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Abstract— The challenging problem of planning manipula-
tion tasks for dexterous robotic hands can be significantly sim-
plified if the robot system has the ability to learn manipulation
skills by observing a human demonstrator. Toward this goal, we
present a novel computer vision based hand posture recognition
system to serve as an intelligent interface for skill transfer in
robotic manipulation. We use the Inner Distance Shape Context
(IDSC) as a hand shape descriptor to capture variations in the
hand state (open or closed) under large in-plane rotations and
considerable out-of-plane rotations. The proposed technique is
further examined in applications involving grasp recognition
and gesture based communications. The experiments show that
the proposed approach can be generalized to recognizing a
selected taxonomy of grasp types. At present, skin color is used
to segment the hand region from the scene, but this method
has its own limitations. We show preliminary results suggesting
that the IDSC can be used to segment parts of the articulated
object, including segmenting the hand from the human body
silhouette without using skin color information.

I. INTRODUCTION

Future robots promise to become an integral part of our

everyday lives, serving as caretakers for the elderly and

disabled, providing assistance in homes and offices, and

assisting in surgery and physical therapy. For this to happen,

programming must become simpler, and movements more

natural and human-like. In response to this challenge, there

has been a growing interest in using captured human motion

data as examples to simplify the process of programming

or learning complex robot motions [1], [2]. Transferring

gross whole-body human motion to humanoids has been well

studied and off-line algorithms have been developed using

prerecorded motion capture data. Methods which use pre-

recorded motions are not applicable for interactive, gesture

driven applications where a robot is tele-operated by human

gestures. To address this issue, Dariush et al. demonstrated

an online, vision based system to retarget whole body motion

to the humanoid robot ASIMO [3].

The aforementioned whole body retargeting systems do

not consider hand articulations in their motion transfer pro-

tocols. However, skill transfer focusing on only manipulation

tasks based on human hand observations has been examined

by other researchers [4], [5]. Such studies have suggested

that the time required to add grasping behaviors may be

significantly reduced if the robot is capable of transferring

manipulation skills from a human demonstrator. Typically,
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the human demonstrator is instrumented with a data glove

while performing the example grasp [6]. Sensors attached to

the data glove may directly measure the articulation angles

or the Cartesian positions of selected feature points on the

glove. Although direct measurement of the glove configura-

tion simplifies the sensing required to detect important grasp

features, the glove often obstructs the demonstrators contact

with the object and may prevent a natural grasp. Moreover,

calibration and adjustments for proper fit for different size

hands is required to ensure accurate measurements.

In liu of using a data glove, marker based motion cap-

ture has been used to record hand articulations, particulary

in computer animation applications [7]. Reconstructing the

complete hand posture can still be a challenge with marker

based methods due to partial marker occlusions. To minimize

the effects of marker occlusions, Chang et. al [8] proposed

an algorithm to determine the minimal set of hand markers

needed to represent the type of grasp performed by the

demonstrator. The reduced marker protocol simplified the

capture procedure and described the hand configuration in a

low-dimensional space. Although marker based methods are

less obtrusive than a data glove, the data collection process

is time consuming and requires considerable calibration in

an instrumented and controlled environment.

This paper explores a vision based hand gesture inter-

face, whereby hand states (open/close) and a class of hand

postures in a taxonomy of grass types can be detected

and recognized with a single passive camera. Inferring the

full articulations of the fingers form a single camera is

a challenging problem due to the complexity of the hand

articulations, the occlusions of the fingers, and complications

in segmentation of the hand from the background image.

In the past, several researchers have developed hand pose

estimation methods for vision-based gesture interfaces. Wu

and Huang [9] provide a survey of vision based approaches

for hand posture recognition. Specifically, there are algo-

rithms that deals with view-invariance [10], recognition un-

der complex backgrounds [11], adaptive learning using SIFT

features [12] among many others [13], [14], [15], [16].

In this paper, we focus on recognizing general hand

states, invariant to viewpoint using an Inner Distance Shape

Context descriptor (IDSC) [17]. The IDSC is invariant to

translation, scale and small affine distortions. The IDSC

descriptor is particularly compelling for use in describing

articulated shapes, such as the hands, because of its ability

to capture part structures. This property is important since

hand shapes exhibit variations in the organization of its part

structures. To our knowledge, this work is the first to use the

IDSC for hand posture recognition.
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This paper is organized as follows. We present the pro-

posed algorithm in Section II, followed by the experimental

results of hand posture recognition, including grasp taxon-

omy and sign language classification, in Section III. We then,

in Section IV, address a vital pre-processing problem of

extracting the hand region from the human body (in a very

generic setting), before it can be represented using the IDSC

descriptor. Specifically, we introduce an interesting viewpoint

of using the Inner distance shape context to detect keypoints/

segments of the human body, by analyzing the patterns of

their IDSC shape description across different poses. We then

discuss some relevant issues and challenges in Section V and

conclude the paper in Section VI.

II. ALGORITHM

An overview of the proposed approach is described as

follows. The hand (or palm) region is segmented from

the images (or video) using skin color segmentation. The

segmented region is then described using Inner Distance

Shape Context (IDSC) signatures, which is a histogram of the

contour points in the log-polar space that describes how each

point is related to all other contour points in terms of distance

and angle. With this feature representation as the input, we

first address the problem of hand state classification. This

is essentially a two class pattern matching problem - open

or closed, and the classification is done using the Support

Vector Machines (SVM) [18] classifier.

Before classification, we introduce a pre-processing step

to group the training and test images based on their primary

orientation direction, which is estimated by computing the

scatter direction of the images through principal component

analysis (PCA) [19]. The training images are then grouped

into different bins (spread uniformly into 10 intervals in the

0 - 180 degree range). We then train the SVM offline (for

each orientation bin) using the IDSC features of the different

hand state instances of the corresponding orientation. Finally,

the test image is projected onto the appropriate SVM for

classification. We then extend this framework to classify a

more generic set of grasp taxonomy shapes. The following

sub-sections describe the details of the proposed algorithm.

A. Skin color based segmentation

Proper hand segmentation is a critical step in this process.

We use skin color as the cue to segment the hand. Color

based segmentation is a very well known method in computer

vision [e.g., [20]]. In line with previous techniques, we build

a Gaussian models of skin regions corresponding to the hand

and non-skin regions, and measure how the pixels in the test

image correlate with the models. Normalized color space

was used in this process. We worked on the RGB color

space, and the Gaussian mixture models were created based

on the normalized R and G components of the training image

pixels. For instance, each pixel was represented by a vector,

Y =

[

R/(R + G + B)
G/(R + G + B)

]

, (1)

where R,G, and B are the red, green and blue components of

that pixel. Pixels Yi corresponding to similar regions (skin/

non-skin) are grouped together from the training images as

X(i) = [Y1 Y2 · · · YN ] , (2)

where i = {1, 2} (skin/non-skin), and N represents the

number of pixels. The mean value and covariance of the

N pixels are computed to build the Gaussian models

N(µ1,Σ1) → skin
N(µ2,Σ2) → non − skin. (3)

The test pixels are then classified as belonging to the skin

class (or otherwise), depending on their strength of affinity to

the two Gaussian models. We cast this classification problem

into a MAP (maximum-a-posteriori) framework. This fits the

problem into a well known Bayesian paradigm of expressing

the posterior probability as a function of the likelihood

function and prior probability. Formally,

p(θ|X) =
p(X|θ) p(θ)

p(X)
(4)

where p(θ|X) is the posterior distribution (i.e. probability

that a given test pixel will belong to the class θ (here, skin

or non-skin), p(X|θ) is the likelihood function (measure of

affinity of a pixel for a particular class) and p(θ) is the prior

probability (normal occurrence rate of a particular class).

In our framework, equal priors were assumed. So, for a

two class problem, a pixel (X) is said to belong to class1 if,

p(θ1|X) > p(θ2|X) (5)

p(X|θ1) p(θ1) > p(X|θ2) p(θ2) (6)

p(X|θ1) > p(X|θ2) (7)

The likelihood function which is used for decision making,

is computed as follows,

P (X|θskin) =
1

|Σ1|1/2(2π)n/2
e−

1

2
(X−µ1)

T Σ−1

1
(X−µ1)

P (X|θnon−skin) =
1

|Σ2|1/2(2π)n/2
e−

1

2
(X−µ2)

T Σ−1

2
(X−µ2)

Thus, if p(X|θskin) > p(X|θnon−skin),the test pixel is

classified as skin region, or otherwise. This process is

done for every pixel in the test image to obtain the skin

segmentation output as shown in Figure 1. The segmented

Fig. 1. Left-to-Right: Input image, Skin segmentation map, cropped hand
region.

result is then subjected to morphological operations such as

dilation to fill-in the pixels that could possibly be mislabeled.
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Dilation is similar to low pass filtering that smooths the

segmented results to maintain regional homogeneity. The

dilation process makes sense intuitively because, the hand

regions are mostly continuous and well separated from the

background. But, care must be taken so that the low pass

filtering shouldn’t connect two separated fingers. So we used

a 3×3 low-pass filter to achieve this objective. The resultant

skin/ non-skin map is then automatically cropped to yield the

hand (or palm) region.

B. Scatter Direction Estimation

We then estimate the primary scatter direction of the

segmented hand image, to aid the classifcation process. This

idea stems from the observation that the hands have a primary

orientation direction, be it open or closed. This information

can be used to group the hand images into different blocks

and then classified separately. A simple way to estimate this

primary orientation direction is through principal component

analysis (PCA). This well known technique [19] in computer

vision projects the data along the direction of maximum

scatter.

In a nutshell, the PCA algorithm solves the generalized

eigen-value problem and computes the eigenvectors from

the covariance matrix of the input images. The eigenvectors

(corresponding to large eigenvalues) represents the directions

of maximum scatter of the data. So, given a segmented

hand image, we can estimate its scatter direction based on

the co-ordinates of the eigenvector that has the maximum

eigenvalue. This can be summarized by the following repre-

sentative equations,

Consider a set of N sample points of the hand region

{X1,X2, · · · ,XN}, whose values are their corresponding

2D locations. We use PCA to estimate the direction of

maximum scatter by computing a linear transformation WT .

We do so by computing the total scatter matrix and solving

for the generalized eigenvalue problem. The total scatter

matrix is given by

ST =

N
∑

k=1

(Xk − µ) (Xk − µ)t (8)

where N represents the number of sample points, and µ is

the mean location of all the samples. The projection matrix

Wopt is chosen such as to maximize the determinant of the

total scatter matrix of the projected samples, (i.e),

Wopt = argmax|WT ST W | = [W1 W2] (9)

where, W1 and W2 are the set of 2 dimensional eigenvectors.

In our case, the eigenvector (say,Weig ) corresponding to the

maximum eigenvalue gives the direction of maximum scatter.

The estimate of the scatter direction is then computed by

tan−1 Weig(Y )

Weig(X)
(10)

At this point we have the segmented hand image, and a rough

estimate of the hand scatter direction (Figure 2). We then

proceed to describe the hand shape using the Inner Distance

Shape Context descriptor.

Fig. 2. Segmented hand image, and its primary scatter direction estimate
obtained through PCA.

C. IDSC descriptor

The shape context is a descriptor used to measure sim-

ilarity and point correspondences between shapes [21]. It

describes each point along the object’s contour with respect

to all other points in the contour. Suppose there are n points

on the contour of a shape. For the point pi, the coarse

histogram hi of the relative coordinates of the remaining

n − 1 points is defined to be the shape context of pi.

hi(k) = #{q 6= pi : (q − pi) ∈ bin(k)} (11)

The histogram is computed based on both distance and angle

for each point on the contour, with respect to all other points

on the contour. The bins are normally taken to be uniform

in log-polar space. The key feature of shape context is that

it captures the distribution of each point relative to all other

points in the contour, thereby resulting in a robust, compact,

and highly discriminative description. This shape descriptor

has seen widespread use in shape matching applications in

computer vision.

The inner distance shape context descriptor (IDSC) is an

intuitive extension of the original shape context descriptor,

and it is very useful for articulated objects [17]. The IDSC,

proposed by Ling et al, primarily differs from shape context

in the way the distance and angle between the contour

points are computed (as shown in the figure 3 and adopted

from [17]). The shape context uses a normal L2 distance

measure, whereas the IDSC computes the distance between

the points along a path that travels within the object’s

contour. The angular relation in IDSC was also measured

interior to the object’s contour, termed as the inner angle. The

inner angle was computed by taking the direction between

the contour tangent at the start point and the direction of

the inner distance originating from it. This is much useful

for articulated objects like hand, human body etc. Much of

the hand grasp shapes are different by the way in which the

fingers are spaced. So IDSC based classifier has tremendous

promise in this regard as illustrated in Figure 4.

The IDSC descriptor was derived for the hand images by

the following mechanism. For each segmented image, the

points were sampled along the contour, and the histogram

was computed based on the inner distance and the inner
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Fig. 3. (a) Inner distance denoted by solid-blue line. Normal shape context
distance denoted by dotted green lines. b) The inner angle between the points
p and q remain invariant under shape deformation.
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Fig. 4. The inner distance shape contexts of the same thumb point in the
two hand images (denoted by a triangle) are very similar even under some
shape deformation. The shape context of a point on the middle finger is
very different from the shape contexts of the thumb points.

angle, resulting in a vector for each contour point. This

resultant matrix will be our description of the input images,

and will be given as the feature on which the SVM will be

trained and tested.

D. Classification using Support Vector Machines

Support Vector Machines (SVM) is a statistical technique

which is well known for classifying two-class problems [18].

The SVM’s are trained using labeled data (IDSC features

belonging to both open hand state and closed hand state).

SVM’s then attempt to find a linear separating hyperplane

that separates the data (as shown in Figure 5 and adopted

from [18]).

If xi are the training instances, and yi are their corre-

sponding labels, the SVM tries to find an optimal separating

hyperplane that satisfies the following equation:

yi(xi · w + b) ≥ 0 (12)

for all i, where w is the normal to the hyperplane and

|b|/||w|| is the perpendicular distance of the hyperplane from

the origin

But in practice, the data may not be linearly separable.

But the hope is, such data that are linearly non-separable

in their original dimension, can become well separated in

a higher dimensional space. So, the SVM projects the data

into a higher dimensional space using kernels, to find the

best linear separating hyperplane that classifies the data with

very few errors. In this process, the algorithm identifies the

training samples that are crucial in separating the two classes

as the ’support vectors’ and bases the further classification

on these vectors.

Origin

w

1
H

Margin

w

b-

2
H

Fig. 5. Linear separating hyperplane for the two class problem (white and
black dots). The rounded dots show the support vectors identified by the
SVM. The margin is desired to be as large as possible.

III. EXPERIMENTS

A. Hand State Recognition

We conducted several experiments to test and validate

the use of IDSC descriptor to recognize the hand state. We

trained the SVM using the iDSC descriptions of open/ closed

hand shapes, about 50 examples per state. The RBF kernel

was then used to map the data to the higher dimension, and

the LIBSVM [22],outine was used to perform this classifica-

tion task. Once the SVM is trained, we tested the algorithm

with eight different videos with the individuals performing

different routines with open/ closed hands. The video was

sampled on the frame rate, and the resulting images were

segmented using skin color to obtain the hand region. The

IDSC descriptor was then obtained for the segmented hand

region and projected onto the SVM (corresponding to its

primary orientation direction category) for classification.

Some sample images used in our experiments are given in

Fig 6.

We obtained between 85 to 95 % recognition on the eight

datasets. The experiment setting also contained very high

in-plane rotations (upto +/-180 degree) and substantial out-

of-plane rotation (upto +/- 45 degree). Given below (in Fig

8) is the confusion matrix for the hand state recognition

experiment.
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Fig. 6. Top row: training exemplars for closed hand state; Middle row:
training exemplars for open hand state; Bottom row: sample test images
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Fig. 7. Confusion matrix: Rows: testing (1:open, 2:close) Columns:
training(1:open, 2:close). Key: darker blocks signify more number of correct
matches.

B. Grasp taxonomy / Sign language pattern matching

The results of the previous section suggest that the IDSC

shape descriptor is very effective for hand state recognition.

We conducted more experiments to assess the generaliz-

ability of the algorithm in classifying more complex hand

shape patterns. In particular, we applied our algorithm for

recognizing hand postures used in grasping as well as hand

sign language. Since such applications involve solving the

N-class pattern matching problem (where N is the total

number of classes), N SVM’s were used in one-against-

all configuration. Otherwise, similar training and testing

procedures were followed. For grasp recognition, we ex-

amined a subset of the taxonomy of grasps proposed by

Cutkosky et. al. [23]. In particular, we considered four grasp

signatures illustrated in Figure 8. We recorded videos of

Fig. 8. Grasp patterns (L-R): Small diameter grasp, four-finger thumb
grasp, Precision Disc grasp, Platform grasp.

three different people demonstrating each of the four grasp

categories in different viewing poses from the camera. The

poses contained substantial in-plane rotations.

The methods of the previous section were used to extract

the IDSC descriptors. For classification, the leave one out

strategy was used. So we have three such settings, and

it resulted in 84% recognition rates on an average. The

confusion matrix given in Figure 9. For sign language pattern

Small diameter

Three-finger-thumb

Platform

Four-finger-thumb

Training

T
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s
ti

n
g
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Fig. 9. Rows: testing (1:large diameter, 2:small diameter, 3: four-fingered
thumb, 4: platform) – Columns: training(1:large diameter, 2:small diameter,
3: four-fingered thumb, 4: platform

matching, 8 different sign languages (adopted from [24] were

matched against one another. Similar experimental setup

like that of grasp taxonomy was used, resulting in 80%

classification accuracy. A representative set of sign language

patterns is given in Figure 10 and its corresponding confusion

matrix is provided in Figure 11.

Fig. 10. Sign language patterns (L-R): One, two, three, four, five, follow
me, call, thumbs up.

In these experiments, the training and test data are not

always similar as shown in Figure 12. The subjects were

free to rotate their hands during the collection of both

training and testing data. This is in sharp contrast with

most of the existing hand gesture recognition algorithms

wherein all the subjects are required to perform identical

gestures for classification. In this sense, the results reported

in our study are much more generalizable to the real world

settings, and it is not person dependent. So these results are

very encouraging and can readily be applied to tele-robotic

grasping applications. It is also interesting to see the impact

of a larger training set on these algorithms.

IV. HAND REGION SEGMENTATION

As discussed previously, segmentation of the hand is

a critical first step in developing a practical system for

recognizing hand gestures. Our interest is in developing a

system to transfer whole body motions including the posture
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Fig. 11. Rows: testing (1:one, 2:two, 3: three, 4: four, 5: five, 6: follow
me, 7: call, 8: thumbs up) – Columns: training(1:one, 2:two, 3: three, 4:
four, 5: five, 6: follow me, 7: call, 8: thumbs up)

(a)

(b)

Fig. 12. Experimental data variations - A) grasp pattern, B) sign language;
1st and 2nd rows: training data for a particular pattern, 3rd row: the
corresponding test data.

of the upper and lower extremity limbs as well as the posture

of the hands.

Extracting the hand region from the rest of the body is very

important. In the experimental results presented in previous

sections, the subjects were asked to wear full-sleeved shirts

so that we could use skin color to segment out the hand

(palm) from the rest of the arm region.

A more principled approach would be to try and fit models

corresponding to the hand (palm) and the arm region based

on the skin based segmentation result. There can be instances

wherein the use of skin-color as the segmentation cue, could

fail. In such cases, depth based segmentation promises to be

a viable alternative. Use of depth images can also help in

another setting that we haven’t dealt with here: which is,

occlusion. Depth images (in combination with skin color)

can be used to overcome occlusions resulting in stable

segmentation. Given such alternatives, we here propose a

novel way of segmenting the parts of an articulated object

using the shape description based on the Inner Distance

Shape Context.

A. IDSC for segmentation - Motivation

Recall that the IDSC descriptor gives a holistic definition

of the contour points relative to all other points in the image,

in terms of the inner distance and the inner angle. Given

two images of the same object under different articulations,

the IDSC of the points belonging to the same ’part’ of the

object (as shown by the points denoted by △ on the thumb

in two images in Figure 4) produce nearly identical IDSC.

Whereas, the points corresponding to different parts of the

object produce dissimilar IDSC signatures (as illustrated by

the symbols △ and + in Figure 4).

Motivated by this observation, we would like to see if:

given the silhouette of the human body, whether the points

corresponding to the hand region will have similar IDSC

descriptions irrespective of the amount of articulations that

the body undergoes. First up this makes sense intuitively

because, since the IDSC describes a point relative to all the

other points, it effectively captures the information about the

points with a good sense of the overall configuration of the

object. This then leads us to a broader question: Can inner

distance shape context be used for key-point detection, and

hence, segmentation of the parts of an articulated object?

This is a very challenging problem, and has wide applications

in human body part detection, face and hand landmark

detection - all of which have a great impact on object-part

segmentation.

B. IDSC for segmentation - Algorithm

The segmentation algorithm is formulated as follows.

Given a silhouette of a human performing an action, we’re

interested in reliably detecting certain anatomical points

(key-points) which are of interest for segmentation. These

key-points can be, for example, the hands, elbows, shoulders,

and the head. During training, these seven key-points are

manually localized under different body poses and their

associated IDSC descriptions are computed and stored as the
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test gallery. Then, given the silhouette of a test image in a

new body pose, its IDSC signature is analyzed to determine

the contour point with an IDSC description that is most

similar to that in the gallery.

Specifically, if IDSC Gallery(j) (where j = 1...7,j =
[j1, j2, ..., jM] with M denoting the number of IDSC feature

examples for that particular gallery) represent the IDSC

gallery created for each of the seven key-points we are

interested in. Then, given a test instance X of the human

silhouette, N points (x1, x2, · · · , xN ) are sampled along its

contour to compute its IDSC, say IDSC(X) where X =
[x1, x2, · · · , xN ]. Then for j = 1 · · ·7 (corresponding to the

key-points), Dj (the point in X that has the IDSC description

similar to the IDSC Gallery(j)) is identified by

Dj = min
i=1···N

(min
k∈S

(‖IDSC(xi) − IDSC Gallery(jk)‖1))

(13)

where S is the number of IDSC descriptors in Gallery ’j’.

C. IDSC for segmentation - Experiments

In our experiments, we worked with two human body

motion sequences (with no self occlusion of the human

body parts), wherein one sequence is significantly different

from the other. Snapshots from each sequence is shown

in Figure 13, where the top. Sample keypoints were hand-

marked from representative frames of the sequences to create

the gallery. The algorithm was then tested in one(sequence)-

against-another framework, with the standard correlation

distance measure used for classification. We achieved 85%
detection rate with a eight-pixel neighborhood support, when

compared with the ground truth (indicating, we accept the

keypoint detection to be correct if the location of the detected

keypoint lies within a 4×4 region centered around its actual

location specified by the ground truth). Sample detection

result is given in Figure 13.

To our knowledge, this is the first attempt in looking

at the use of IDSC descriptor for keypoint detection and

segmentation. Most of the work in the literature uses shape

context based descriptors to do shape matching. But, this new

way of looking at the shape context is very exciting and the

results obtained are very encouraging, given that the gallery

had considerably different poses from that of the test images.

This new result has a potentially good impact in using the

’shape description’ of the object for keypoint detection. The

detected keypoints give a good estimate of different regions

of the objects, which in turn gives a good head-start for

segmentation. Hence, this kind of approach can readily be

used to segment the hand region from the body, which is

very important for robotic grasp recognition systems!

V. FUTURE WORK

The IDSC descriptor is found to be very efficient in

modeling the hand shapes across variations in size and

rotation. It also has shown robust performance in detect-

ing the key-points to aid the segmentation task. But, to

achieve the bigger goal of classifying hand grasp patterns

in more practical situations that allow ripe probability of

self-occlusions between the palm and arm, and significant

out-of-plane rotations, the formulation of 3D variations of

IDSC looks to be an interesting and challenging problem.

The 3D inner distance shape context may be used in tandem

with depth-skin color segmentation to detect key-points and

describe the grasp patterns. Another area of interest is to

use the motion information from the video to predict the

hand grasp patterns. It is quite natural for humans to follow

some good pattern in any grasping task. This ’predictive’

motion information can help resolve ambiguities in vision

based shape description. It is very exciting to investigate

this feedback mechanism of shape and motion for robotic

grasping applications.

VI. CONCLUSION

In summary, an important contribution of this work is

to show that IDSC descriptor can be used to capture the

variations in hand postures across viewpoints. It is quite

encouraging that this descriptor can handle pose variations in

a very generic experimental setting. Another finding of this

work is the novel way of looking at IDSC descriptions for

detecting key-points from articulated shapes. This conceptual

way of using a shape descriptor to identify different parts

of an articulated object has wide spread usage in different

segmentation tasks, such as segmenting the hand from the

body. The above experiments promise very good potential

for our approach in the interesting area of hand grasp

recognition.
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