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Abstract— This paper presents a method of light pattern
blur estimation for its application to automatic projector focus
control in structured light 3D camera. To overcome shortcoming
of the conventional methods for estimating blur of light pattern,
we propose to normalise the light pattern image incorporating
reference images. Which are made available by a structured
light 3D camera. The reference black and white patterns
are utilised in such a way as to eliminate the dependence
of intensity variation around an edge on surface reflectivity.
Then the unknown blur radius is estimated from the first
derivative of normalised edge. Experimental results on both
synthetic and real images verify that the proposed method is
indeed independent of surface reflectivity and is accurate and
sensitive enough to the small change of blur. Finally, based on
the proposed light pattern blur estimation, a structured light
3D camera that is equipped with automatic multi-stage focus
control in a beam projector has been built to demonstrate
its capability of capturing the 3D workspace of large depth
variations.

I. INTRODUCTION

Depth imaging based on the structured light [1][2][3] has
been drawn much attention in robotics applications because
of its effectiveness not only over texture-less environments
but also to various types of surface and lighting conditions.
When using a structured light 3D camera, the limited depth
of field (DOF) of a beam projector dictates the narrow range
of measurable depths given a fixed projector focus. This
is problematic in certain robotic applications when a fixed
projector focus is used for a structured light 3D camera,
since the robots may operate in the workspace with large
depth variations. One way to solve this problem is to endow
a structured light 3D camera with the capability of automatic
projector focus control. Unfortunately, no such focus control
has been implemented to date. To implement an automatic
projector focus control algorithm, we must first solve the
problem of the blur estimation of the pattern projected onto
the surface of the object.

Several blur estimation methods have been proposed:
Chiang [4] computes the blur radius based on the blurred
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Fig. 1. Illustrative object with edges of texture and light pattern.

model using its first and third derivatives; Elder [5] proposes
to use the second Gaussian derivative operator in estimation;
Hu [6] first re-blurred the input edge twice with different
blur radii, then the unknown blur radius is estimated from
the difference ratios between the multiple re-blurred edges
and the input edge; Price [7] uses a parametric blur model
in conjunction with the maximum likelihood technique to
estimate the blur function; and Rooms [8] proposes a wavelet
based method to estimate the blur. However, it turns out that
these conventional blur estimation methods are not suitable
for estimating the blur of projector’s light patterns of the
structured light 3D camera: First, they are often erroneous
and even in failure due to the variation of surface reflectivity.
Second, they are not sensitive enough to the small change of
blur.

Moreover, as illustrated in Fig. 1, the edges of the texture
and the light pattern appear together on the object’s surface.
These methods fail to distinguish between these two types
of edge. One of the reasons is that, these methods only use
information from the source image, where the stripes are
expressed as the artificial texture of the object.

In our approach, the structured light based depth imaging
provides a means of using a patterning source as part of the
blur estimation. By normalising the stripe image with these
two reference black and white patterns, we can eliminate
the effect of the surface properties such as texture, colour
content, etc., hence keeping the artificial texture to estimate
the blur.

The major contributions of the paper are:
• A method to estimate the blur of light patterns, and
• Demonstration of its application using the structured

light 3D camera for the automatic multi-stage focus
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Fig. 2. 1024x768 size light patterns. Two references: black pattern (a) and
white pattern (b). The 1-stripe pattern (c).
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Fig. 3. The blurred edge fb(x) and the ideal step edge s(x).

control of a beam projector.
The remainder of the paper is organised as follows: In

Section II, we describe our blur estimation method. Experi-
mental results are provided in Section III. In Section IV we
show the application of blur estimation in automatic projector
focus control using a structured light 3D camera and, finally,
Section V concludes the paper.

II. THE PROPOSED BLUR ESTIMATION METHOD

We suppose the light pattern is defined by a periodic
arrangement with a well defined orientation. Subsequently,
we simply analyse the edge along one axis of orientation.
When the projector illuminates a black pattern (Fig. 2(a)),
the captured image is regarded as the 0-State. The State-
0 has an unknown offset B. We assume that a noise n(x)
is added to this reference image, which is modelled as a
stationary, additive, and zero-mean white noise. The State-0
can be modelled as:

f0(x) = B + n(x) (1)

When the projector illuminates a white pattern (Fig. 2(b)),
the captured image is regarded as the State-1. The function
values are assumed to be equal to the summation of the
value of f0 and unknown amplitude A, which is the amount
of reflection property of the object’s surface. The State-1 can
be expressed as:

f1(x) = f0(x) + A = A + B + n(x) (2)

When the projector illuminates a stripe pattern (Fig. 2(c)).
If the object is placed inside of the projector’s DOF, the edge
of the pattern on the object will be very sharp, we assume
that amount of reflection frb(x) is a step edge. Otherwise,
the edge of the pattern on the object will be blurred; thus,

frb(x) is not a step function but gradually increases at the
transition area. And the blurred edge fb(x) is modelled as
summation of frb(x) and State-0, as shown in Fig. 3:

fb(x) = f0(x) + frb(x) = frb(x) + B + n(x) (3)

where
0 ≤ frb(x) ≤ A

To eliminate the dependence of the amount of reflection
on object’s surface properties, we normalise fb(x) by using
f0(x) and f1(x), followed by the common noise elimination:

fb(x) =
fb(x) − f0(x)

f1(x) − f0(x)
=

frb(x)

A
(4)

where frb(x) represents blurred edge. We assume the focal
blur kernel is Gaussian, so that we can obtain the edge by
convoluting a step edge with a blur kernel.

The step edge s(x) is modelled as a step function as
illustrated in Fig. 4,

s(x) =

{

A + B (x ≥ 0)
B (x < 0)

(5)

The Gaussian blur kernel is modelled as a normalised
Gaussian function:

g(x, σ) =
1

σ
√

2π
e

(

−
x
2

2σ
2

)

(6)

where σ is the unknown blur radius to be estimated.
It follows that the blurred edge frb(x) is the result of the

convolution between the step edge (s(x)−B) and the focal
blur kernel g(x, σ):

frb(x) = (s(x) − B)⊗g(x, σ) = s(x)⊗g(x, σ)−B⊗g(x, σ)
(7)

where ⊗ denotes the convolution operator. Note that g(x, σ)
is a normalised function, so that

B ⊗ g(x, σ) = B

Thus Equation (7) collapses to a simple form,

frb(x) = s(x) ⊗ g(x, σ) − B (8)

We take the first derivative of the normalised blur edge
fb(x)

d(fb(x))

dx
=

1

A

d(frb(x))

dx
=

1

A

(

d(s(x))

dx

)

⊗ g(x, σ) (9)

The first derivative of the step function is a delta function,
as shown in Fig. 4. From (5) we have

d(s(x))

dx
= Aδ(x) (10)

Combining (9) and (10), we have

d(fb(x))

dx
=

1

A
Aδ(x) ⊗ g(x, σ) = δ(x) ⊗ g(x, σ)

But the convolution of a function with a delta function is
the function itself, so that

fb

′

(x) =
d(fb(x))

dx
= g(x, σ) =

1

σ
√

2π
e

(

−
x
2

2σ
2

)

(11)
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Fig. 4. An ideal step edge (left) and its first derivative (right).

Fig. 5. The first derivative of the blurred edge.

Equation (11) shows that the first derivative of a blurred
edge is a normalised Gaussian function. And as shown in Fig.
5, the maximum of a Gaussian function at position x = 0.
However, the interpretation above uses blurred rising-edge
fb(x) as shown in Fig. 3. Since the σ must be positive, but
the first derivative of falling-edge is negative. Thus we get
the general blur estimation equation as flows:

σ =
1

∣

∣

∣
fb

′

(0)
∣

∣

∣

√
2π

(12)

From (12), we see that estimated blur radius is not affected
by the offset B and amplitude A of the step edge, which
represents the property and reflectivity of the object’s surface.

III. EXPERIMENTAL RESULTS

In this section, we show the results of the proposed method
on both synthetic and real-test images. We also compare
these results with the results of the methods developed by
Elder and Hu.

For the synthetic image, we blur the step edge using
a Gaussian blur kernel with linear blur radius increases
along the edge from 0 to 10, as shown in Fig. 6(a). We
experimentally choose the optimal value of σ2 for Elder’s
method, and σa, σb for Hu’s method. The estimated blur radii
using Elder’s and Hu’s method are described in Fig. 6(b), and
the results of proposed method are shown in Fig. 6(c). As
we can see, Elder’s method is not sensitive to the change
of the blur; and method proposed by Hu gives an erroneous
estimation. Whereas the proposed method gives better result
compare to those of two methods, especially when the blur is
relatively small, as shown in Fig. 6(c). When the blur radius
becomes large, it does not affect much on the edge’s center
but mainly on the slope, thus the height of first derivative’s
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Fig. 6. Blur estimation with synthetic image. (a) a synthetic image is
blurred with increasing blur radius from 0 to 10, from left to right. The
estimated blur radius along the edge using Elder’s and Hu’s method (b),
and proposed method (c).

peak does not change much, that why we get the staircase
as shown in Fig. 6(c).

With the real-test image, we use different colour papers
placed on the same plane in front of the projector. The
captured image using a stripe-pattern is shown in Fig. 7(a);
two reference images for the proposed method are also
captured when projector illuminates black and white patterns.
We use Elder’s, Hu’s and proposed method estimate the blur
radius of the stripe’s edges along the red line in Fig. 7(a).
Fig. 7(b) shows the raw data along the red line, these data are
normalised by applying Equation (4), this procedure removes
the distortions on the edge caused by the change of the colour
and also makes all stripes have approximately same height
as shown in Fig. 7(c). Ideally, the estimated blur radius of
edges along the red line must be equal due to the same
condition. The proposed method has good results that are
approximately equal, as illustrated in Fig. 7(d). Whereas the
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Fig. 7. Blur estimation with real-test image. (a) As part of captured image, the projector projects a stripe-pattern on a board which has different colour
papers; the red line indicates the row for estimation with results shown in figures (d)-(f). (b) The raw data along red line and (c) is the normalised data
using Equation (4). (d) The result of proposed method. (e) The result of Elder’s method. (f) The result of Hu’s method.
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Fig. 8. Setup of the automatic projector focus control system.

results of Elder’s and Hu’s methods vary depending on the
colour of the paper, as shown in Fig. 7(e) and (f).

IV. APPLICATION

In this section we show the application of the proposed
light pattern blur estimation method in automatic projector
focus control in a structured light 3D camera. The hardware
setup is shown in Fig. 8. The system consists of: a Flea CCD
camera with 1024x768 resolution, Optima EP 729 model
projector. A DC motor with the 90-teeth-gear that is linked
to the projector’s lens in order to control the lens algorithm
focus, and a control circuit board that is of responsible for

motor control while communicating with the host computer.
The structured light 3D point cloud reconstruction has been
implemented in conjunction with careful calibration.

During the implementation of the proposed blur estimation
method in the auto focus control, we employ the stripes
pattern which are defined by a periodic arrangement with
a well defined orientation. Consequently, we search and
compute the blur of edges along either the columns if
the stripes have horizontal direction, or the rows if the
stripes have vertical direction. After normalising the image
with stripes by the reference images, we differentiate and
search for peaks. The centers of the edges can be deduced
from the peaks by using the window based search method.
Finally, the blur radius is computed using Equation (12). We
experimentally choose for blur radius that decides an edge is
sharp enough so that the object contains the edge is in focus
or not, in our experiment the threshold is chosen with value
0.9.

We set up two objects, one is near (1m from projector) and
one is far (3m from projector), while the projector illuminates
a horizontal stripe pattern. The lens of the projector is first
initialized at the maximum position. The algorithm first
controls the lens to focus the light pattern on the box, as
shown in Fig. 9(a), the in focus stripes are drawn with
red circles. After reconstructing 3D point cloud of the in
focus object, the projector’s lens is rotated to focus on
other objects. The background curtain is put right behind
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Fig. 9. The box is in focus (a) and the statue and background are in focus (b). The pixels of in-focus stripe’s edges are marked with red circles. Graph
of pixels of in-focus stripes’ edge while rotating projector’s lens (c). 3D point cloud of the scene with multi-stage focusing in front view (d) and in side
view (e).
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(a) (b)

Fig. 10. 3D point cloud in the case of multi-stage focusing (a), and just focus on the box (b) in side-view.

the statue, so that both background and statue are in focus
at the same time, as illustrated in Fig. 9(b), the in focus
stripes are drawn with red circles. After reconstructing 3D
point cloud of the in focus objects, the algorithm continues
to rotate the lens to search for in focus object, but there
is no more object then the lens is rotated to the minimum
position, the graph of the number of in focus pixels in blur
map while the lens of the projector is rotating is described
in Fig. 9(c). Finally the 3D point clouds of in focus objects
are combined to get the complete 3D point cloud of the
scene, as shown in Fig. 9(d)-(e). Fig. 10 demonstrates the
better result of the multi-stage auto-focusing (Fig. 10(a)) in
comparison with the case of fixed projector focus on the
box (Fig. 10(b)). In Fig. 10(b), the 3D point cloud has much
variation, because when the object is out of focus, the error
in finding correspondences between projector and camera
(in 3D reconstruction process) will increase. This result
demonstrates the significant improvement in the accuracy
when apply the light pattern blur estimation based auto-
focus control compare with fixed-projector focus in the same
structured light 3D camera system.

V. CONCLUSIONS

In this paper, we have presented a light pattern blur
estimation methods. The experimental results have shown
that the accurate and robust blur estimation of a light pattern
is shown feasible for a wide variation of surface properties.
We have also introduced the application of proposed blur
estimation method to automatic projector focus control for
robotic applications of structured light 3D camera. The ac-
curacy of 3D point cloud of scene with large depth variation
is significantly improved.
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