

Abstract—A simple but effective method for fast path finding
for mobile robots in grid-based search space is presented. The
paper presents a systematic way to reduce the resolution of a
grid map preserving the occupancy structure of the original
map. Paths are found in two steps with varying quantization
levels of the space in coarse-to-fine manner. The resulting paths
are practically optimal and experimental results show a great
reduction of the searching time, making it possible to implement
a real-time global path planner in a very large environment.

I. INTRODUCTION
AST path finding is one of the most critical issues in

the domains of real-time strategy (RTS) games and
robotics applications. Conventional approach for the path
planning is to use A* search [1] on a uniform grid
representation of the world. A* search has been widely used
because it ensures to find an optimal or shortest path.
However, it is a common observation that A* can be
extremely slow for a large search space; it is known that time
and space complexity of A* is O(bd), where b is the branching
factor and d the solution depth. This shortcoming of A* has
expedited the development of numerous fast search
algorithms.

Warren [2] developed a modified A* algorithm that
expands a search tree only on a subset of grid cells uniformly
sampled from the start cell with a pre-defined step size; the
step size is gradually reduced until a path is found. In our
implementation of the method we found that it is very fast and
effective for most cases but sometimes produces an abnormal
path when the optimal path is excluded by the uniform
sampling. Anytime algorithms [3-6] are another fast variants
of A* search, which use a strategy of finding an initial
suboptimal path quickly, then improving the path quality
progressively as time allows. ARA* (Anytime Repairing A*)
[7] developed by Likhachev et al. further increased the
efficiency of the anytime heuristic search by reusing previous
searching efforts during iterative refinement of path quality.
Anytime algorithms generally speed up the search by
sacrificing the optimality condition of A* search and are
effective mainly when there exists a nearly straight path to a
goal position. For very high-dimensional problems, LaValle

Manuscript received February 25, 2009. This work was supported in part

by the R&D program of the Korea Ministry of Knowledge and Economy
(MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT)
[2008-S-031-01, Hybrid u-Robot Service System Technology Development
for Ubiquitous City].

Jae-Yeong Lee and Wonpil Yu are with the Robot Research Department,
Electronics and Telecommunications Research Institute (ETRI), Daejeon,
KOREA (e-mails: jylee, ywp@etri.re.kr).

and Kuffner [8] developed RRT (Rapidly-exploring Random
Tree), which is grows a search tree based on random
sampling of the search space biasing the growth of this tree
towards a particular goal configuration or unexplored regions.
RRT generally does not secure the path quality, although it is
very fast. Recently RRT method was extended to provide
anytime capability [9], replanning capability [10], or both
[11].

As another branch of fast path finding approaches, some
researchers have focused on the development of hierarchical
abstraction of the environment that can reduce the search
space. Kambhampati and Davis [12] reduced the search space
by using a quadtree decomposition of the world at the cost of
low path quality. Chen et al. [13] extended quadtree to framed
quadtree by further decomposing the border of each block of
quadtree with cells at the highest resolution, which improves
the solution quality significantly as it allows crossing a block
between any two border cells. Hierarchical approaches
[14-17] build special abstraction graphs from original grid
maps. Thereafter, initial abstract paths are searched quickly in
the abstraction graphs and then refined in the original search
space. Rabin [15] proposed a two-level hierarchy that
abstracts a map into clusters of rooms in a building or square
blocks on a field, which forms a graph with entrance of rooms
as vertexes. One drawback of this approach is that the
abstraction can't be done in a domain independent way.
HPA* [16] builds abstraction graphs automatically by
partitioning a map into rectangular blocks of large sectors and
calculating optimal local paths between limited sets of
entrances and exits to the sectors. The authors reported that
HPA* was up to a 10 times faster than A* search with 1 %
error from optimal on average.

So far we have briefly reviewed two branches of fast path
finding approaches. Fast variants of A* usually speed up the
search at the cost of low path quality and have a limited

A Coarse-to-Fine Approach for Fast Path Finding for Mobile Robots
Jae-Yeong Lee and Wonpil Yu

F

Fig. 1. Hierarchical map abstraction and coarse-to-fine path finding.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5414

performance for very large maps. On the other hand
hierarchical approaches are well-suited for very large maps as
they reduce the search space into tractable one. However,
previous hierarchical approaches also have a problem of
suboptimal solutions. It is mainly because the paths found at
abstraction level are used as fixed waypoints for the stage of
path refinement. In addition, they need to build and handle
special abstraction graphs, which introduce complex
implementation issues.

In this paper we present a new hierarchical approach for
fast path finding. Our algorithm, Coarse-to-Fine A* (CFA*),
finds paths in two steps with varying quantization levels of
the space in coarse-to-fine manner (Fig. 1). Different from
previous hierarchical approaches we do not introduce a new
graph structure, which needs complex processing, to abstract
the search space. Instead, we use simple grid representation to
abstract the structure of the world, which forms another grid
map with coarse resolution. The key idea or main
contribution of the paper is to provide a systematic way to
reduce the resolution of a grid map while preserving the
occupancy structure of the original grid map. Our approach
very simplifies the implementation and enables obtaining
practically optimal paths. Experimental results show that our
method is roughly n/10 times faster than A* search for the
problems of path length n with 0.1 % error from optimal on
average; it is 20 times faster for paths of length 200 and 40
times for length 400.

The paper is organized as follows. In Sect. II we describe
how to build an abstraction map of coarse resolution, while
preserving the structure of the original map. We then describe
our coarse-to-fine path finding method in Sect. III. We show
experimental results in Sect. IV and conclude the paper in
Sect. V.

II. BUILDING ABSTRACTION OF THE SEARCH SPACE
In this section we describe how to build an abstraction of

the search space. The search space in our problem is
represented by a grid map, each cell of which has one of two
states: free or occupied.

The path planning task for a mobile robot is to find an
optimal or feasible path from current position to a goal
position on the map. For the path planning the robot size
should be considered for a robot to safely visit the path cells
without causing a physical collision. For a given map of the
problem space, therefore, we first compensate the robot size
by enlarging the occupied cells in the map by r = rr + ds grid
cells in all directions, where rr is the robot radius in the unit of
grid cells and ds is an optional safety term (Fig. 2). This
compensation is common in robotics domain [18]. The safety
term ds usually is determined by considering localization
error, sensor accuracy, and motion control error. With the
compensation the robot can be treated as a point-like vehicle,
which very simplifies the path planning task. The resulting
grid map with occupied cells being enlarged by r grid cells is
then used to build an abstraction map and to find a fine path in
online coarse-to-fine search. We will call this map by
configuration map.

An abstraction of the space, called block map, is then built
from the configuration map by merging each disjoint
neighboring k × k grid cells into a single block. By this

abstraction a m × m configuration map is reduced into
a / /m k m k×⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ block map. The state of each block is set to

be occupied if all of the grid cells within the block are
occupied and set to be free otherwise. Figure 3 shows an
example of building a block map from a sample configuration
map.

One of the most important requirements that the resulting
block map should satisfy is to preserve the occupancy
structure of the original configuration map. This requirement
is guaranteed if the block size k is determined to satisfy

sr drr +=

rr

sr drr +=

rr

Fig. 2. Compensation of the robot size.

 (a) (b)

Fig. 3. Building an abstraction: (a) block partitioning of a configuration map
of 36 × 44 grid cells (cell boundaries are not drawn), (b) the resulting block
map built from (a) with block size k = 4.

5415

2 1
2

w rk + +⎢ ⎥≤ ⎢ ⎥⎣ ⎦
, (1)

where w is the minimal width of the occupied region in the
original grid map (not in the configuration map). Here we
give an intuitive explanation. First, the structure of free
region is preserved in the block map as the blocks containing
any free cell are set to be free. That means if there is a cell
path between two free cells in the configuration map there
always is a block path in the block map consisting of blocks
that contain the cell path. Second, the structure of occupied
region is also preserved since at least one block is completely
included in the occupied region and set to be occupied with
any displacement of block-partitioning if the block size is
equal or less than half of the width of the occupied region. In
other words, it prevents a block path from being generated
across the occupied region. In Eq. (1), w + 2r represents the
minimal width of the occupied region in the configuration
map and increased by one for the cases of odd value of w.

The only remaining problem is to determine the value of w.
Let us consider a pair of open cells and a line segment that
connects the open pair and has the width of one grid cell. One
constraint is that the line segment should not intersect with
any other open cells except the pair of open cells. Among
such line segments, we find one that has the smallest minimal
bounding square. Let l be the size of the smallest minimal
bounding square. Then, the value of w is given by l – 2.
Figure 4 shows several examples of line segments on a
sample grid map. In the figure, line A and line B satisfy the
condition because they do not intersect with any other open
cell except two ending points. However, line C intersects with
two additional open cells and thus doesn't meet the condition.
For the case of sample map given in Fig. 4, line A gives the
smallest minimal bounding square, and we have w = 6.

In a point of implementation view, however, it is not easy
to determine w automatically. In addition, there are some

exceptional cases that the value of w is not well defined. An
empty map with no occupied cell is such an example, where
we can use any block size. In order to avoid complex
implementation, therefore, we can simply set the value of w
as one and determine the block size k by the following
formula:

1+≤ rk . (2)

Eq. (2) gives stricter upper bound on block size k than the

real given by Eq. (1) since w ≥ 1. If w cannot be defined as the
case of empty map, we can use any value of k within the map
size. Therefore, we always can determine the block size k
safely with Eq. (2) not depending on the map structure.

III. ONLINE COARSE-TO-FINE SEARCH
The CFA* finds paths in two steps of coarse and fine

search using the pre-computed block map and configuration
map. We use A* search [1] for both coarse and fine search to
ensure optimal solutions.

For a given pair of start position S and goal position G in
the configuration map, we first determine the corresponding
start block S' and goal block G' in the block map which
include S and G respectively. We define a block path as the

path found in the block map from a start block S' to a goal
block G'. The block path is found by A* search in the block
map based on 8-connectivity. The search on a block map can
be done very fast since the size of the search space has been
greatly reduced. The resulting block path is used to restrict
the search space of the configuration map in the next fine
search.

Since we use 8-connectivity, some blocks in the block path
can be diagonally connected. For each diagonal pair of the
block path, we add the other two adjacent cross-diagonal
blocks into the block path, which forms an augmented block
path (Fig. 5). This augmentation is very important in two
aspects. Although the block path is optimal in the block map,
optimal cell path might not be within the block path. By
augmenting the block path, we can minimize the possibility
that such a situation occurs. More importantly it guarantees
that there always exists a cell path from S to G within the
augmented block path. Without augmentation a cell path

A
B

Cw

A
B

Cw

Fig. 4. Determination of the minimal width of the occupied region.

 (a) (b)

Fig. 5. (a) A block path. (b) Augmented block path.

5416

should pass through strictly the connecting points of the
diagonal block pairs and therefore, the fine search will be fail
if any connecting point among them is occupied.

A final path at fine resolution is then obtained by applying
A* search on the configuration map under the constraint that
the searching space is restricted to the set of all grid cells
belonging to the augmented block path. Figure 6 shows an
example of coarse-to-fine path finding. The final path is very
similar with the result from original A* search but the
searching time is greatly reduced.

The proposed CFA* can be viewed as a kind of searching
framework and it does not depend on a specific search
algorithm. That is we can use any fast or optimal algorithm
including A* for both coarse and fine search. For example
CFA* might be combined with Anytime A* for further speed
up. Processing time for building a block map and
configuration map does not affect the online search as they
can be computed and saved offline. In a dynamic
environment with moving obstacles, we need to update both
block map and configuration map. However, the update is
very local and can be implemented efficiently.

Another way to speed up the CFA* search is to utilize a
concept of partial refinement [17]. Instead of full refinement,
we can consider some block on the block path as a local goal
and refine only a part of block path to the local goal. Partial
refinement is mostly useful in dynamic environment where
replanning is frequently required.

IV. EXPERIMENTAL RESULTS
In this section we present experimental performance

results of the proposed coarse-to-fine path finder (CFA*) in
comparison with low-level A* search. The experiments were
performed on a large test map of size 935 × 315, which is
shown in Fig. 7. The test map was obtained by decomposing

our real office environment of 74.8 m × 25.2 m in uniform

grid with the cell size of 8 cm × 8 cm. We first enlarged the
occupied cells in the test map with r = 3 to compensate the
size of a robot, resulting a test configuration map. The value
of r was determined on the basis of the size of Pioneer 3-DX
(40 cm × 44.5 cm), which is a popular mobile robot platform
manufactured by Mobile Robots. The block size k was set to
be 4, resulting a block map of size 234 × 79. Note that we can
safely set k to be r + 1 from Eq. (2). We then applied CFA*
and A* search for each of randomly generated 2,000 free
location pairs on the test configuration map and recorded
their runtimes and solution path lengths. For CFA* runtime
we measured total processing time that included the time for
coarse search and fine search as well as the time for
augmenting a block path, time for restricting the search space
of the configuration map by the cells within the augmented
block path, and time for restoring the configuration map after
fine search for the next online searches. Although our
implementation of A* search was not fully optimized, it
doesn't matter because CFA* uses the same A*
implementation with low level A* for both coarse and fine
search. The searching results were sorted by their A* path
lengths and averaged for each interval of path length with
interval size 20. All experiments were run on a 3GHz
Pentium PC with Linux system.

A. Runtime Performance
Fig. 8(a) shows average runtime of the A* and CFA* for

each interval of path length. We can see that the runtime of
A* increases exponentially as the path length increases but
the proposed CFA* does not. More detailed comparison is
shown in Fig. 8(b), where average, minimal, and maximal
runtime ratios of CFA* over A* for each interval of path
length are plotted. As expected, the graphs show that the
proposed CFA* is much faster than A* and the speed up
becomes outstanding as the path length increases. The
experimental result shows that the CFA* is roughly n/10
times faster than A* search for paths of length n on average.

B. Solution Quality
Fig. 8(c) shows the average and maximal ratios of the

CFA* path length over A* path length for each interval of
path length. The CFA* paths were shown to have only 0.1%
error from optimal on average. In detail 79% of the time the

S

G

S

G

Fig. 6. An example of coarse-to-fine search. The block path is shown with
thick line and the cell path with thin line.

Fig. 7. Selected test map for the experiments.

5417

CFA* paths were optimal, and 99% of the time they were
within 1% error from optimal in worst cases. The error of
CFA* paths in percentile is computed by

100
*

** ×
−

=
A

ACFA

l
lle , (3)

where lCFA* is the length of the CFA* path, and lA* is the
length of the optimal A* path. Even worst cases, it appears
that it is within 2% error from optimal as shown in Fig. 8(c).
The performance of the proposed CFA* is comparable with
those of HPA* [16] and PRA* [17], where 10 times speed up
and 1% error from optimal on average was reported.

The experimental result shows that CFA* can produce
suboptimal solutions, although they are nearly optimal. A
suboptimal solution can be obtained with CFA* when the
optimal cell path is not within the augmented block path. In

such cases we obtain locally suboptimal solutions. Figure 9
shows a typical example of suboptimal solution that can be
found with CFA*.

C. Block Size
In order to see the effect of block size k on the performance

of CFA*, we performed an experiment with an empty grid
map of size 512 × 512, where every cell has free state. We
chose an empty map so that the block size can be adjusted
freely not being limited by Eq. (1). Fig. 8(d) shows average
runtime of the CFA* with varying block sizes. It appears that
the CFA* gives the best performance with k = 4. We also can
see that the performance of CFA* does not increase any more
with the block sizes larger than four. It is because a large
block size also increases the search space for fine search,
although it expedites the coarse search.

The optimal block size can vary depending on the size or

0 200 400 600 800
0

1000

2000

3000

4000

5000

6000

7000

8000

A* path length

ru
nt

im
e

(m
ill

is
ec

on
ds

)
A*
CFA*

0 200 400 600 800
0

20

40

60

80

100

120

A* path length

C
FA

*
sp

ee
d

up
 o

ve
r A

*

avg.
min
max

0 200 400 600 800
0

1000

2000

3000

4000

5000

6000

7000

8000

A* path length

ru
nt

im
e

(m
ill

is
ec

on
ds

)
A*
CFA*

0 200 400 600 800
0

20

40

60

80

100

120

A* path length

C
FA

*
sp

ee
d

up
 o

ve
r A

*

avg.
min
max

(a) (b)

0 200 400 600 800
1

1.005

1.01

1.015

1.02

1.025

A* path length

C
FA

*
pa

th
 le

ng
th

 /
A

*
pa

th
 le

ng
th avg.

max.

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

A* path length

ru
nt

im
e

(m
ill

is
ec

on
ds

)
A*
CFA*, k=2
CFA*, k=4
CFA*, k=6
CFA*, k=8
CFA*, k=10

0 200 400 600 800
1

1.005

1.01

1.015

1.02

1.025

A* path length

C
FA

*
pa

th
 le

ng
th

 /
A

*
pa

th
 le

ng
th avg.

max.

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

A* path length

ru
nt

im
e

(m
ill

is
ec

on
ds

)
A*
CFA*, k=2
CFA*, k=4
CFA*, k=6
CFA*, k=8
CFA*, k=10

(c) (d)

Fig. 8. Experimental results: (a) Runtime performance of CFA* and A*. (b) Runtime speed up of CFA* over A*. (c) Path quality of CFA*. (d) Runtime
performance of CFA* with varying block size.

5418

occupancy structure of a given map. However, performance
of CFA* is not degraded so much with varying block size as
shown in Fig. 8(d), and we empirically found that block size
of k = 3 or k = 4 works well for most cases.

V. CONCLUSION
In this paper, we have presented a novel coarse-to-fine path

finding method. The method was able to greatly reduce the
searching time, while preserving the path quality. The
real-time performance of our method makes it possible to
implement efficient global path planners for mobile robots in
a very large environment. In addition, the implementation is
very easy and the method can be applicable for both static and
dynamic environment.

One constraint of our method is that the block size has to be
determined with an upper bound. It means it is hard to apply
CFA* for the problems that the robot size is smaller than a
grid cell and the map has very narrow passages and thin
obstacles like a maze. In robotics applications, however, we
usually prefer a map with fine resolution as it can represent
the occupancy structure of the problem space in detail and
enables fine control of robot motion. Also, small block size of
three or four is sufficient for most problems as mentioned
previously. It means that we need to enlarge the occupied
cells only by two or three grid cells so that the CFA* can be
applied effectively. We thus expect that the proposed method
can be applicable effectively for most real problems, when
considering the ordinary robot sizes and optional safety term.

REFERENCES
[1] N. Nilsson, Principles of Artificial Intelligence, Tioga Publishing

Company, 1980.
[2] C. W. Warren, “Fast Path Planning Using Modified A* Method,” In

Proc. IEEE International Conference on Robotics and Automation
(ICRA), pp. 662–667, 1993.

[3] E. Hansen and S. Zilberstein, “Anytime heuristic search: Preliminary
report,” In AAAI-96 Fall Symposium on Flexible Computation in
Intelligent Systems: Results, Issues, and Opportunities, pp. 55–59.
1996.

[4] R. Zhou and E. Hansen, “Multiple sequence alignment using anytime
A*,” in Proc. of the National Conference on Artificial Intelligence
(AAAI), 2002, Student abstract.

[5] E. Hansen and R. Zhou, “Anytime Heuristic Search,” Journal of
Artificial Intelligence Research, Vol. 28, pp. 267–297, 2007.

[6] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An Anytime, Replanning Algorithm,” in
Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS), 2005.

[7] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Advances in Neural
Information Processing Systems, MIT Press, 2003.

[8] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, Vol. 20, No. 5, pp.
378–400, May 2001.

[9] D. Ferguson and A. Stentz, “Anytime RRTs,” in Proceedings of the
IEEE International Conference on Intelligent Robots and Systems
(IROS), 2006.

[10] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2006.

[11] D. Ferguson and A. Stentz, “Anytime, Dynamic Planning in
High-dimensional Search Space,” in Proc. IEEE International
Conference on Robotics and Automation, pp. 1310–1315, 2007.

[12] S. Kambhampati and L. Davis, “Multiresolution Path Planning for
Mobile Robots,” IEEE Journal of Robotics and Automation, Vol. RA-2,
No. 3, pp. 135–145, September 1986.

[13] D. Z. Chen, R. J. Szczerba, and J. J. Uhran Jr., “Planning Conditional
Shortest Paths Through an Unknown Environment: A
Framed-Quadtree Approach,” in Proc. the 1995 IEEE/RSJ Int. Conf.
Intelligent Robots and System Human Interaction and Cooperation,
Vol. 3, pp. 33–38, 1995.

[14] R. Holte, M. Perez, R. Zimmer, and A. MacDonald, “Hierarchical A*:
Searching Abstraction Hierarchies Efficiently,” in Proceedings
AAAI-96, pp. 530–535, 1996.

[15] S. Rabin, “A* aesthetic optimizations,” In Mark Deloura, editor, Game
Programming Gems, pp. 264–271, Charles River Media, 2000.

[16] A. Botea, M. Muller, and J. Schaeffer, “Near optimal hierarchical
path-finding,” Journal of Game Development, Vol. 1, No. 1, pp. 7–28,
2004.

[17] N. Sturtevant and M. Buro, “Partial pathfinding using map abstraction
and refinement,” AAAI-05, pp. 1392–1397, 2005.

[18] I. Ulrich and J. Borenstein, “VFH+: Reliable Obstacle Avoidance for
Fast Mobile Robots,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), pp. 1572-1577, May 1998.

Fig. 9. An example of suboptimal CFA* path.

5419

