
  

  

Abstract—Road detection is a crucial problem for intelligent 
vehicles and mobile robots. Most of the methods proposed 
nowadays only achieve reliable results in relatively 
well-arranged environments. In this paper, we proposed a 
stereovision-based road boundary detection method by 
combining homography estimation and MRF-based belief 
propagation to cope with challenging scenarios such as 
unstructured roads with unhomogeneous surfaces. In the 
method, each pixel in the reference image is firstly labeled as 
“road” or “non-road” by minimizing a well defined energy 
function that accounts for the planar road region. Subsequently, 
both of the road boundaries are generated using Catmull-Rom 
splines based on RANdom SAmple Consensus (RANSAC) 
algorithm with varying road structure models to help the 
intelligent vehicle understand the structure as well as safe range 
of current road. In the suggested framework, both intensity and 
geometry information of road scenarios are used to contain all 
the regions belonging to the planar road plane, and the left and 
right road boundaries are generated separately using a robust 
fitting algorithm to handle different road structures. Therefore, 
more accurate as well as robust detection of the road can be 
expected. Experimental results on a wide variety of typical but 
challenging scenarios have demonstrated the effectiveness of the 
proposed method. 

I. INTRODUCTION 

OAD detection is a crucial problem for intelligent 
vehicles and mobile robots. It provides information about 

the world that enables the intelligent vehicle or robot to 
interact with its environment and react to events or changes 
that influence its task [1]. Many researchers have been 
studying it for several decades and dramatic development has 
been accomplished, which can be categorized into two main 
types of methods: vision-based methods [2]-[7] and 
LIDAR-based methods [8]-[10]. While typical systems make 
use of cameras as well as LIDAR sensors [11] and have been 
proved to be highly applicable in practice because LIDARs 
can directly measure range, it is possible to make use only of 
cameras for both range and color information, just like human 
drivers/operators. Therefore, vision-based road detection is a 
very important as well as promising branch in the field. 
Among the current vision-based methods, some use 
monocular camera to extract the road region by employing 
features with specific intensity, color and texture as visual 
cues on the road surface [2]-[4]. Others use binocular camera 
(or more cameras) for road detection by utilizing 3D 
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structural information [5]-[7]. Most of the methods proposed 
nowadays only achieve reliable results in relatively 
well-arranged environments; however, there are still many 
unstructured roads with unhomogeneous surfaces in the real 
world environments, such as rural roads and campus roads etc. 
In these typical but challenging scenarios, both intensity and 
geometry information should be used since different parts of 
the road surface may have totally different intensities; 
however, each part should be contained in the detected road 
as long as it belongs to the same planar road plane that 
vehicles can pass safely. 

The proposed method is developed in the scope of the 
stereovision-based navigation system integrated in our 
experimental intelligent vehicle shown in Fig. 1, which is 
equipped with six computers and various sensors (stereo 
camera, laser scanner, all round camera, GPS, etc). It is 
designed to detect the drivable road region and generate road 
boundaries to help the host vehicle understand the structure as 
well as safe range of current road and make the correct 
decision to drive in a safe path. Here, we define the drivable 
road region as a connected region in front of the vehicle on 
the road plane where a vehicle can pass safely, under the 
flat-road assumption.  

 
Figure 1.  Our experimental intelligent vehicle 

The main idea of the proposed method is to assign each 
pixel in the reference image a label (1 for road region and 0 
for non-road region) by minimizing a well defined energy 
function that accounts for the planar road region. The energy 
function is defined by utilizing the 2D projective 
transformations of stereo information and the inference 
algorithm in binary piecewise Markov Random Field (MRF). 
It has two terms: one term penalizes solutions that are 
inconsistent with the observed data, whereas the other term 
enforces spatial coherence (piecewise smoothness). 
Subsequently, Road boundaries are generated separately 
using Catmull-Rom splines based on RANdom SAmple 
Consensus (RANSAC) algorithm with varying road structure 
models to help the intelligent vehicle understand the structure 
as well as safe range of current road. 

The rest of the paper is organized as follows: Section II 
gives the outline of the proposed method. The detailed 
description of the MRF-based drivable road region detection 
method is presented in section III. Section IV explains the 
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road boundaries generation. The experimental results on real 
typical but challenging road scenarios are given in section V, 
which have demonstrated the effectiveness as well as 
robustness of the proposed method. Finally, the conclusion is 
drawn in section VI. 

II. OUTLINE OF THE PROPOSED METHOD 

In the projective geometry of two cameras and a world 
plane, images of points on a plane are related to 
corresponding image points in a second view by a planar 
homography as shown in Fig. 2 [12]. The map from the point 
x  to 'x  is the homography H  induced by the plane π . 
Between the image planes, there is 

                                             Hxx ='                                (1) 

 
Figure 2.  The homography induced by a plane. 

As for road detection, when we assume that the drivable 
road region is a planar plane, we can use the homography 
induced by the road plane to transform the image from one 
view to the other. When the transformed image is then 
compared against the reference image, only the points on the 
road plane can coincide very well while other points that 
elevate out from the road appear distorted, according to (1). 
Therefore, all the regions belonging to the same planar road 
plane should be contained in the matched area no matter how 
big their intensity differences are. In this case, the drivable 
road region detection is actually a simple form of the stereo 
matching problem. It just needs to find the matched pixel 
locations, which will be regarded as the detected road region, 
between the transformed image and the reference image, 
instead of finding the correspondences for every pixel. 

Fig. 3 shows the flow diagram of the proposed method. 
Firstly, MRF-based road detection is performed, in which, 
drivable road detection is defined as a binary labeling. The 
binary labeling is optimized by minimizing a well defined 
energy function that accounts for the planar road region. The 
energy is minimized in coordinate descent iterations that 
alternate between optimizing the homography induced by the 
planar road plane for 2D projective transformations and 
implementing efficient belief propagation to find the optimal 
binary labeling that segments the image into two 
non-overlapping road and non-road regions. Secondly, both 
of the road boundaries are generated separately using 
Catmull-Rom splines based on RANSAC algorithm with 
varying road structure models to help the intelligent vehicle 
understand the structure as well as safe range of current road. 
In this step, roadside pixels are extracted, and then line 
segments are grouped as well as selected for fitting. 
Meanwhile, the skeleton of detected road is also extracted to 
determine the number of control points of the splines 
according to different road structure models. In the suggested 
framework, both intensity and geometry information of road 
scenarios are used to contain all the regions belonging to the 
planar road plane, and the left and right road boundaries are 
generated separately using a robust fitting algorithm to handle 

different road structures. Experimental results on a wide 
variety of typical but challenging scenarios have 
demonstrated the accuracy as well as robustness of the 
proposed method. 

 
Figure 3.  Flow diagram of the proposed method 

Textureless regions that connect to the road region, such as 
black cars, white walls, etc., may frequently cause 
misdetections, since the intensities do not change in some 
parts of the textureless region although their positions 
changed. In order to solve this problem, all textureless regions 
in the input image pair are extracted and their contours are 
recorded. Only the regions whose contours in the transformed 
image and the reference image coincide well will be 
preserved in the drivable road region. The disagreements of 
the other regions’ contours indicate they do not belong to the 
road plane. Therefore, these regions will be labeled as 
non-road regions. The parts of non-road regions included in 
the extracted drivable road region will be removed, although 
the intensity patterns coincide well. 

III. MRF-BASED DRIVABLE ROAD REGION DETECTION 

MRF models provide a robust and unified framework for 
stereo problems. An important component of MRF-based 
approaches is the inference algorithm used to find the most 
likely setting of each node in the MRF. Therefore, we 
formulate the drivable road detection as a MRF model and 
implement an efficient belief propagation approach to obtain 
the Maximum A Posteriori (MAP) estimation in the MRF, 
since the MAP-MRF approach has proven to be extremely 
successful for many vision applications [13]. 

A. Dynamic Homography Estimation 
Many stereovision-based road detection methods assume 

that the cameras are calibrated beforehand and the 
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geometrical relations between cameras and the road plane are 
known and fixed. However, these assumptions are not 
practical in real applications because the vehicle may tilt and 
the cameras may vibrate. Therefore, the geometrical relations, 
e.g. the homography induced by the road plane in the 
proposed method, must be estimated and updated 
dynamically for each and every frame in order to achieve 
more accuracy as well as robustness. Feature-based methods 
can estimate the homography accurately based on the 
correspondences of feature points on the road plane. However, 
once some mismatching happens to the correspondences, the 
result will be affected. Therefore, we employ an area-based 
method for the estimation of homography. In this case, the 
point-to-point correspondences are not necessary and the 
matching is optimized using all pixel information in a 
predicted road region, which is derived from temporal 
information of the input image pairs based on Markov chains. 
Therefore, more accurate as well as robust detection of the 
road region can be expected. 

In the present case, we are seeking a homography H  that 
minimizes the total intensity error function )(HE  in (2) 
between the image pair, 

                           ∑ ∈
−=

Rpx rl HxIxIHe |)()(|)(                  (2) 

where, rl II ,  are the left and right image, respectively, Rp  is 
the predicted road region. This region is actually derived from 
the detected drivable road region of the adjacent previous 
image, by transforming it with the predefined homography 
between sequential images according to the current driving 
state. The current driving state can be obtained from the 
control system of the host vehicle, or ego-motion estimation 
if communication with the control system is not available. 

B. MRF-based Drivable Road Region Detection 
In the MRF, given the transformed image and the reference 

image, we present the road detection as a binary labeling 
}1,0{: →xf  for each pixel x  at pixel location p  in the 

reference image, and the assigned label denoted by a random 
variable pf  is 

                  
⎩
⎨
⎧ ∈

=
Otherwise0

region  road  Drivable1 p
f p                (3) 

Our goal is to find the correspondence that matches pixel 
locations of similar intensity while minimizing the number of 
discontinuities, since the labels should not vary in either road 
or non-road region but just change at pixel locations along the 
boundary between the two regions. We accomplish this by 
minimizing the following energy function, which describes 
the quality of labeling, 

                    ∑∑
∈∈

+=
Nqp

qp
Pp

pp ffVfDfE
),(

),()()(              (4) 

where P  is the set of pixels in the reference image. N  are 
the undirected edges in the 4-connected image grid graph. 

)( pp fD  is the cost of assigning label pf  to pixel p , and is 
referred to as the data term. ),( qp xxV  measures the cost of 
assigning labels pf  and qf  to two neighboring pixels, and is 
referred to as the smoothness term. 

In the proposed method, we define the data term as 

                   )1(|)()(|)( pptrlpp fcfpIpIfD −+−=         (5) 

where trl II , are the intensities in the reference image and 
transformed image, respectively. c  is a thresholding factor to 
adjust the influence of the intensity difference on the labeling. 
In order to minimize the data term, pf  will be assigned with 
1 if the intensity difference is smaller than c . Otherwise the 
variable will be assigned with 0. In stereo problems, the 
smoothness term is generally based on the difference between 
labels, rather than on their actual values. Therefore, we define 
the smoothness term as 

                              ||),( qpqp ffffV −= λ                      (6) 

where λ  is a scaling factor. The smoothness term enforces 
smoothness by penalizing the discontinuities. ),( qp xxV  is 
equal to 0 for the neighboring pixels belonging to the same 
road or non-road region and λ  for the pixels along the 
boundary between the two regions. Finding a labeling that 
minimizes this energy corresponds to the MAP estimation for 
the MRF defined as above. 

C. Combination of Dynamic Homography Optimization and 
MRF- based Road Detection 

The optimized homography is used to transform an image 
from one view to the other, which is then compared against 
the reference image. Therefore, it is only related to the data 
term. We combine the dynamic homography estimation and 
the MRF-based road detection in the proposed method by 
re-defining the data term as 

                  )1(|)()(|)( pprlpp fcfHpIpIfD −+−=         (7) 

where rl II ,  are the intensities in the left and right image, 
respectively. The energy in (4) with the new data term is 
minimized in coordinate descent iterations [14] that alternate 
between optimizing the homography and implementing an 
efficient belief propagation approach [15] to find the optimal 
binary labeling that segments the image into two 
non-overlapping road and non-road regions. The optimization 
procedure is initialized by a feature-based road detection 
method [16], in which, the homography is estimated by 
corresponding corner points lying on the road plane between 
the first stereo image pair and the drivable road region is 
extracted using the SAD matching technique with the 
transformed image and the reference image. 

It should be noted that the homography is only optimized 
at pixels where 1=pf . Therefore, the optimized 
homography is purely induced by the road region, which 
ensured the accuracy of the estimation of homography. 

IV. ROAD BOUNDARIES GENERATION 

The goal of road detection is to build and maintain the 
representation of the world that the behavior generation 
components of the intelligent vehicle or mobile robot can use 
to plan and execute actions [1]. Therefore, in the proposed 
method, both of the road boundaries are generated separately 
based on the obtained drivable road region, using 
Catmull-Rom splines with RANSAC algorithm to help the 
intelligent vehicle understand the structure as well as safe 
range of current road. Note that we generate the left and right 
boundaries separately, unlike much of the previous work 
which has a road model of uniform width, to deal with various 
scenarios such as roads with branches or varying width. 

Splines are smooth piecewise polynomial functions, and 
they are widely used in representing curves. Various spline 
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representations have been proposed, and we use the 
Catmull-Rom spline among them because its control points 
are actually on the curve and it has local control, which means 
that modifying one control point only affects the part of the 
curve near that control point. These characteristics enable fast 
fitting of the curve. Given a series of positions ),...,,( 10 nPPP , 
the Catmull-Rom spline is able to interpolate (pass through) 
the points from 1P  to 1−nP . In addition, the tangent vector at 

iP  is parallel to the line connecting 1−iP  and 1+iP . 
The formula is Catmull-Rom spline for one segment is 

[17]: 
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where iP  is the control point which requires the 
Catmull-Rom spline to pass through, ]1,0[∈t . 

The main behavior generation component of a driving 
intelligent vehicle is the steering system. Therefore, the 
general situations of understanding the structure of the road 
for decision making mainly include four fundamental road 
structure models, i.e. straight ahead road, left bound road, 
right bound road and branch road. For the first three 
non-branch roads, two independent Catmull-Rom splines 
with five control points are eligible to describe the left and 
right road boundaries. For the branch road, the Catmull-Rom 
spline with six control points is used to describe the boundary 
with branch. Here, we set the first and the last two control 
points equal for each spline since the Catmull-Rom spline 
interpolates all but the first and the last control points. 
Therefore, each boundary is actually determined by three 
control points for non-branch roads and four control points 
for branch roads. 

Once the drivable road region is detected, its skeleton is 
extracted to judge whether the current road is a branch road or 
not, and determine the number of control points as well. 
Subsequently, pixels on both lateral sides of its contour are 
extracted and the line segments, excluding the nearly 
horizontal segments and segments lying in the image borders, 
are grouped into two independent sets to fit the Catmull-Rom 
splines for the left and right road boundaries, respectively. 
More formally, a line segment AB  lying outside the image 
borders will be preserved for the spline fitting if 

                                       δ>
−
−

BA

BA

xx
yy                           (9) 

where BBAA yxyx ,,,  are coordinates of the end points and δ  
is a threshold to exclude the nearly horizontal line segments.  

 
Figure 4.  (a) Line segment grouping and neighborhood window of interest     

(b) fitting result using RANSAC algorithm 

The RANSAC algorithm is then applied to each preserved 

line segments set to generate the road boundary using 
Catmull-Rom spline by repeating the following procedures N 
times, with an example of left boundary generation shown in 
Fig. 4. 

a) Select a random sample of line segments. 
b) Fit a Catmull-Rom spline with the selected sample 
segments using the least squares method. For each of the 
selected sample segments, we define a neighborhood 
window of interest around it. The first (nearest) control 
point is forced to be on the side border of the image due to 
the camera configuration. The last (farthest) control point 
is set to the end point of the farthest line segment. The 
other control points are searched in the neighborhood 
windows of interest. The positions of control points that 
minimize the sum of squared error of fitting the sampled 
points will be preserved as the fitting result. The initial 
positions of the control points are derived from the 
adjacent previous image, by moving the previously 
detected boundary’s control points according to the 
current driving state. 
c) Calculate the score of the fitted spline and check the 
inliers. In normal RANSAC algorithm, the score that 
indicates the goodness of the fit is obtained by calculating 
the normal distance from each point to the fitted spline. 
However, it has to solve a quintic equation for each and 
every point. Here, we implement a more efficient 
approach [18] to calculate the score of the fitted spline by 
rasterizing it and then counting the values of pixels 
belonging to the spline. 
d) Update the spline (positions of control points) and the 
inliers set if the number of inliers for the spline is 
maximum. 
e) Update N. 

The use of RANSAC algorithm for fitting the road 
boundaries enables an accurate as well as robust road 
boundary generation even when significant amount of 
outliers are present in the drivable road region detection.  

V. EXPERIMENTAL RESULTS 

In the experiments, the proposed method has been 
implemented in C++ on Microsoft Windows using the 
OpenCV library. The gray scale road image sequences on a 
wide variety of typical but challenging scenarios were tested 
on a Core2 Dual 3.0 GHz PC without code optimization, 
which are from three video clips of 640×480 image resolution. 
The Canny edge detector [19] is performed in the original 
input image pair, and the superimposed images of the original 
images and the edge images are input and processed in the 
road detection. The aims of this step are: a) to obtain the 
textureless regions in the images, due to the reason explained 
in section II; b) to enhance the edge evidence while 
maintaining the texture information. The enhanced edge can 
prevent connections of the regions in the result image that are 
actually unconnected for a human observer as much as 
possible. The average computational time was under 550 
ms/frame. The computational time will be further reduced to 
satisfy the real-time detection for the experimental vehicle by 
utilizing special image processing hardware, reducing the 
image resolution as well as optimizing the codes of the 
proposed method. 

Here, we mainly focused on various typical but 
challenging scenarios with different complicated road 
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appearances and weather conditions, such as multi-colored 
paved road, dirt roads with brushwood, and sunny roads with 
heavy shadows, etc. Example results of ten image sequences 
are shown in Fig. 5, in which, the detected drivable road 
region is indicated by the highlight area and road boundaries 
are indicated by the blue splines with three or four red control 
points. The left column shows the first images of the 
sequences, the middle column shows the detected results of 
the first images, and the right column shows the detected 
results of the last images of the sequences. None of the 
example roads has homogeneous surface. Fig. 5(a) shows the 
results on a left bound turnoff road with traffic signs on the 
surface. The Catmull-Rom spline with four control points is 
used to describe the left road boundary. Fig. 5(b) shows the 
results on a straight ahead road where only the right border 
exists and many cars parked on the left of the road. Fig. 5(c) 
shows the results of a right turn of the vehicle in an 
intersection where the border between the lawn and the road 
is very low. There are no road boundaries generated because 
the line segments on both sides of its contour belong to the 
image borders so that there is no line segments preserved. Fig. 
5(d) shows the results on a multi-colored paved road with a 
passing vehicle, which is detected and excluded from the 
drivable road region as well as the right road boundary. Fig. 
5(e) shows the results on an even more complicated 
multi-colored paved unflat road. The textureless pillars that 
connected to the road region were excluded. Fig. 5(f) shows 
the results of a slanted planar road with many complex 
intensity patterns on the surface, which substantiated that the 
proposed method can overcome the sensitivities brought by 
complex unhomogeneous road surfaces by the belief message 
propagating through neighbors. Fig. 5(g) shows the results on 
a dirt road with poorly-defined borders. There are many cars 
on the left side of the road and short brushwood on the right 
side of the road. Fig. 5(h) shows the results of a right bound 
dirt road with many faded leaves and grass on the surface. Fig. 
5(i) shows the results on a sunny road with heavy shadows of 
buildings and trees as well as a passing bicycle. Both the 
sunny road region and the shadowed road region were 
included in the drivable road region, only the borders between 
the sunny and shadowed regions are missed due to the strong 
edge. Fig. 5(j) shows the results on an urban road at night, 
where there are both leading and passing vehicles with open 
lamps. While the right white line is missed in the drivable 
road region detection due to the strong edge, the right road 
boundary is generated along the white line due to the 
preserved line segments. In the typical but challenging 
scenarios shown in Fig. 5 we can see that, the drivable road 
region as well as road boundaries are basically in good 
agreement with the real situation. The generated road 
boundaries can reveal the structure as well as safe range of 
current road so that the intelligent vehicle can understand it 
and make the correct decision to drive in a safe path. 

Furthermore, quantitative evaluations as well as a 
comparison with road detection method using SAD matching 
[16] with the ten image sequences are given in Table I. For 
the example images in the sequences, the pixels were 
manually labeled by a human operator, which is taken as the 
ground truth labeling. The automatic detection results are 
quantitatively evaluated according to three ratios: the false 
positives ratio (FPR), the false negatives ratio (FNR) and the 
accuracy, which are defined as follows: 

%100FPR ×=
∑
∑

∈

∈

Si i

Si i

P

FP                      (10) 

 
Figure 5.  Example detection results. (a) left bound turnoff road (frames 117, 

130), (b) straight ahead road (fames 485, 507), (c) right turn (frames 396, 
423), (d) multi-colored paved road (frames 272, 307), (e) multi-colored 

unflat road (frames 799, 830), (f) slanted planar road (frames 1043, 1067), (g) 
dirt road (frames2012, 2048), (h)right bound dirt road (frames 2099, 2124), (i) 
sunny road with shadows (frames482, 504). (j) night view road (frames 48, 

89). 
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where, S  indicates an image sequence, iFP  is the number of 
non-road pixels erroneously labeled as road (false positives) 
in the ith image, iP  is the number of road pixels in the ith 
ground truth labeling, iFN  is the number of road pixels 
erroneously labeled as non-road (false negatives) in the ith 
image and iN  is the number of non-road pixels in the ith 
ground truth labeling. Table I shows the detection accuracy of 
the proposed method is satisfying and better than the method 
using SAD matching, especially for the roads with complex 
unhomogeneous surfaces. 

TABLE I.  QUANTITATIVE EVALUATIONS OF THE IMAGE SETS USING 
THE PROPOSED MEHTOD AND METHOD USING SAD MATCHING 

 
Method using SAD matching The proposed method

FPR 
(%) 

FNR 
(%) 

Accura- 
cy (%) 

FPR 
(%) 

FNR 
(%) 

Accura-
cy (%) 

(a) 1.521 1.913 98.372 0.456 0.714 99.474

(b) 1.502 4.689 97.688 0.732 1.316 99.119

(c) 1.137 4.756 97.819 0.606 2.584 98.823

(d) 1.024 40.215 89.122 0.832 7.760 97.426

(e) 4.112 45.172 84.843 1.142 12.901 95.695

(f) 6.642 49.523 82.624 1.337 1.436 98.639

(g) 5.670 25.702 85.931 2.932 0.394 98.132

(h) 5.026 24.581 85.799 0.840 1.309 98.940

(i) 2.037 28.312 83.123 1.170 1.841 98.451

(j) 2.113 29.687 90.996 0.350 11.138 96.954

Both Fig. 5 and Table I have demonstrated the accuracy as 
well as robustness of the proposed method. 

VI. CONCLUSION 

In this paper, we proposed a stereovision-based road 
boundary detection method to cope with challenging 
scenarios such as unstructured roads with unhomogeneous 
surfaces. The drivable road region is detected by minimizing 
a well defined energy function that accounts for the planar 
road region in the MRF by utilizing both intensity and 
geometry information of the road scenarios. Spline-based 
road boundaries are generated separately based on RANSAC 
algorithm with varying road structure models to help the 
intelligent vehicle understand the structure as well as safe 
range of current road. The use of RANSAC algorithm in road 
boundary generation can correct the errors by removing 
outliers if misdetection is present in the previous detected 
drivable road region. Therefore, the proposed method can be 
expected to be more accurate as well as robust. Experimental 
results on a wide variety of typical but challenging real road 
scenes have demonstrated the effectiveness of the proposed 
method. 
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