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Abstract— In this paper an autonomous switching between
two basic attention selection mechanisms, top-down and
bottom-up, is proposed, substituting manual switching. This
approach fills the gab in object search using conventional top-
down biased bottom-up attention selection: the latter one fails,
if a group of objects is searched whose appearances can not
be uniquely described by low-level features used in bottom-
up computation models. Two internal robot states, observing
and operating, are included to determine the visual selection
behavior. A vision guided mobile robot, equipped with an active
stereo camera, is used to demonstrate our strategy and evaluate
the performance experimentally.

I. INTRODUCTION

To achieve an efficient processing of visual information

about the environment, humans select their focus of visual

attention, such that the most interesting regions will be pro-

cessed first in detail. Studies about human visual perception

show that visual attention selection is affected by two distinct

types of attentional mechanisms: top-down and bottom-up.

Top-down signals are derived from the task specification

or previous knowledge and highlight the task-relevant in-

formation. Top-down attention selection is straightforward

and efficient for task accomplishment. In contrast, bottom-

up attention selection is inspired by a neuronal architecture

of early primate vision. It is induced by stimuli regarding

color, intensity, orientation etc. on several hierarchy levels.

Without concrete top-down information, pure bottom-up is

the only way to select potentially important information of

the environment for further processing. In human attention

systems, top-down and bottom-up selection always work

together to determine the attentional allocation and control

the human gaze behavior.

Operating in the real world, a robot has normally a task

such as detecting and manipulating a target object. For a

mobile robot, a typical task is to find a target and move

toward it. In a simple scenario with unique target objects, a

conventional top-down biased bottom-up strategy can help a

lot in terms of efficiency [1]. However, it fails, if a group of

objects is searched whose appearances can not be uniquely

described by low-level features used in a bottom-up computa-

tion model. For example, several different traffic signs are all

salient in color but in different geometry and with different

text on them. They are, therefore, not distinguishable from

each other only relying on low-level features used in bottom-

up attention selection. In this instance, top-down information

is ineffectual and a bottom-up attention selection is necessary

to initialize the object search process. However, during task

performance, task-oriented attention selection is essential for

efficiency. Especially if there is no top-down relevant object

in the field of view, a pure top-down attention selection

can also use position data in 3D task-space, while bottom-

up or top-down biased bottom-up attention selection only

relies on 2D image data. Therefore, a switching between

top-down based state and bottom-up based state is proposed

to deal with different situations, which enables autonomy

of robots in terms of visual behavior. This paper is the first

attempt of an autonomous switching between these two kinds

of attention selection strategies and fills the gap for object

search not solvable using conventional combination of them.

A vision-guided mobile robot (see Fig. 6), the Autonomous

City Explorer (ACE) [2] developed at our institute, is used

to demonstrate our strategy and evaluate the performance

experimentally. It is equipped with an active vision system,

consisting of a Bumblebee XB3 stereo camera from Point

Grey Research Inc. and a high-performance pan-tilt platform

[3].

The paper is organized as follows: In Section II, related

works about combination of top-down and bottom-up atten-

tion selection are introduced. In Section III, the proposed

autonomous switching strategy is presented. In Section IV,

the performance of our strategy is experimentally demon-

strated. The results are shown and discussed. Conclusions

are given in Section V.

II. RELATED WORK

In the last few decades, bottom-up saliency-based attention

selection models have also become focus of robot view

direction and attention planning. A computational model,

the saliency map model, was firstly proposed in [4] and

further developed by [5] and [6]. In this model the salient

positions in a static image are selected by low-level features.

The saliency map predicts a human-like visual attention

allocation. A saliency-driven vision system has already been

applied on a robot head [7], which uses a bottom-up visual
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attention mechanism to focus on interesting objects in the

environment.

To achieve an efficient task accomplishment, task-relevant

top-down factors can be integrated into bottom-up attention

selection models to bias the visual attention selection. To

solve the problem of visual search for a given target in an

arbitrary 3D space for robot vision systems, the probability of

finding the target is optimized in [8], given a fixed cost limit

in terms of total number of robotic actions the robot needs

to find its visual target, facilitated by attentive processes.

A complex object recognition system on a mobile robot

is proposed in [9], which is capable of locating numerous

challenging objects amongst distractors. The potential objects

are ranked using a bag-of-features technique and identified

using an attention mechanism in a limited time. In [10] an

approach to an optimal gaze control system for autonomous

vehicles is proposed in which the perceptive situation and

subjective situation are also predicted. In [1] an environment

adapted active multi-focal vision system is proposed. A top-

down biased bottom-up attention selection strategy without

previous training is applied. A Kalman-filter is used to

estimate the weights of feature maps in building a task-

relevant saliency map. The saliency of top-down elements

and the saliency of bottom-up components are combined

in [11] in a way that the top-down part is initialized by

the bottom-up part, hence resulting in a selection of the

behaviors to deal with the limited computational resources.

In [12] a biologically motivated computational attention

system VOCUS is introduced, which has two operation

modes: the exploration mode based on strong contrasts

and uniqueness of a feature and the search mode using

previously learned information of a target object to bias the

saliency computations with respect to the target. In [13] a

salient proto-object detection model based on selective visual

attention is suggested in the way that the objects are attended

to before recognized. In [14] a task-driven object-based

visual attention model for robot applications is proposed,

which involves five components: pre-attentive object based

segmentation, bottom-up still attention, bottom-up motion

attention, top-down object-based biasing and contour based

object representation. Task-specific moving object detection

and still object detection are operated based on this model.

Up to now, switching of top-down and bottom-up attention

has only been proposed in [12] and [15]. However, the

switching in those systems is activated by users manually.

To perform the switching autonomously, we define transi-

tion conditions to trigger the switching from top-down to

bottom-up and from bottom-up to top-down, in order to

realize an autonomous visual attention selection.

III. AUTONOMOUS SWITCHING BETWEEN

TOP-DOWN AND BOTTOM-UP ATTENTION

SELECTION

Fig. 1 illustrates the switching mechanism of attention

selection. The robot has two modes, namely observing mode

and operating mode. Two attention selection states, a top-

down state and a bottom-up state, as well as 4 transitions (bt,

tb, tt, bb) between the states are contained in the observing

mode. Because a robot is normally assigned with a specific

manipulation or navigation task, not just looking around for

the target object, an operating mode is considered beside the

observing mode. In operating mode, the robot accomplishes

its task, such as approaching or manipulating an object, using

top-down task-oriented attention selection. In this section

we discuss where the robot should attend to in each state

and how the autonomous switching between the states is

conducted.

tb: target lost && n>N

Top-down

Bottom-up

bt: target found 

start

tt: target lost 

    && n<=N

Top-down

t2: target lost or current 

task accomplished
t1: ∆I top-down< ε

Observing

Operating

bb: target not found 

Fig. 1. Finite state machine of the switching mechanism.

A. Bottom-up State

In bottom-up state, the robot focuses on a salient area in

the field of view. Since the goal of this paper is to solve

the problem that target objects are not uniquely described

or that top-down information with low-level features used

in bottom-up attention selection model is not available, a

bottom-up based attention selection model is used to select

candidate regions which may contain target objects. We use

a well-known standard computational model for bottom-up

attention selection, namely the saliency map model proposed

in [4].

In Fig. 2 the saliency map model is visualized. An

input image of e.g. 640 × 480 pixels is sub-sampled into

dyadic Gaussian pyramids in three channels (intensity, ori-

entation for 0◦,45◦,90◦,135◦, opponent color in red/green

and blue/yellow). The size of the image is reducted from

640×480 to 320×240, ..., and to 2×1 successively in each

lower level. Then center-surround differences are calculated

for the images in the Gaussian pyramids. In this phase feature

maps are generated in which distinctive pixels with respect

to their neighborhood are highlighted. Using across-scale

combinations the feature maps are combined and normalized

into a conspicuity map in each channel. A saliency map is

a linear combination of the conspicuity maps. The bright

pixels in the saliency map are the salient and interesting

pixels predicted by this model.

An information based extension of this model is made

to describe the influence of temporal novelty on the total
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 Linear filtering

Center-surround differences and normalization

Linear combination

Intensity                   Orientation (0°, 45°, 90°, 135°)           Color (RG, BY)

Input image

saliency map

conspicuity

maps

Across-scale combinations and normalization

feature maps

Fig. 2. Saliency map model

preference of the regions selected by the saliency map.

For the temporal novelty we apply a Bayesian definition

of the information content of an image directly using the

saliency map. The notion “surprise” is used here to indi-

cate the unexpected events [16]. Only the positions being

spatially salient and temporally surprising are taken to draw

the robot’s attention. We build a surprise map using two

consecutive saliency maps without camera movement to find

the unexpected events.

To achieve this, we model the data D received from the

saliency map as Poisson distribution M(λ (xi,yi)), where

λ (xi,yi) stands for the saliency value of the pixel (xi,yi).
Therefore, a prior probability distribution pi(xi,yi) can be

defined as a Gamma probability density for the i-th pixel:

pi(xi,yi) = γ(λ ,α,β ) =
β α λ α−1e−βλ

Γ(α)
, (1)

with the shape α > 0, the inverse scale β > 0, and Γ(·) the

Euler Gamma function.

The posterior probability distribution p((xi,yi)|D) is ob-

tained from the second saliency map with the new saliency

value λ ′(xi,yi). The parameters α and β are supposed to

change into α
′

and β
′
, according to

α
′
= ξ α +λ ′, and β

′
= ξ β +1, (2)

with a forgetting factor ξ , 0 < ξ < 1.

Then, a surprise map with surprise value τ is estimated

as the Kullback-Leibler divergence between the prior prob-

ability distribution pi(xi,yi) and the posterior probability

distribution pi(xi,yi|D) as follows:

τ(xi,yi) = KL(pi(xi,yi)||pi(xi,yi|D)). (3)

Finally, the pixel coordinate (x∗,y∗) with the maximum

surprise value is found for the robot gaze control

(x∗,y∗) = arg max
(xi,yi)

(τ(xi,yi)). (4)

In the example shown in Fig. 3, the rectangles in solid

lines are the attention focus predicted by the surprise map.

In the left column, a moving human is selected as the

focus of attention because of its high surprise value. In

bottom-up state, the robot attends to the image region

limited by the rectangle in solid lines, although no robot

task such as human detection is assigned to the robot. The

focus of attention (the masked image region) and the most

salient/surprising position (the rectangle) indicate the same

position. More examples of the surprise map can be found in

[17]. In bottom-up state the salient/surprising image regions

in the input image are viewed sequentially according to their

saliency/surprise value.

B. Top-down State

In top-down state, robot concentrates itself on image re-

gion containing task-relevant information. The conventional

robot tasks can be approaching, avoiding or grasping an

object in which the position estimation of the object is the

main objective. To perform this task, the robot should attend

to the region which contains the target object to get a better

accuracy.

In Fig. 3 the right column shows an example for top-

down state. A robot is supposed to detect a traffic sign and

approach it. The region around a target object, the masked

region in the right-bottom image, is selected as the current

robot attention focus and is further processed in detail,

although this region is not the most salient/surprising region

at this moment, namely the region in the rectangle. In short,

in top-down state, the position of the target object is known.

No matter how salient and surprising the other features are,

to perform its task, the robot attends to the detected target

object.

C. Switching Mechanism

The main contribution of this paper is to realize an

autonomous switching between top-down based and bottom-

up based visual attention selection considering robot task

performance. The transition conditions are defined as fol-

lows.

After initialization, the image region to be further pro-

cessed is selected in bottom-up state of observing state,

since the position of the target object is unknown at this

moment. Once a target is found in the selected region, top-

down state is activated. The image region around the target is

selected constantly, ignoring the other salient features. If the

target is lost, for example due to lighting condition change

or humans and vehicles hiding the target object, the robot

should continue focusing on the last region for N frames at

first to see if the target object is re-detectable. If the robot
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Fig. 3. Left column: attention selection in bottom-up state; Right column:
attention selection in top-down state; Top row: original input images; Bottom
row: the resultant images; Rectangle in solid lines: the salient/surprising
image region; Masked region: the current focus of attention; Circle: detected
target object.

stays in top-down state for n frames, n ≥ N, and the target

is still unseen, bottom-up selection is triggered to search for

the previous target.

If the observation of the target object in top-down state is

accurate enough, the robot starts to operate. To evaluate the

accuracy of the observation, we model the m-dimensional

system state x ∈ R
m of the current robot task as a 2D

Gaussian distribution with mean value µ and covariance

matrix Rx in the task-space computed using a Kalman-filter.

The system state x is chosen according to the current task

and can be robot position and velocity for a self-localization

task or object position and velocity for an object tracking

task. The distribution at the previous time step is regarded

as the prior probability density function (pdf) p(x), while the

pdf at the current time step is q(x) with a continuous variable

x for specific tasks. Both of them are defined as follows:

p(x) =
1

(
√

2π)m(detRk−1
x )1/2

·

exp(−1

2
(xk−1 −µk−1) ·

(Rk−1
x )

−1 · (xk−1 −µk−1)T ), (5)

and

q(x) =
1

(
√

2π)m(detRk
x)

1/2
·

exp(−1

2
(xk −µk) ·

(Rk
x)

−1(xk −µk)T ), (6)

with the dimension m of the state variable x and the time

step k.

The relative entropy is then computed as follows:

∆Itop−down = KL(p(x)||q(x))

=
∫ ∞

−∞
p(x)log

p(x)

q(x)
dx in [bit]. (7)

We define an empirical threshold ε for the relative entropy

∆Itop−down between the predicted and the updated state

estimate as one of the criteria for evaluating the observation

accuracy. The less ∆Itop−down is, the less the estimation

and its expected value vary, and therefore, the better is the

position estimation. If the information measure at the k-th

step is smaller than this threshold, the observation at this

step is regarded as successfully executed. Upon this value

the robot takes the decision what action to perform next:

operating or observing. Respectively, if the task is finished

or the target is lost, the robot stops the current operation,

turns into bottom-up state and observes.

IV. PERFORMANCE EVALUATION

To demonstrate our strategy, experiments were conducted

using the ACE robot mentioned in Section I.

A. Experiment

Fig. 4 shows the experimental scenario in our laboratory.

The ACE robot was supposed to detect three different signs

one after another. The positions of the signs were unknown.

Once a sign was detected and the position of this sign

was satisfyingly estimated, ACE moved straight ahead and

tracked the sign using the active camera head during the

movement, until it reached the position one meter in front of

the sign. Then, the head of the robot should turn to another

direction randomly and search for another sign and so on.

Fig. 4. Experiment setup.

These three signs can not be uniquely described by low-

level features used in the saliency map model and therefore

can not be easily recognized and distinguished using a

top-down biased bottom-up attention selection. For object

recognition we use previously trained classifiers based on

Haar-like features [18]. To lower the computational cost of

object recognition, the classifiers were only applied in the

focus of attention selected in top-down state and bottom-up
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state. The whole input image represents a peripheral sensor

input, while the focus region represents a foveated sensor

input with higher resolution.

B. Results

Fig. 6 illustrates the experimental results. Images

with attention focus region (the masked region) and

salient/surprising region (the region in the rectangle in solid

lines) as well as the frame number are shown. At the first

step, ACE looked straight ahead and bottom-up state was

activated. In frame 1, the blue sign was detected. The focus

of attention changed into top-down state. The image region

around the blue sign was selected in the following frames,

until the robot reached the position one meter in front of

the blue sign (frame 44). The threshold for ∆Itop−down was

set to be 0.12 bit. Then, the robot turned its head randomly

to the right side and detected the yellow sign coincidentally

(frame 45). The robot still stayed in top-down state. After

the position estimation was satisfyingly accomplished, the

robot started to move and track the yellow sign. In frame

111 the sign was lost and bottom-up state was activated after

several frames. In frame 127, the yellow sign was re-detected

in the image region selected in bottom-up state. Top-down

state was triggered again. After the robot reached the position

one meter in front of the yellow sign, the head was randomly

directed and the state was bottom-up state again (frame 149).

In frame 151 and 214 the red sign was detected and tracked.

For 228 frames in total, there are 18 frames in bottom-up

state and 210 frames in top-down state. Fig. 5 illustrates the

evolution of the relative entropy ∆Itop−down and the switching

between top-down and bottom-up state. The semitransparent

time intervals indicate the operating state, in which the robot

was moving.

1 45 111 127 151 214
0

0.12

0.4

re
la

ti
v

e
 e

n
tr

o
p

y 
[b

it
]

1 45 111 127 151 214

bottom−up

top−down

frame number

Fig. 5. Relative entropy evolution and the respective attention control
scheme. The semitransparent time intervals indicate the operating state.

The experiment is also shown in the short accompanying

video. To evaluate the visual guidance performance sepa-

rately, the other sensors on ACE such as laser range finders

were deactivated. To avoid possible crashes with the signs,

we set a very low value to ∆Itop−down, which caused a

relatively long observing period before the robot started to

operate. However, this can be easily improved if other sensor

modalities are used for obstacle avoidance as well.

Tab. I shows the average computation time which was

taken in different phases. Since the bottom-up attention

selection was implemented on Graphics Processing Units

(GPUs) [19], real-time processing in this part is ensured.

The expensive processing is due to the object recognition

algorithm. There is a large improvement in the performance

if the robot searches for the signs only in the attention focus

but not in the whole image.

Task Time

Image capture 67 ms

Surprise map computation 20 ms

+ Search for a sign in attention focus 31 ms

+ Search for 3 signs in attention focus 33 ms

- Search for a sign in the whole image 183 ms

- Search for 3 signs in the whole image 373 ms

TABLE I

Average computation time for each step in the experiment.

C. Discussion

In this experiment, the searched targets, namely three

different signs, have different appearances. However, it is

impossible to use uniform or similar model parameters

such as the weights of feature maps in bottom-up attention

selection models to represent and distinguish them. Pure

bottom-up attention facilitates the robot task accomplishment

by providing attention focus candidates and reducing the

detection time.

In our experiment, the resolution of the vision sensor is

still sufficient for the sign recognition. If more resolution

is required to further process the selected region, bottom-

up state provides potential image region candidates before a

target object is detected and is a must for an efficient uti-

lization of high-resolution cameras [1]. Otherwise, the high-

resolution camera has to search objects in the environment

randomly and inefficiently.

To accelerate the whole task performance, it is obvious

that the pure bottom-up attention selection should be active

as less as possible, although the bottom-up state is necessary.

Three solutions are suggested:

• We can reduce the computation time for bottom-up

state, which has already been achieved using multi-GPU

implementation [19].

• If an object is found, features related to bottom-up

attention selection should be saved. If the object is just

lost, a top-down biased bottom-up mode [1] can be used

for a more efficient search.

• Inhibition of return is applied to avoid repeated view of

the positions which have already been observed.

V. CONCLUSIONS

In this paper a switching between top-down state and

bottom-up state is proposed to deal with scenarios in which
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(1) (44)

(45) (111)

(127)

(149)

(151)

(214)

The ACE robot sign 1 sign 3

sign 2

Fig. 6. Left: The Autonomous City Explorer (ACE) robot comprising an active vision system and a passive stereos camera (not used in this paper).
Right: The experimental results comprising images of robot attention focus and frame number. The solid circles: the ACE robot. The arrows on the robot:
the view direction of the active camera head. The dashed line: the robot trajectory.

a group of target objects are searched which cannot be

uniquely represented by low-level features used in bottom-

up attention selection model. This is the first attempt of

an autonomous switching between top-down and bottom-

up attention selections and fills the gap for object search

with the problems mentioned above. A vision-guided mobile

robot ACE, equipped with an active vision system, is used to

demonstrate our strategy and evaluate the performance exper-

imentally. The necessity and efficiency of this autonomous

switching are demonstrated.

The strategy seems intuitive and straightforward. However,

this capability of autonomous switching of visual attention

selection models enables a vision-guided mobile robot to

be “autonomous” in terms of visual behavior. The selection

of attention focus is adapted to the internal robot state,

observing or operating.
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Buss. The Autonomous City Explorer Project: Towards Navigation by

Interaction and Visual Perception. In Proc. Int. Conf. Robotics and
Automation, 2009.
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