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Abstract— In this paper, we describe a new approach which
uses scale-invariant image features to estimate the motion
of a stereo head. These point features are matched between
pairs of frames and linked into image trajectories at video
rate, generating what it is called visual odometry, i.e. motion
estimates from visual input alone. With respect to previously
proposed approaches, the main novelty of our proposal is that
the matching between sets of features associated to stereo pairs
and between sets of image features associated to consecutive
frames are conducted by means of a fast combined constraint
matching algorithm. Besides, the efficiency of the approach is
increased by using a closed-form solution to estimate the final
robot displacement between consecutive acquired frames. We
have tested the proposed approach for navigational purposes
in a real environment. Experimental results demonstrate the
performance of the proposal.

I. INTRODUCTION

In order to accomplish higher-level tasks, autonomous

mobile robots have to be able to determine their pose (posi-

tion and orientation) while moving. In this sense, a precise

and stable self-localization is one of the most important

requirements to act purposefully in any environment. This

task is typically performed using wheel odometry (from joint

encoders) or inertial sensing (gyroscopes and accelerome-

ters). However, wheel odometry techniques cannot be applied

to robots with non-standard locomotion methods, such as

legged robots. Besides, it suffers from precision problems,

since wheels tend to slip and slide on the floor. On the

other hand, inertial sensors are prone to drift. In robotics

and computer vision, visual odometry defines the process

of estimating the pose of a robot by analyzing the images

provided by the camera(s) mounted on it [1]. Along the

last decades, the visual odometry problem has widely been

studied and there are successful techniques in the literature

[2]–[5]. The most of these methods uses a stereo image pair

matching, and estimate the ego-motion according to a set of

corresponding points in two consecutive instant of time [2]–

[4]. This matching process represents a crucial step for an

accurate visual odometry method.

Specifically, the proposed visual odometry system consists

of two consecutive matching stages (see Fig. 1). The first

stage matches points of interest obtained from the left and

right images, achieving stereo matching. These points are
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Fig. 1. Problem statement: given the pairs of stereo images taken at frames
t−1 and t, the robot motion is estimated from the natural landmarks {L}i.

detected in both images by searching for maxima or minima

of the Difference of Gaussians (DoG) function in the scale-

space [6]. The scale-space representation is achieved by

building an image pyramid with resampling in each level. For

every point of interest, the Scale Invariant Feature Transform

(SIFT) descriptor is calculated and stored with its scale and

location values [6]. In spite of SIFT matching in stereo

vision could be slower than using other type of features

with identical results, it allows to obtain the set of SIFT

for the next stage, which is interesting for its invariance

to rotation and scale. Then, we perform stereo matching

between points in the left and right images. This matching

will be constrained by the stereo geometry -matched points

must be in the same epipolar lines- and considering the scale

and orientation of the descriptors. The aim is to provide

a set of features which will be defined by their 3D world

positions in the camera coordinate system. These features

are considered as natural landmarks in the environment.

Then, the second stage performs matching between sets of

natural landmarks associated to consecutively acquired pairs

of stereo images. This matching will be also constrained

by the relative distance between features and the Euclidean

distance of their SIFT descriptors. This stage allows to track

the robot pose and its efficiency is achieved by a closed-

form solution. Contrary to previous approaches which con-

sider these matching stages as an outlier rejection process,

the main novelty of this proposal is that these stages are

carried out as an inlier detection process, which improves

the accuracy of the matching process. Thus, both matching

stages are stated as a maximum clique problem, i.e. to find

the largest number of adjacent nodes for a given graph. In

our case, nodes and arcs of this graph will be set according

to the features to match.
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This paper is organized as follows: after discussing the

main aspects of the maximum clique problem in Section

II, Section III describes our method for visual odometry.

Finally, experimental results and the main conclusions and

future works are presented in Section IV and V, respectively.

II. MAXIMUM CLIQUE PROBLEM

Let G = (N, E) be an undirected graph with node set

N = {n1, ...nn}. Two nodes ni and nj are said to be

adjacent if they are connected by an arc eij ∈ E. A

clique of a graph is a set of nodes where all of them are

adjacent. Cliques with the following two properties have

been studied over the last decades: maximal cliques, whose

nodes are not a subset of the nodes of a larger clique, and

maximum cliques, which are the largest among all cliques

in a graph (maximum cliques are clearly maximal). In the

maximum clique problem, one desires to find one maximum

clique of an arbitrary undirected graph. This problem is

computationally equivalent to some other important graph

problems, for example, the maximum independent (or stable)

set problem and the minimum node cover problem. Since

these are NP-hard problems, no polynomial time algorithms

are expected to be found.

In this work, we employ the branch-and-bound fast al-

gorithm for the maximum clique problem proposed by [7].

Let {n}n
i=1 be the set of nodes of the graph G and Si be

the subset {ni, ni+1, ...nn}. The maximum clique algorithm

firstly looks for cliques in Sn that contain nn (the largest

such clique is {nn}), then cliques in Sn−1 that contain nn−1,

and so on. The algorithm is presented in Table I. The set

of nodes adjacent to a node ni is denoted by N(ni) and

the number of nodes in the graph is n. The global variable

max gives the size of a maximum clique when the algorithm

terminates.

The function c(i) gives the largest clique in Si. Obviously,

for any 1 ≤ i ≤ n − 1, we have that c(i) = c(i + 1) or

c(i) = c(i + 1) + 1. Moreover, we have c(i) = c(i + 1) + 1
iff there is a clique in Si of size c(i + 1) + 1 that includes

the node ni. Therefore, starting from c(n) = 1, we search

for such cliques. If a clique is found, c(i) = c(i + 1) + 1,

otherwise c(i) = c(i + 1). The size of a maximum clique

is given by c(1). Old values of the function c(i) enables

the new pruning strategy (in line 14). That is, if we search

for a clique of size greater than s, then we can prune the

search if we consider ni to become the (j + 1)-th node and

j + c(i) ≤ s.

III. PROPOSED APPROACH

A. Overview of the Proposal

The aim of the visual odometry algorithm is to calculate

an estimate of the robot motion at each instant of time, ∆pr
t

= (∆x, ∆y, ∆θ)T . In the proposed approach, a stereo camera

mounted on the robot is used to provide a stereo view of the

environment. Then, two consecutive image pairs acquired

by the cameras are matched to estimate the displacement of

the mobile platform. The quality of this matching process is

crucial for accurate estimation. Indeed, a poor association

TABLE I

FAST MAXIMUM CLIQUE ALGORITHM [7]

function clique(U , size)

1: if |U | = 0 then
2: if size > max then
3: max := size
4: New record; save it.
5: found := true
6: end if
7: return
8: end if
9: while U 6= ∅ do
10: if size + |U | ≤ max then
11: return
12: end if
13: i := min{j|nj ∈ U}
14: if size + c[i] ≤ max then
15: return
16: end if
17: U := U\{ni}
18: clique(U ∪ N(ni); size + 1)
19: if found = true then
20: return
21: end if
22: end while
23: return
function new
24: max := 0
25: for i := n downto 1 do
26: found := false
27: clique(Si ∩ N(ni), 1)
28: c[i] := max
29: end for
30: return

between consecutive images leads to a robot pose error

which is unrecoverable in most situations. Thus, a significant

advance in visual odometry algorithms is the possibility of

improving the matching process using consecutive stages [3].

The approach described in this paper follows this scheme,

whose block diagram is illustrated in Fig. 2. As is shown

in the figure, the proposed visual odometry algorithm con-

sists of two matching processes which are achieved in five

consecutive stages. First, each new image pair is acquired

and the DoG detector is employed to obtain the two sets

of points of interest [6]. These points are described using

the SIFT algorithm [6]. Both sets of features are the input

of the next stage, which computes the stereo matching. The

3D locations of these natural landmarks in the environment

are calculated in the third stage using the output of this

first stereo matching process. Next, the feature association

stage performs matching between sets of features which

belong to consecutively acquired stereo images. Finally, the

output of this stage allows the system to estimate the robot

displacement at current instant of time. Each one of these

stages are explained in detail in the next subsections.

B. Scale-invariant Image Features

The Scale Invariant Feature Transform (SIFT) is a well-

known method to provide a set of keypoints detected in the

scale-space which are characterized by a descriptor invariant

to scale and orientation. [6]. Let Ir
t and I l

t be the right

and left images captured using the stereo camera at time t.

This first stage detects the set of SIFT features in two both
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Fig. 2. Visual odometry algorithm proposed in this paper (see the text for
a complete description of the modules).

images, F l
t and F r

t, left and right, respectively. To aid the

extraction of these features, the SIFT algorithm applies a

four stage filtering approach to each image:

• Scale-space extrema detection. A scale spaced is con-

structed from the original image to determine those

locations and scales that are identifiable from differ-

ent views of the same object. To do this, the image

is convolved with Gaussian filters at different scales,

and then the difference of successive Gaussian-blurred

images are calculated. Keypoints are then taken as

maxima/minima of the Difference of Gaussians (DoG)

in multiple scales.

• Keypoint localization. Previous stage produces too many

keypoints candidates, some of which are unstable. Thus,

this step treats to perform a detailed fit to the nearby

data for accurate location, scale, and ratio of principal

curvatures

• Orientation assignment. One or more consistent orien-

tations are assigned to each keypoint based on local

image gradients.

• Keypoint descriptor. Finally, a SIFT descriptor is gen-

erated for each keypoints from local image gradient

information at the scale found in stage 2. This results

in a feature vector containing 128 elements.

Figure 3 shows the SIFT features that were obtained from

one pair of stereo images acquired with our vision system. A

vector which represents the location, scale and orientation is

associated with each descriptor. The scale and orientation of

each feature is indicated by the size and orientation of this

corresponding vector. The number of SIFT descriptors found

in the stereo image shown in Fig. 3 was 94 for the left image,

and 92 for the right image. Typically, the major problem of

this SIFT feature description is the long time taken to extract

the features from the images. Recent techniques reduce this

computational load using the Iterative-SIFT algorithm [11],

Fig. 3. SIFT features found for the left and right images from the stereo
image (F l

t and F r
t). The scale and orientation are indicated by the size

and orientation of the vectors.

or removing the rotational normalization and rotational part

of the SIFT feature [12]. In our work we have limited the

number of SIFT for each image in order to improve the

processing time of the description stage.

C. Stereo Matching

In this section, we formulate the stereo matching problem

as a graph-theoretic data association problem. The main

advantage of our method respect to other stereo matching

approaches is its robustness in the data association stage,

improving the ego-estimation of the robot motion. The

fundamental data structure of this stage is the correspondence

graph [9], which represents valid associations between the

two SIFT descriptor sets (see Fig. 4). Complete subgraphs

or cliques within the graph indicate mutual associations

compatibility and, by performing maximum clique search,

the largest joint compatible association set may be found.

Construction of the correspondence graph is performed

through the application of relative and absolute constraints

over the set of descriptors. Thus, the nodes of the graph

indicate individual association compatibility and are deter-

mined by absolute constraint. On the other hand, the arcs of

the correspondence graph indicate joint compatibility of the

connected nodes and are determined by relative constraints.

The method used to calculate the correspondence graph has

three major steps:

1) Nodes of the correspondence graph detection. In the

proposed method, graph nodes are associated to pos-

sible pairwise of SIFT features in F l
t and F r

t after

applying an absolute constraint. Let NF l
t

and NF r
t

be the number of SIFT descriptors for left and right

images, respectively. In a first place, the matrix Tt

(NF l
t

x NF r
t
) is generated for all these pairwise

combinations calculating the Euclidean distance be-

tween these two descriptors. Therefore, two similar

SIFT features in the image pair have low values in the

matrix Tt. On the other hand, high values correspond

to dissimilar features. The matrix is after modified to

satisfied the constraint described in [10] (epipolar, dis-

parity, orientation, scale and unique match constraints).

The set of pairwise matched features whose matrix

value is lower that a fixed threshold UT constitutes the

set of susceptible matched to be a real match in the

stereo image. Thus, graph nodes are generated as all

the possible combinations of these pairwise descriptors
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(e.g. node 1 in Fig. 4 is valid if descriptor F 1,l
t is a

possible correspondence of F 1,r
t).

2) Arcs of the correspondence graph construction. For

all pairwise combinations of matches in Tt, a relative

constraint matrix is calculated, Rt. To do that, a

relative constraint on the image coordinates is used.

Let ω be the vector defined by ω = (o, s)T , where o

and s are the orientation and scale values associated

to the descriptor. Thus, a pair of matched descriptors

is consistent if the Euclidean distance between the ω

vectors from two SIFT descriptors in the left image

is similar to the Euclidean distance between the cor-

responding vector in right image. That is, a pair of

matches (f i,l
t, f i,r

t) and (f j,l
t, f j,r

t) are consistent

iff they satisfy the relative constraint:

‖ωl
t − ωr

t ‖ ≤ U t
R (1)

being

ωl
t =

√

(oi,l
t − o

j,l
t )2 + (si,l

t − s
j,l
t )2

ωr
t =

√

(oi,r
t − o

j,r
t )2 + (si,r

t − s
j,r
t )

2
(2)

where (o, s)i and (o, s)j denote the orientation and

scale values of a SIFT descriptor and U t
R is a threshold

defined by the user. Thus, the corresponding entry in

the relative constraint matrix Rt contains a 1 value

if the constraint is satisfied (arc in the graph), and

0 otherwise (e.g. if the relative constraint between

(f1,l
t, f2,l

t) and (f1,r
t, f2,r

t) matches, the node 1

is connected to the node 5 in Fig. 4).

3) Maximum clique detection. Next, the largest set of

mutually consistent matches is calculated. This is

equivalent of finding the maximum clique on a graph

with adjacency matrix Rt. This problem was explained

with detail in Section II. After applying the maxi-

mum clique algorithm, this stage provides a set of

mutually compatible associations, that is, a set of

matched SIFT features. Thus, the algorithm avoid bad

associations, which results in erroneous displacement

estimate. Figure 5 shows the pairwise SIFT descriptors

after using the proposed stereo matching algorithm. As

is illustrated in the figure, the quality of the matching

process is guaranteed even though the number of SIFT

descriptors is high. In this example, the number of

matched features was 21.

D. Stereo-based Point Location

Each detected feature is readily characterized by the

Cartesian localization of the point of interest provided by the

stereoscopic vision system. Given the two matched features,

the stereo vision system allows to compute the corresponding

3D point coordinates according to

Z =
b · fc

d
X = fc

(u − Cx)

d
Y =

fc(v − Cy)

d
(3)

(Cx, Cy), b and fc being the image center, stereo camera

baseline and camera focal length, respectively. All of them

Fig. 4. Nodes represent possible matches when considered individually.
Arcs indicate consistent associations, and a clique is a set of mutually
consistent associations (e.g., the clique 1, 5, 9 implies associations f1,l

t

→ f1,r
t, f2,l

t → f2,r
t, f3,l

t → f3,r
t may coexist).

Fig. 5. Matched SIFT features between left and right images from the
stereo pair shown in Fig. 3. Red line represents matched points.

are calibration parameters. Finally, d and (u, v) are the

disparity value and the image coordinates location associated

to the image feature assuming rectified images.

E. Feature Association

Let I
l,r
t−1 and I

l,r
t represent the pairs of stereo images taken

with the robot camera at two consecutive intervals of time.

For each pair of images we detect points of interest, compute

SIFT descriptors for them and perform stereo matching,

resulting in two sets of natural landmarks Lt−1 and Lt.

Next, we obtain the feature matching using a graph-

theoretic data association problem. Thus, the correspondence

problem is achieved between the set of landmarks associ-

ated to consecutive frames applying absolute and relative

constraint (see Sec. III-C). The Euclidean distance between

consecutive SIFT descriptors associated to this set of land-

marks is used to obtain the matrix TF . Thus, entries in TF

whose value are lower than a fixed threshold UT constitute

the set of possible matched landmarks. Next, the relative

constraint is used to generate the adjacency matrix Rf from

the set of possible pairwise landmarks. The relative constraint

is changed for using the location of each pair of landmarks,

(Li
t−1, L

j
t−1) and (Li

t, L
j
t ). Thus, (1) is changed to

‖Li
t−1 − L

j
t−1‖ − ‖Li

t − L
j
t‖ ≤ U

f
R (4)

being ‖Li
t − L

j
t‖ the Euclidean distance between pair of

landmarks using their 3D locations, and U
f
R an user-defined

threshold. Finally, the maximum clique algorithm is applied

to the adjacency matrix RF and the set of mutually consistent
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Fig. 6. Feature association results. After applying the maximum clique
algorithm the number of pairwise matched features is 5 in both images.

matches is computed. Fig. 6 illustrates the features associ-

ation results between two consecutive frames t − 1 and t.

The output of this stage provides a set of accurate pairwise

matched features, which are used to obtain the displacement

estimate. Let M denote the set of NM landmarks matches,

{(mi
t−1, mi

t)}i=1:NM
, calculated by the proposed algorithm.

F. Stereo Head Pose Estimation

The purpose of the two-step matching process described

in previous stage is to provide a set of good quality matches

between consecutive frames which allows to calculate the

estimated displacement of the robot. Typical solutions use an

iterative method to estimate the robot displacement between

two consecutive frames [3], [10]. In this paper, a closed

solution is used to obtain an accurate and fast solution to

the estimation problem. This solution is an adapted version

for visual odometry application from novel scan matching

approaches [8]. In spite this technique is able to be adapted

for estimating 3D motions, in order to improve the com-

putational load of the algorithm, the proposed method uses

the projections to the ZX plane of the set of pairwise

corresponded points. In other words, the coordinate Y of the

interest point locations is omitted (we assume planar dis-

placement). Thus, the algorithm minimizes the displacement

error without iterations, thereby lessening the computational

cost. The solution of this problem consists of minimizing the

error function

E(R∆θ, ∆T ) =

NM
∑

i=1

NM
∑

j=1

ηij

∥

∥

∥
mi

t−1 − (R∆θm
j
t + ∆T )

∥

∥

∥

2

(5)

where mi
t−1 and m

j
t are matched interest points belonging

to M , ηij is a binary value defined as 1 if mi
t−1 and m

j
t

have been matched or 0 otherwise, and R∆θ and ∆T are the

rotation and translation matrices whose values are sought.

Thus, ∆pr
t = (∆z, ∆x, ∆θ)T is the robot displacement

estimated, that is, the output of the proposed odometry visual

algorithm. An extended development of the optimization

problem described in (5) is detailed in [8]. In that work,

authors obtain a closed-form expression to estimate the robot

motion.

IV. EXPERIMENTAL RESULTS

To test the validity of the visual odometry algorithm, we

use an ActiveMedia Pioneer 2AT robot mounted with an

stereoscopic camera (see Fig.7a) and a 1.66GHz Pentium PC.

The robot was driven through an indoor environment while

capturing real-life stereo images. This real test is located

at the research laboratories of the ISIS group in Málaga.

The robot is teleoperated, and it moves across a corridor,

closes a loop and returns to the starting location. Due to

our space limitation for getting a longer experiment, this

real test has been repeated several times with similar results.

The stereo head is the STH-MDCS from Videre Design, a

compact, low-power colour digital stereo head with an IEEE

1394 digital interface. The camera was mounted at the front

and top of the vehicle at a constant orientation, looking

forward. Images obtained were restricted to 320x240 pixels.

Fig. 7b-g illustrates six different stereo captures from this real

environment (each image in the figure represents the stereo

pair at two consecutive frames, top and bottom of the image.

The stereo matching and the feature matching is shown with

red and yellow line, respectively). Besides, the robot pose at

the capture time has been drawn over the trajectories (Fig.

8a).

The experimental results are focused on the accuracy and

processing time of the proposed algorithm. The robot motion

starts in the pose pr
t=0 = (0, 0, 0◦)T and it was teleoperated

across the environment, closing a loop and returning to

the initial pose. The complete motion is constituted of 650

frames. This final location was measured with an uncertainty

less than 2 mm in displacement and 0.2◦ in orientation.

The wheel odometry is also saved and compared to the

visual odometry. Fig. 8a shows the trajectories estimated

by the proposed algorithm (red line) for this environment.

Besides, the wheel odometry is included in the figure (green

line). A zoom of the final pose is illustrated in the Fig.

8b. As is drawn in the figure, the visual odometry obtains

an reliable estimate of the robot displacement improving

the internal odometry at the end of the experiment. The

robot pose estimate at the end of the experiment with the

visual and wheel odometry are (800mm, 140mm, -2.15◦)T

and (2392mm, 1105mm, 66.15◦)T , respectively. Finally, the

average processing time of the algorithm is 420 ms (SIFT

descriptors definition of the image pair: about 300ms, stereo

matching: about 100 ms and feature matching: about 20ms).

As is was commented in Section III-A, the most of the

computational load is due to the description of the images

using SIFT descriptors, which is able to be improve using a

faster implementation of the algorithm (see Wu’s implemen-

tation [13]). However, the experimental results demonstrate

a satisfactory performance of the proposed approach.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a combined constraint matching

algorithm for a stereo visual odometry problem. In the
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Fig. 7. a) Activmedia P2AT robot used in the experiments; b-g) six different stereo image pair captured across the robot motion. Stereo and feature
matching are shown in the figure (red and yellow line, respectively).

Fig. 8. a) Trajectories estimated by visual and wheel odometry (red and
green line, respectively). Robot pose at the captured time shown in Fig.
7b-g are labeled; b) zoom of the robot pose at the end of the experiment.

matching process absolute and relative constraints have been

integrated to achieved a multiple data tracking. The basis

of the proposal is the use of local interest points detected

from the image pairs. Our method provide a set of pairwise

matched features in a two-step matching process, which are

used to estimate the robot motion in a fast way. Thus, stereo

visual odometry system proposed in this paper achieves an

accurate estimate of the robot movement, improving the

wheel odometry techniques. Our algorithm has been tested

in a real scenario, demonstrating a high degree of reliability

and accuracy.

Future works are focused on the implementation of a

vision-based simultaneous localization and map building

(vision-SLAM) algorithm which includes the visual odom-

etry in the prediction stage. In order to reduce the compu-

tational load, the SIFT descriptors will be extracted using a

implementation over the graphic hardware [13].
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