each link is adjusted in real-time and defined

according to a simple rule as follow: nBj is the number

of the base parameters of the link j, nBj,G is the number

of parameters that σφj% is lower than 10[%], nBj,B is the

number of parameters that σφj% is not lower than 10[%]

but small parameters(< 0.02), and nBj,R = nBj − nBj,G −
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Fig. 3. Real-time identification of human inertial parameters

nBj,B . Then rgb color values of each link are chosen as

ratio of nBj,R, nBj,G, and nBj,B . Starting from red for non

identified parameters to green for fully identified parameters;

and cyan for small parameters, as can be seen in Fig. 3.

VI. EXPERIMENTS

We compare the results obtained with the standard off-

line identification procedure and the optimal identification

procedure featuring the visual feed back. For that we record

motions that are known to be persistent exciting trajectories

and have proven to allow identifying the whole body base-

parameters [26]. In addition we record three motions using

the real-time visualization interface. During this phase the

motions are free and only adjusted to provided the identi-

fication of the parameters based on the color changes. The

initial conditions for real-time identification are λn = 1.0,

γ = 0.001, and other parameters are zeros.

A. Identification of base parameters

The identification results of the base-parameters obtained

for 3 motions are given in Table I. The condition number or

the regressor cond(Y OB) and the length of data-set of each

motion are presented. The number of estimated parameters

nest = nBj,G + nBj,B is also shown. Usually randomly

chosen motions of the whole body lead to regressor of

high condition number about 500. Using the combination

of several motions from a gymnastic TV program has lead

to condition number about 40 [26]. Table I shows that when

using the interface lead to obtain condition numbers of about

30. And thus to enhance the excitation properties of the

recorded motions by visual feedback and the quality of the

estimation. more particularly for the extremities of the limb

and the head.

TABLE I

SUMMARY OF EXPERIMENTAL IDENTIFICATION RESULTS (BASE

PARAMETERS)

Motion ID 1 2 3 all

Y B 35.8 30.8 23.3 25.3

length of data-set 2660 4291 4007 10958

estimated base parameters 106 105 110 122

B. Identification of standard parameters

The results of the estimation of the standard parameters φ̂

and the initial standard parameters φref are given in Table

II. It shows the mass M [kg], the center of mass Ci[kg-m],

and the inertias Jij [kg-m2] of 6 links: the lower torso(L1),

the upper torso(L2), the right foot(L3), the right hand(L4),the

head(L5) and the left thigh(L6).

TABLE II

ESTIMATED STANDARD INERTIAL PARAMETERS AND LITERATURE

PARAMETERS (L) OF SIX LINKS

Link L1 L2 L3 L4 L5 L6

M 2.79 19.38 1.94 0.43 3.91 6.01
ML 2.51 19.08 2.50 0.48 4.03 5.73

Cx -0.04 -0.03 -0.03 -0.01 -0.05 0.08
CxL 0.00 0.00 0.04 0.10 0.00 0.20

Cy 0.01 -0.01 0.02 -0.01 -0.12 -0.02
CyL 0.00 0.01 0.10 0.00 0.00 -0.02

Cz 0.01 0.21 -0.03 -0.06 0.40 0.02
CzL 0.03 0.23 0.00 0.00 0.16 0.00

Jxx 0.46 0.62 0.02 0.01 0.32 0.04
JxxL 0.02 1.38 0.04 0.00 0.12 0.01

Jyy 0.03 0.71 0.03 0.01 0.01 -0.08
JyyL 0.01 1.33 0.01 0.01 0.12 0.08

Jzz -0.01 0.01 0.07 0.01 -0.09 -0.15
JzzL 0.02 0.14 0.05 0.01 0.01 0.09

Fig. 4. Monitoring of changes: a 2Kg mass is consecutively added to the
left foot, the right hand and the upper-torso
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The estimated masses are close to the prior parameters,

and the inertias of L2, L3, L4 also shows good correlations.

However, the center of mass of L1 and L5, and the inertia

around the Z-axis of L1,L5 and L6 have failed to be

estimated, i.e. the center of mass is located outside of the link

and the principal moment of inertia around Z-axis is negative.

This can be explained as follow: some base parameters of

L1 and L6 have a standard deviation higher than 15%. In

addition, the prior standard parameters are not accurate and

the data-base is not complete, which affects the estimated

standard parameters. We have to improve the accuracy of

the presumption of prior information. To solve accurately

Eq. 2, the dynamics constraints are to be considered: for

example, the center of mass is located inside of the link

and the principal moment of inertia must be positive. In

order to validate the results and verify the possibility to

track time-changing parameters we attached a 2Kg mass at

different locations on the body (left foot, right hand, upper

torso) and identify the new base-parameters. We use the

parameters with no mass as a reference, and then use a

colored visualization of the newly identified parameters: the

link is proportionally colored in red with the increase in mass

and inertia. And in blue with the decrease. Fig. 4 shows the

results for the 3 different location of the 2Kg mass.

VII. CONCLUSION

We have proposed an identification method for the whole

body segment parameters of humans. We have shown that:

• It is possible to estimate all the standard inertial param-

eters. The proposed method makes use of 1. the identifi-

cation of the base parameters and 2. the prior estimated

parameters extracted from the data-base of human body.

The estimated parameters meet the identification results

without distortion, and minimize the error of the prior

information from data-base.

• The proposed approach of real-time identification and

visualization of identification results during measure-

ment allows to generate optimal persistent exciting

trajectories, thus to obtain more accurate results with

less data.

Further work will consist in developing the constrained algo-

rithm so that all the standard parameters will be physiologi-

cally correct. Applications of the method include interfaces

for health monitoring and rehabilitation monitoring, as well

as tools for gait analysis and orthopedics.
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