
  

  

Abstract—A simple but effective method for fast path finding 
for mobile robots in grid-based search space is presented. The 
paper presents a systematic way to reduce the resolution of a 
grid map preserving the occupancy structure of the original 
map. Paths are found in two steps with varying quantization 
levels of the space in coarse-to-fine manner. The resulting paths 
are practically optimal and experimental results show a great 
reduction of the searching time, making it possible to implement 
a real-time global path planner in a very large environment. 

I. INTRODUCTION 
AST path finding is one of the most critical issues in 

the domains of real-time strategy (RTS) games and 
robotics applications. Conventional approach for the path 
planning is to use A* search [1] on a uniform grid 
representation of the world. A* search has been widely used 
because it ensures to find an optimal or shortest path. 
However, it is a common observation that A* can be 
extremely slow for a large search space; it is known that time 
and space complexity of A* is O(bd), where b is the branching 
factor and d the solution depth. This shortcoming of A* has 
expedited the development of numerous fast search 
algorithms. 

Warren [2] developed a modified A* algorithm that 
expands a search tree only on a subset of grid cells uniformly 
sampled from the start cell with a pre-defined step size; the 
step size is gradually reduced until a path is found. In our 
implementation of the method we found that it is very fast and 
effective for most cases but sometimes produces an abnormal 
path when the optimal path is excluded by the uniform 
sampling. Anytime algorithms [3-6] are another fast variants 
of A* search, which use a strategy of finding an initial 
suboptimal path quickly, then improving the path quality 
progressively as time allows. ARA* (Anytime Repairing A*) 
[7] developed by Likhachev et al. further increased the 
efficiency of the anytime heuristic search by reusing previous 
searching efforts during iterative refinement of path quality. 
Anytime algorithms generally speed up the search by 
sacrificing the optimality condition of A* search and are 
effective mainly when there exists a nearly straight path to a 
goal position. For very high-dimensional problems, LaValle 
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and Kuffner [8] developed RRT (Rapidly-exploring Random 
Tree), which is grows a search tree based on random 
sampling of the search space biasing the growth of this tree 
towards a particular goal configuration or unexplored regions. 
RRT generally does not secure the path quality, although it is 
very fast. Recently RRT method was extended to provide 
anytime capability [9], replanning capability [10], or both 
[11]. 

As another branch of fast path finding approaches, some 
researchers have focused on the development of hierarchical 
abstraction of the environment that can reduce the search 
space. Kambhampati and Davis [12] reduced the search space 
by using a quadtree decomposition of the world at the cost of 
low path quality. Chen et al. [13] extended quadtree to framed 
quadtree by further decomposing the border of each block of 
quadtree with cells at the highest resolution, which improves 
the solution quality significantly as it allows crossing a block 
between any two border cells. Hierarchical approaches 
[14-17] build special abstraction graphs from original grid 
maps. Thereafter, initial abstract paths are searched quickly in 
the abstraction graphs and then refined in the original search 
space. Rabin [15] proposed a two-level hierarchy that 
abstracts a map into clusters of rooms in a building or square 
blocks on a field, which forms a graph with entrance of rooms 
as vertexes. One drawback of this approach is that the 
abstraction can't be done in a domain independent way. 
HPA* [16] builds abstraction graphs automatically by 
partitioning a map into rectangular blocks of large sectors and 
calculating optimal local paths between limited sets of 
entrances and exits to the sectors. The authors reported that 
HPA* was up to a 10 times faster than A* search with 1 % 
error from optimal on average.  

So far we have briefly reviewed two branches of fast path 
finding approaches. Fast variants of A* usually speed up the 
search at the cost of low path quality and have a limited 
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Fig. 1. Hierarchical map abstraction and coarse-to-fine path finding.
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performance for very large maps. On the other hand 
hierarchical approaches are well-suited for very large maps as 
they reduce the search space into tractable one. However, 
previous hierarchical approaches also have a problem of 
suboptimal solutions. It is mainly because the paths found at 
abstraction level are used as fixed waypoints for the stage of 
path refinement. In addition, they need to build and handle 
special abstraction graphs, which introduce complex 
implementation issues. 

In this paper we present a new hierarchical approach for 
fast path finding. Our algorithm, Coarse-to-Fine A* (CFA*), 
finds paths in two steps with varying quantization levels of 
the space in coarse-to-fine manner (Fig. 1). Different from 
previous hierarchical approaches we do not introduce a new 
graph structure, which needs complex processing, to abstract 
the search space. Instead, we use simple grid representation to 
abstract the structure of the world, which forms another grid 
map with coarse resolution. The key idea or main 
contribution of the paper is to provide a systematic way to 
reduce the resolution of a grid map while preserving the 
occupancy structure of the original grid map. Our approach 
very simplifies the implementation and enables obtaining 
practically optimal paths. Experimental results show that our 
method is roughly n/10 times faster than A* search for the 
problems of path length n with 0.1 % error from optimal on 
average; it is 20 times faster for paths of length 200 and 40 
times for length 400. 

The paper is organized as follows. In Sect. II we describe 
how to build an abstraction map of coarse resolution, while 
preserving the structure of the original map. We then describe 
our coarse-to-fine path finding method in Sect. III. We show 
experimental results in Sect. IV and conclude the paper in 
Sect. V. 

II. BUILDING ABSTRACTION OF THE SEARCH SPACE 
In this section we describe how to build an abstraction of 

the search space. The search space in our problem is 
represented by a grid map, each cell of which has one of two 
states: free or occupied. 

The path planning task for a mobile robot is to find an 
optimal or feasible path from current position to a goal 
position on the map. For the path planning the robot size 
should be considered for a robot to safely visit the path cells 
without causing a physical collision. For a given map of the 
problem space, therefore, we first compensate the robot size 
by enlarging the occupied cells in the map by r = rr + ds grid 
cells in all directions, where rr is the robot radius in the unit of 
grid cells and ds is an optional safety term (Fig. 2). This 
compensation is common in robotics domain [18]. The safety 
term ds usually is determined by considering localization 
error, sensor accuracy, and motion control error. With the 
compensation the robot can be treated as a point-like vehicle, 
which very simplifies the path planning task. The resulting 
grid map with occupied cells being enlarged by r grid cells is 
then used to build an abstraction map and to find a fine path in 
online coarse-to-fine search. We will call this map by 
configuration map. 

An abstraction of the space, called block map, is then built 
from the configuration map by merging each disjoint 
neighboring k × k grid cells into a single block. By this 

abstraction a m × m configuration map is reduced into 
a / /m k m k×⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥  block map. The state of each block is set to 

be occupied if all of the grid cells within the block are 
occupied and set to be free otherwise. Figure 3 shows an 
example of building a block map from a sample configuration 
map. 

One of the most important requirements that the resulting 
block map should satisfy is to preserve the occupancy 
structure of the original configuration map. This requirement 
is guaranteed if the block size k is determined to satisfy 
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Fig. 2. Compensation of the robot size. 

                      (a)                                            (b) 
 
Fig. 3. Building an abstraction: (a) block partitioning of a configuration map 
of  36 × 44 grid cells (cell boundaries are not drawn), (b) the resulting block 
map built from (a) with block size k = 4. 
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where w is the minimal width of the occupied region in the 
original grid map (not in the configuration map). Here we 
give an intuitive explanation. First, the structure of free 
region is preserved in the block map as the blocks containing 
any free cell are set to be free. That means if there is a cell 
path between two free cells in the configuration map there 
always is a block path in the block map consisting of blocks 
that contain the cell path. Second, the structure of occupied 
region is also preserved since at least one block is completely 
included in the occupied region and set to be occupied with 
any displacement of block-partitioning if the block size is 
equal or less than half of the width of the occupied region. In 
other words, it prevents a block path from being generated 
across the occupied region. In Eq. (1), w + 2r represents the 
minimal width of the occupied region in the configuration 
map and increased by one for the cases of odd value of w. 

The only remaining problem is to determine the value of w. 
Let us consider a pair of open cells and a line segment that 
connects the open pair and has the width of one grid cell. One 
constraint is that the line segment should not intersect with 
any other open cells except the pair of open cells. Among 
such line segments, we find one that has the smallest minimal 
bounding square. Let l be the size of the smallest minimal 
bounding square. Then, the value of w is given by l – 2. 
Figure 4 shows several examples of line segments on a 
sample grid map. In the figure, line A and line B satisfy the 
condition because they do not intersect with any other open 
cell except two ending points. However, line C intersects with 
two additional open cells and thus doesn't meet the condition. 
For the case of sample map given in Fig. 4, line A gives the 
smallest minimal bounding square, and we have w = 6. 

In a point of implementation view, however, it is not easy 
to determine w automatically. In addition, there are some 

exceptional cases that the value of w is not well defined. An 
empty map with no occupied cell is such an example, where 
we can use any block size. In order to avoid complex 
implementation, therefore, we can simply set the value of w 
as one and determine the block size k by the following 
formula: 

 
1+≤ rk .                                    (2) 

 
Eq. (2) gives stricter upper bound on block size k than the 

real given by Eq. (1) since w ≥ 1. If w cannot be defined as the 
case of empty map, we can use any value of k within the map 
size. Therefore, we always can determine the block size k 
safely with Eq. (2) not depending on the map structure. 

III. ONLINE COARSE-TO-FINE SEARCH 
The CFA* finds paths in two steps of coarse and fine 

search using the pre-computed block map and configuration 
map. We use A* search [1] for both coarse and fine search to 
ensure optimal solutions. 

For a given pair of start position S and goal position G in 
the configuration map, we first determine the corresponding 
start block S' and goal block G' in the block map which 
include S and G respectively. We define a block path as the 

path found in the block map from a start block S' to a goal 
block G'. The block path is found by A* search in the block 
map based on 8-connectivity. The search on a block map can 
be done very fast since the size of the search space has been 
greatly reduced. The resulting block path is used to restrict 
the search space of the configuration map in the next fine 
search. 

Since we use 8-connectivity, some blocks in the block path 
can be diagonally connected. For each diagonal pair of the 
block path, we add the other two adjacent cross-diagonal 
blocks into the block path, which forms an augmented block 
path (Fig. 5). This augmentation is very important in two 
aspects. Although the block path is optimal in the block map, 
optimal cell path might not be within the block path. By 
augmenting the block path, we can minimize the possibility 
that such a situation occurs. More importantly it guarantees 
that there always exists a cell path from S to G within the 
augmented block path. Without augmentation a cell path 
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Fig. 4. Determination of the minimal width of the occupied region. 

 
                      (a)                                         (b) 
 
Fig. 5. (a) A block path. (b) Augmented block path. 
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should pass through strictly the connecting points of the 
diagonal block pairs and therefore, the fine search will be fail 
if any connecting point among them is occupied. 

A final path at fine resolution is then obtained by applying 
A* search on the configuration map under the constraint that 
the searching space is restricted to the set of all grid cells 
belonging to the augmented block path. Figure 6 shows an 
example of coarse-to-fine path finding. The final path is very 
similar with the result from original A* search but the 
searching time is greatly reduced. 

The proposed CFA* can be viewed as a kind of searching 
framework and it does not depend on a specific search 
algorithm. That is we can use any fast or optimal algorithm 
including A* for both coarse and fine search. For example 
CFA* might be combined with Anytime A* for further speed 
up. Processing time for building a block map and 
configuration map does not affect the online search as they 
can be computed and saved offline. In a dynamic 
environment with moving obstacles, we need to update both 
block map and configuration map. However, the update is 
very local and can be implemented efficiently. 

Another way to speed up the CFA* search is to utilize a 
concept of partial refinement [17]. Instead of full refinement, 
we can consider some block on the block path as a local goal 
and refine only a part of block path to the local goal. Partial 
refinement is mostly useful in dynamic environment where 
replanning is frequently required. 

IV. EXPERIMENTAL RESULTS 
In this section we present experimental performance 

results of the proposed coarse-to-fine path finder (CFA*) in 
comparison with low-level A* search. The experiments were 
performed on a large test map of size 935 × 315, which is 
shown in Fig. 7. The test map was obtained by decomposing 

our real office environment of 74.8 m × 25.2 m in uniform 

grid with the cell size of 8 cm × 8 cm. We first enlarged the 
occupied cells in the test map with r = 3 to compensate the 
size of a robot, resulting a test configuration map. The value 
of r was determined on the basis of the size of Pioneer 3-DX 
(40 cm × 44.5 cm), which is a popular mobile robot platform 
manufactured by Mobile Robots. The block size k was set to 
be 4, resulting a block map of size 234 × 79. Note that we can 
safely set k to be r + 1 from Eq. (2). We then applied CFA* 
and A* search for each of randomly generated 2,000 free 
location pairs on the test configuration map and recorded 
their runtimes and solution path lengths. For CFA* runtime 
we measured total processing time that included the time for 
coarse search and fine search as well as the time for 
augmenting a block path, time for restricting the search space 
of the configuration map by the cells within the augmented 
block path, and time for restoring the configuration map after 
fine search for the next online searches. Although our 
implementation of A* search was not fully optimized, it 
doesn't matter because CFA* uses the same A* 
implementation with low level A* for both coarse and fine 
search. The searching results were sorted by their A* path 
lengths and averaged for each interval of path length with 
interval size 20. All experiments were run on a 3GHz 
Pentium PC with Linux system. 

A. Runtime Performance 
Fig. 8(a) shows average runtime of the A* and CFA* for 

each interval of path length. We can see that the runtime of 
A* increases exponentially as the path length increases but 
the proposed CFA* does not. More detailed comparison is 
shown in Fig. 8(b), where average, minimal, and maximal 
runtime ratios of CFA* over A* for each interval of path 
length are plotted. As expected, the graphs show that the 
proposed CFA* is much faster than A* and the speed up 
becomes outstanding as the path length increases. The 
experimental result shows that the CFA* is roughly n/10 
times faster than A* search for paths of length n on average. 

B. Solution Quality 
Fig. 8(c) shows the average and maximal ratios of the 

CFA* path length over A* path length for each interval of 
path length. The CFA* paths were shown to have only 0.1% 
error from optimal on average. In detail 79% of the time the 
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Fig. 6. An example of coarse-to-fine search. The block path is shown with 
thick line and the cell path with thin line. 

 
Fig. 7. Selected test map for the experiments. 
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CFA* paths were optimal, and 99% of the time they were 
within 1% error from optimal in worst cases. The error of 
CFA* paths in percentile is computed by 

 

100
*

** ×
−

=
A

ACFA

l
lle ,                           (3) 

 
where lCFA* is the length of the CFA* path, and lA* is the 
length of the optimal A* path. Even worst cases, it appears 
that it is within 2% error from optimal as shown in Fig. 8(c). 
The performance of the proposed CFA* is comparable with 
those of HPA* [16] and PRA* [17], where 10 times speed up 
and 1% error from optimal on average was reported. 

The experimental result shows that CFA* can produce 
suboptimal solutions, although they are nearly optimal. A 
suboptimal solution can be obtained with CFA* when the 
optimal cell path is not within the augmented block path. In 

such cases we obtain locally suboptimal solutions. Figure 9 
shows a typical example of suboptimal solution that can be 
found with CFA*. 

C. Block Size 
In order to see the effect of block size k on the performance 

of CFA*, we performed an experiment with an empty grid 
map of size 512 × 512, where every cell has free state. We 
chose an empty map so that the block size can be adjusted 
freely not being limited by Eq. (1). Fig. 8(d) shows average 
runtime of the CFA* with varying block sizes. It appears that 
the CFA* gives the best performance with k = 4. We also can 
see that the performance of CFA* does not increase any more 
with the block sizes larger than four. It is because a large 
block size also increases the search space for fine search, 
although it expedites the coarse search. 

The optimal block size can vary depending on the size or 
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Fig. 8. Experimental results: (a) Runtime performance of CFA* and A*. (b) Runtime speed up of CFA* over A*. (c) Path quality of CFA*. (d) Runtime
performance of CFA* with varying block size. 
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occupancy structure of a given map. However, performance 
of CFA* is not degraded so much with varying block size as 
shown in Fig. 8(d), and we empirically found that block size 
of k = 3 or k = 4 works well for most cases. 

V. CONCLUSION 
In this paper, we have presented a novel coarse-to-fine path 

finding method. The method was able to greatly reduce the 
searching time, while preserving the path quality. The 
real-time performance of our method makes it possible to 
implement efficient global path planners for mobile robots in 
a very large environment. In addition, the implementation is 
very easy and the method can be applicable for both static and 
dynamic environment. 

One constraint of our method is that the block size has to be 
determined with an upper bound. It means it is hard to apply 
CFA* for the problems that the robot size is smaller than a 
grid cell and the map has very narrow passages and thin 
obstacles like a maze. In robotics applications, however, we 
usually prefer a map with fine resolution as it can represent 
the occupancy structure of the problem space in detail and 
enables fine control of robot motion. Also, small block size of 
three or four is sufficient for most problems as mentioned 
previously. It means that we need to enlarge the occupied 
cells only by two or three grid cells so that the CFA* can be 
applied effectively. We thus expect that the proposed method 
can be applicable effectively for most real problems, when 
considering the ordinary robot sizes and optional safety term. 
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Fig. 9. An example of suboptimal CFA* path.  
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