
Visual Odometry for the Autonomous City Explorer

Tianguang Zhang1, Xiaodong Liu1, Kolja Kühnlenz1,2 and Martin Buss1

1Institute of Automatic Control Engineering (LSR)
2Institute for Advanced Study (IAS)

Technische Universität München
D-80290 Munich, Germany

Email: {tg.zhang, kolja.kuehnlenz, m.buss}@ieee.org

Abstract— The goal of the Autonomous City Explorer (ACE)
is to navigate autonomously, efficiently and safely in an unpre-
dictable and unstructured urban environment. To achieve this
aim, an accurate localization is one of the preconditions. Due to
the characteristics of our navigation environment, an elaborated
visual odometry system is proposed to estimate the current
position and orientation of the ACE platform. The existing algo-
rithms of optical flow computation are experimentally evaluated
and compared. The method based on pyramidal Lucas-Kanade
algorithm with high-speed performance is selected. Based on the
optical flow in 2D images, the camera ego-motion is estimated
using image Jacobian matrix and least squares method. The
kinematic model is set up to map the camera ego-motion to the
robot motion. To eliminate systematic errors, a novel system
calibration approach is proposed. Finally the odometry system
is evaluated in experiments.

I. INTRODUCTION

The Autonomous City Explorer (ACE) project [1] devel-
ops a robot (see Fig. 1) that can autonomously navigate in
an unstructured urban environment and find its way through
interaction with humans. To achieve an efficient and safe
operation in natural populated environments, an accurate
localization is one of the most important preconditions.

Fig. 1: ACE robot and the camera for visual odometry

Angular encoders on the wheels of the robot platform
are normally used for odometry. But if ACE moves on a

ground which is not flat, e.g. on cobblestone sidewalk, or
has sands on it, the wheels will slip. The encoders cannot
provide accurate information any more. Thereby visual data
is fused with the information from angular encoders on the
wheels to support the localization.

How to locate the position and orientation of a moving
object using visual information has long been a research
focus of the computer vision community. Campbell et al.
[2] designed a model using monocular camera mounted at
the robot’s front, viewing the front of the robot and the
ground. The optical flow vectors are divided into three parts:
a dead zone near the horizon is defined; the vectors above
this area are used to calculate the robot rotation, while the
vectors below that are used to estimate the robot translation.
Similar to the model in [2], the monocular camera in [3] only
focuses on the locally planar ground. The translation and the
rotation are calculated together. Because of our application
environments, both models are not sufficient for our system.
Utilizing Harris corners detection and normalized correlation,
Nister et al. presented a system [4] that provided an accurate
estimation but worked relatively slow. In [5] salient features
are tracked continuously over multiple images. Then the
differences between features that denote the robot’s motion
are computed. An inertial measurement unit (IMU) is also
employed in [6] to estimate the orientation. In [7], utilizing
the task-sharing abilities of the operating system, the problem
of synchronization across multiple frame-grabbers can be
solved. In order to have a better efficiency, a sum of absolute
differences (SAD) algorithm is used here, but the accuracy
is not perfect.

Our visual odometry is an incremental, online estimation
of robot motion by analyzing a sequence of images from an
onboard camera. In this paper, an elaborated concept is de-
scribed and implemented with high video frame rate. Using
SAD and pyramidal Lucas-Kanade (PLK) algorithms, optical
flows in 2D images are calculated. Then the translation and
rotation of the camera are computed from these optical flows.
A geometry model denoting the relation between the camera
and the robot is established and the kinematic modeling
of ACE as well as its non-holonomic characteristics are
also regarded, so that the localization of the robot can
be deduced from the position of the camera. Moreover, a
novel system calibration procedure is proposed to deal with
systematic errors. At last, the implementation is integrated

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3513



into the whole project, utilizing an appropriate observer, a
Kalman-filter, for data fusion. It is a distinctly local, low-
latency approach that facilitates closed-loop motion control
and highly accurate dead reckoning to help ACE determine
the precise position and orientation.

The paper is organized as follows: Firstly, in Section II, the
complete system including the hardware and our algorithms
are introduced. In Section III, we estimate the camera ego-
motion. The kinematic modeling, system calibration and data
fusion are established in Section IV. Experimental results are
shown in Section V. Conclusions and future work are given
in Section VI.

II. SYSTEM OVERVIEW
ACE is equipped with various sensors which can be

considered for this localization task. However, they have
major drawbacks with respect to the experimental scenario:

• The navigation route partly consists of ground with
sands and cobblestone (see Fig. 1), on which the angular
encoders on the wheels cannot provide reliable infor-
mation. Driving onto/off sidewalks also causes serious
wheel sliding.

• Since ACE interacts with humans frequently and also
navigates in very crowded pedestrian areas, the mea-
surement data from stereo cameras and lasers facing
forwards are not directly usable.

• Moving on poor ground conditions, such as on cob-
blestone sidewalk, ACE bumps during the navigation,
which causes a catastrophic performance of gyroscopes.

To avoid disturbances of the independently moving enti-
ties such as passers-by, the camera for visual odometry is
mounted in the front right of ACE and gazes downwards.
The optical axis is perpendicular to the ground as shown in
Fig. 1 and Fig. 2.

Image plane
(at λ)z

camera

 ACE
Robot

Yr

Xr Yc

β x0

y0

Xc

L

W

 ACE
Robot

camera

Fig. 2: Profile (left) and topview (right) sketches of the visual
odometry configuration

A. Hardware Description
Our visual odometry system is equipped with a high-speed

camera and a 1394b PCI-express adapter which are used
to capture and transfer the images to the vision processing
computer on ACE. A Dragonfly Express camera (Point Grey
Research Inc.) is used, equipped with a normal wide-angle
lens, which can work at 200 fps at a resolution of 640×480

pixels. We use a lens with a focal length of 4.8 mm and
a view angle of 60◦. The distance (z) between the image
plane and the ground plane is 32 cm. The vision processing
computer is equipped with an AMD Phenom 9500 Quad-
Core processor with a basic frequency of 2.2 GHz and 4 GB
memory.

B. General Concept
The general concept of our visual odometry is composed

of six parts:
1) After being captured from camera, images come to the

camera calibration process using the camera calibration
toolbox [8].

2) After image undistortion, optical flow computation al-
gorithm is implemented to calculate the interest points
velocity in the image plane.

3) The camera ego-motion is estimated utilizing the im-
age Jacobian matrix and least squares method.

4) A kinematic model is established, in order to transform
the camera motion into the robot motion.

5) Two scenarios are designed to correct the systematic
errors, which is called system calibration.

6) The visual odometry results are combined with the
conventional odometry data using a Kalman-filter, en-
abling ACE to localize itself with a better accuracy.

Parts 1, 4 and 5 are operated only once, while the others
are executed between each two successive frames captured
sequentially.

III. CAMERA EGO-MOTION ESTIMATION
In this section two different optical flow algorithms, in

combination with image Jacobian matrix and least squares
optimization method are implemented to estimate the camera
ego-motion.

A. Optical Flow Algorithms
In this visual odometry system two optical flow compu-

tation algorithms, sum of absolute differences (SAD) and
pyramidal Lucas-Kanade (PLK) are implemented. The com-
putation speed and accuracy are compared and the one with
a better performance is selected.

1) SAD: SAD is a kind of block matching algorithm
using absolute difference as criteria of similarity. The original
block in the first image and the matching block in the second
image should have the minimum SAD value [9].

SAD is expressed in assembly language with AT&T [10]
syntax under Linux system to attain a fast computational
speed – 70Hz. The size of images is 640 × 480 pixels
and the 360 × 360 pixels around the principal point are
chosen as interest area, which is divided into 36 groups.
Each group consists of 3× 3 windows containing 20× 20
pixels each as shown in Fig. 3. In each group we set a
threshold to eliminate some windows whose optical flow
values seem not to be accurate. The average optical flow
value of remaining windows in each group is computed and
could be seen as a valid optical flow value of this group. It
can be considered in a way that optical flows of 36 feature

3514



points have been computed in total with a better accuracy.
This alignment also benefits the efficiency of the assembly
language programming.

640 x 480 frame n-1 frame n

360 x 360

20 20 20

20

20

20

Area of Interest

Original image

principal Point

Fig. 3: Sketch of points of interest selection

2) PLK: Lucas-Kanade [11] is a classic differential opti-
cal flow technique. One advantage of the PLK algorithm is its
ability to handle a large pixel motion exactly with local sub-
pixel accuracy. The pyramidal implementation of the Lucas-
Kanade algorithm [12] works robustly and efficiently. 36 sets
of optical flow results are obtained with this algorithm in the
same way as by the SAD algorithm.

Selection of the integration window size and pyramid
levels depends on the speed of ACE. If ACE is running at its
lowest speed of 0.2 m/s and the camera works at a frequency
of 30 Hz, the pixel motion between two successive frames is
13.8 pixels/ f rame. If ACE is at its highest speed 0.8 m/s,
the pixel motion increases to 55.3 pixels/ f rame. Due to
hardware limitations frame jumping occurs occasionally,
resulting in a long time interval between two frames. Then
the inter-frame pixel motion in the image is even larger.
The number of pyramid levels is set to 3 and the size of
the integration windows is 7× 7. This PLK method is able
to handle a maximum pixel motion of (23+1

− 1)× 7 =
105 pixels/ f rame, which is robust enough against most
frame jumping situations. Compared to SAD, although the
latter can work at about 70 f ps, the maximum pixel motion
it can handle is only 8 pixels/ f rame, which is not adequate,
if ACE is running faster than 0.4 m/s. Moreover, the SAD
algorithm cannot work precisely, if ACE moves with a
curved trajectory.

B. Camera Velocity Computation
After the optical flow computation, divided by the time

interval between successive images, the velocities of the 36
points of interest in the image plane are acquired. The image
Jacobian matrix J is applied to determine the camera velocity
vector ṙc in 3D world according to the corresponding pixel
velocity ḟp in 2D image plane [13]

ḟp = J · ṙc. (1)

Normally there are 6 unknown components (6 DOF) in
the camera velocity vector. Because the displacement of the
camera in the vertical direction Δz is much smaller than the
distance between the camera and the ground z and the sum
of Δz is almost zero, it can be assumed that the ground is a

flat plane. The ACE-platform moves without any roll- and
pitch angle (ωx and ωy), which can be expressed as:

lim
T→∞

T

∑
t=0

Δz = 0; ωx ≈ 0; ωy ≈ 0. (2)

Under this assumption only 3 components of ṙc are
considered: the translation in x- and y-directions as well as
the orientation around z axis. Thus, (1) reduces to:

⎡
⎢⎢⎢⎢⎢⎣

u̇1
v̇1
...

u̇36
v̇36

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
z

0 −v1

0
λ
z

u1

...
...

...
λ
z

0 −v36

0
λ
z

u36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎣

Tcx
Tcy
ωcz

⎤
⎦ (3)

where ui,vi (i = 1, · · · ,36) are the positions of the 36 points
of interest along x- and y-direction in the image plane;
u̇i, v̇i are the corresponding velocity components; Tcx Tcy and
ωcz are the camera velocities and angular velocity in the
camera coordinate system; λ represents the focal length of
the camera and z is the distance between the image plane
and the ground plane, which is assumed to be constant.

Eq. 3 is an over-determined system. Least squares method
[14] is utilized in the form of pseudo-inverse matrix to obtain
an optimal solution of the camera ego-motion.

IV. ROBOT LOCALIZATION
Using the camera velocity ṙc acquired in the last section,

the precise position and orientation of ACE will be obtained
after setting up kinematic models, system calibration and
data fusion.

A. Kinematic Modeling
Since the camera is mounted on ACE rigidly, the relative

position between the camera and the robot does not change.
Any actuated motion of the robot results in a movement
of the camera relative to its original position. Furthermore,
when ACE is moving, it has no lateral velocity perpendicular
to its heading direction. Similar to a unicycle, ACE has only
a longitudinal velocity along the forward direction and an
angular velocity around the vertical axis relative to itself in
robot coordinates. But it does have translations in both x- and
y-directions in world coordinates due to its current angular
velocity. It can be considered a non-holonomic system [15]
with constraints, which eases the discrimination of redundant
results from optical flow. The final state of the system
depends on the values of the momentary velocities along
its trajectory. Based on the characteristics of non-holonomic
systems, the momentary velocity of ACE ṙ = [Trx,ωrz]

T

can be transformed to the instantaneous camera velocity
ṙc = [Tcx,Tcy,ωcz]

T at each time step (see. Fig. 4)

Tcx =−ωrzRcosβ = −ωrzx0

Tcy = −Trx −ωrzRsinβ = −Trx −ωrzy0

ωcz = −ωrz,

(4)

3515



Yr

Xr

y0

x0

Tcy

Tcx

Trx

T rx

Rω rz

ω rz

Rβ

β

Fig. 4: Velocity transforma-
tion based on characteristics
of non-holonomic systems

 rz

Trx(3)

ω

Trx(2)

Trx(1)

Trx(0)

θ1

θ2

θ3

x23
w

x12
w

x01
w

y23
w y12

w

Fig. 5: Moving trajec-
tory in world coordinate

where x0 and y0 are the distances between the gravity center
of ACE and principal point in the image plane (Fig. 6). We
reformulate (4) into:

ṙc =

⎡
⎣

0 −x0
−1 −y0
0 −1

⎤
⎦ · ṙ, (5)

where the camera ego-motion ṙc is computed according to
Section III. And according to (5), we can determine the
robot velocity vector ṙ using least squares method. Then the
incremental measurements (x,y,θ )T

i−1,i between frame i− 1
and frame i (see Fig. 5) are computed as follows:
⎛
⎝

x
y
θ

⎞
⎠

i−1,i

=

⎛
⎝

cosθi−1 0 0
0 sinθi−1 0
0 0 1

⎞
⎠ ·

⎛
⎝

Trx
Try
ωrx

⎞
⎠

i−1

· ti−1,i,

(6)
with ti−1,i the time interval between frame i−1 and i.

Finally the robot position and orientation at step n are
computed from the incremental measurements as:

x =
n

∑
i=1

xi−1,i; y =
n

∑
i=1

yi−1,i; θ =
n

∑
i=1

θi−1,i. (7)

B. System Calibration
To eliminate the systematic errors, the system should be

calibrated. For instance, in our model the camera coordinate
system is assumed parallel to the robot coordinate system.
But when the camera is being mounted on ACE, it is very
difficult to achieve that. There is an error angle φ as shown
in Fig. 6. Even if it is a very small angle, it will influence
our results strongly, since we must integrate the results in
each time interval to obtain the end position and orientation.
The measurements x0 and y0 in Fig. 6 can also not be very
accurate.

Two scenarios are designed to estimate φ , x0 and y0.
The data for system calibration experiments is obtained
when ACE is moving in an indoor environment with proper
brightness, high-contrast texture and flat surface. In the first
scenario, ACE runs about 6.7 m in a straight line with
constant speed, which is taken as pure translation and used to

x0

y0

L

W

camera

ACE

Yc

Yr

Xr

Xc

Xr

Rωrz

β

β

Yr
 ωrz

Xc

Tcy

Tcx

Trx Yc

x0

y0

RTrx

Fig. 6: Camera mounted with an angle error (left) and
corresponding coordinates relationship (right)

estimate the angle error φ . If ACE moves in a straight line,
there is no velocity in Yr-direction. That means as shown in
Fig. 6:

ωrzx0 = Tcx cosφ + Tcy sinφ = 0 (8)

According to (8):
tanφ = −

Tcx
Tcy

, (9)

where the optimal values of Tcx and Tcy are obtained from
Section III-B.

After knowing φ , x0 and y0 are estimated in a pure rotation
test. ACE only rotates at the starting point and passes about
460◦, through which x0 and y0 can be estimated. In this test,
the velocity Trx is supposed to be zero, so

tanβ =
x0

y0
=

Tcy cosφ −Tcx sinφ
Tcx cosφ + Tcy sinφ

, (10)

and according to (4),

Tcx = ωcz · x0. (11)

C. Data Fusion
After completing the task of robot motion estimation using

visual information, we fuse it with the conventional odometry
data to reduce errors and increase accuracy and reliability,
accomplished by applying a Kalman filter [16]. There are two
angular encoders on the wheels of the platform (BlueBotics
SA). The position x, y and orientation θ can be directly
transferred from the platform to image processing computer
through ethernet. The odometry information from two dif-
ferent sources, camera and encoders, should be combined to
localize the ACE robot.

Let ẋe, ẏe,ωe represent velocities from conventional odom-
etry, and ẋv, ẏv,ωv from visual odometry. In this Kalman
filtering process the state vector is xk = [xk, ẋk,yk, ẏk,θk,ωk]

T ,
and the measurement vector is zk = [ẋe

k, ẏ
e
k,ω

e
k , ẋv

k, ẏ
v
k,ω

v
k ]

T .
There is also a control input uk = [uvk ,uωk ]

T given by the
system to command the acceleration of the ACE robot, so
the time update equation should be:

xk = A·xk−1 + B·uk−1 + wk−1, (12)

where

3516



A =

⎡
⎢⎢⎢⎢⎢⎣

1 Δt 0 0 0 0
0 1 0 0 0 0
0 0 1 Δt 0 0
0 0 0 1 0 0
0 0 0 0 1 Δt
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎣

1
2 cosθk−1Δt2 0
cosθk−1Δt 0

1
2 sinθk−1Δt2 0
sinθk−1Δt 0

0 Δt2

0 1

⎤
⎥⎥⎥⎥⎥⎦

,

where Δt is the inter-frame time interval and wk is process
noise. The relationship between the state vector and the
measurement vector is:

zk = H·xk + vk, (13)

where H =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, and vk is measurement

noise. The measurement noise covariance and process noise
covariance in the Kalman-filter are assumed to be constant
and determined empirically.

V. EXPERIMENTAL RESULTS
In order to evaluate the robustness of our algorithm under

different conditions, experiments have been conducted under
five different ground conditions: marble, cement sidewalk,
cobblestone sidewalk, asphalt road, and sands. Based on
large amounts of measurements and experimental results, the
average error rate of the conventional odometry in indoor
environments is around 2.5%, while in outdoor environments
it lies between 3% and 5%. In some extreme terrain, the
estimation of the rotated angle of ACE is too erroneous,
causing localization to fail. In this case, visual odometry
provides a more accurate result.

A. Pure Translation and Pure Rotation Results
Pure translation and pure rotation tests are carried out

indoor on marble surface. It is also necessary for the system
calibration. Fig. 7 indicates the translation and rotation
results in the pure translation test after using the calibration
parameters, while the pure rotation results are illustrated in
Fig. 8. In the pure translation test the error rate is reduced
to only 1% after system calibration compared with ground
truth which is measured using conventional measuring tools.

Fig. 7: Translation (left) and rotation (right) results in the
pure translation test

In the pure rotation test ACE has passed about 375◦
around its vertical axis and the translation error is no more
than 3 mm after system calibration. Our system calibration
has performed well and eliminated the systematic errors
successfully.

Fig. 8: Translation (left) and rotation (right) results in the
pure rotation test.

B. Square Trajectory Test

Since there is no accurate ground truth in our experiment,
a square trajectory test is designed to prove the validity of
the algorithm, because the trajectory is closed. The distance
between the real end point and the end point estimated
by the wheel encoders and the vision data indicates the
accuracy of the performance. This experiment is conducted
on a cobblestone sidewalk. There is only a small distance
between the start point (black cross) and end point (black
point) which can be easily measured by traditional methods.
From Fig. 9 it can be seen that the end point computed from
visual odometry is closer to the true value compared with
that from conventional odometry. Comparing the relative dis-
tances between the endpoints using conventional odometry
and visual odometry, an approximate improvement of 50%
using the latter one is achieved. Our visual odometry system
has a very good performance under poor ground conditions.

Fig. 9: Trajectory results in a square trajectory test, blue, red
and green points represent the end points computed from
visual odometry, angular encoder odometry and the fusion
results respectively

C. Circle Trajectory Test

A circle trajectory test is used to verify whether the
algorithm is valid when ACE has translation and rotation
at the same time. Considering the different textures in
varying terrains, this experiment is conducted on asphalt road
surface to test the result quality in a relatively low-contrast
environment. ACE moved in two circles over a total length
of 25 m long. Fig. 10 shows the trajectory results of this
scenario. The visual odometry result is also much better on

3517



Fig. 10: Trajectory results in a circle trajectory test

asphalt road surface. Therefore, the fusion corrects the result
of the conventional odometry.

D. Discussion
From more than 30 test runs on different ground surfaces,

some representative results are shown. The fusion is a com-
promise between vision data and wheel encoders. The former
one performs better, if environmental conditions such as
lighting conditions are appropriate, while the latter one works
well under suitable ground condition. Since our navigation
scenario contains different environments and various ground
conditions, the fusion is robust against sensor failure and
ensures a general improvement of the whole performance.
An elaborate sensor selection model is being considered. Fur-
thermore, the effect of the fusion algorithm is sometimes not
prominent, because of the simplification under assumption
that the system is a linear system using a normal Kalman-
filter. It is being improved by utilizing an extended Kalman-
filter.

In some situations, this algorithm is still not robust enough
since the localization result accuracy is influenced by chang-
ing environment brightness and moving objects in the field
of view. For example, sometimes fallen leaves lead to errors
in optical flow computation. Attention should be paid to
the enhancement of robustness against noises caused by
changing environments.

VI. CONCLUSIONS
The visual odometry system proposed in this paper con-

sists of optical flow computation based on PLK, camera
motion estimation using image Jacobian matrix and least
square method, a novel experimental system calibration pro-
cedure, robot motion reconstruction and fusion of encoders
and vision data using Kalman-filter. Each part is designed
and implemented according to the system requirement for
an accurate and safe navigation in outdoor urban environ-
ments. The visual odometry system has shown a very good
complement and is a good correction for the conventional

odometry. This algorithm runs at 30 fps. The error rate has
been reduced from 5% or more to 1% − 2%. Two odometry
systems complement each other in some extreme terrains
where the result from one of them is not acceptable.

VII. ACKNOWLEDGMENTS
This work is supported in part within the DFG excellence

initiative research cluster Cognition for Technical Systems
– CoTeSys, see also www.cotesys.org and the BMBF
funded Bernstein Center for Computational Neuroscience
Munich, see also www.bccn-munich.de. We would like
to thank the other ACE-Team members (G. Lidoris, K.
Klasing, A. Bauer, T. Xu, Q. Muehlbauer, S. Sosnowski,
F. Rohrmueller and D. Wollherr) for their excellent work
designing and implementing the ACE platform.

REFERENCES

[1] G. Lidoris, K. Klasing, A. Bauer, T. Xu, Q. Muehlbauer, T. Zhang,
S. Sosnowski, F. Rohrmueller, K. Kuehnlenz, D. Wollherr, and
M. Buss, ACE - The Autonomous City Explorer Project, www.ace-
robot.de, 2008.

[2] J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, “A robust
visual odometry and precipice detection system using consumer-
grade monocular vision,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2005.

[3] H. Wang, K. Yuan, W. Zou, and Q. Zhou, “Visual odometry based
on locally planar ground assumption,” in Proceedings of the IEEE
International Conference on Information Acquisition, 2005.

[4] D. Nister, O. Narodisky, and J. Bergen, “Visual odometry,” in Proceed-
ings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, 2004.

[5] C. Dornhege and A. Kleiner, “Visual odometry for tracked vehicles,”
in Proceedings of the IEEE International Workshop on Safety, Security
and Rescue Robotics (SSRR), 2006.

[6] J. Borenstein and L. Feng, “Gyrodometry: A new method for combin-
ing data from gyros and odometry in mobile robots,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
1996.

[7] D. Fernandez and A. Price, “Visual odometry for an outdoor mobile
robot,” in Proceedings of the IEEE Conference on Robotics, Automa-
tion and Mechatronics, 2004.

[8] J. Bouguet, Camera Calibration Toolbox for Matlab,
http://www.vision.caltech.edu/bouguetj/calib doc, 1999.

[9] J. Barron, D. Fleet, and S. Beauchemin, “Performance of optical flow
techniques,” International Journal of Computer Vision, vol. 12:1, pp.
43–77, 1994.

[10] AMD64 Architecture Programmer’s Manual Volume 4: 128-Bit Media
Instructions.

[11] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the DARPA
Image Understanding Workshop, 1981.

[12] J. Bouguet, “Pyramidal implementation of the lucas kanade feature
tracker description of the algorithm,” OpenCV Documentation, Intel
Corporation, Microprocessor Research Labs, 1999.

[13] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 12:5,
pp. 651–670, 1996.

[14] S. R. Buss, “Introduction to inverse kinematics with jacobian trans-
pose, pseudoinverse and damped least squares methods,” Department
of Mathematics, University of California, San Diego, Tech. Rep., 2004.

[15] C. Zhang, D. Arnold, N. Ghods, and A. S. M. Krstic, “Source seeking
with non-holonomic unicycle without position measurement and with
tuning of forward velocity,” in Proceedings of the IEEE Conference
on Decision and Control, 2006.

[16] G. Welch and G. Bishop, “An introduction to the kalman filter,”
Department of Computer Science, University of North Carolina, Tech.
Rep., 2006.

3518


