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Abstract— Many everyday human skills can be framed in
terms of performing some task subject to constraints imposed
by the environment. Constraints are usually unobservable
and frequently change between contexts. In this paper, we
present a novel approach for learning (unconstrained) control
policies from movement data, where observations are recorded
under different constraint settings. Our approach seamlessly
integrates unconstrained and constrained observations by per-
forming hybrid optimisation of two risk functionals. The first
is a novel risk functional that makes a meaningful comparison
between the estimated policy and constrained observations. The
second is the standard risk, used to reduce the expected error
under impoverished sets of constraints. We demonstrate our
approach on systems of varying complexity, and illustrate its
utility for transfer learning of a car washing task from human
motion capture data.

I. INTRODUCTION

Many human motor skills involve performing some task

subject to constraints imposed either by the environment [8],

the task [3] or, more commonly, both. For example, when

opening a door, the door acts as an environmental constraint

that restricts the movement of one’s hand along the opening

arc of the door. When stirring soup in a saucepan, the sides

of the pan prevent the spoon moving beyond the radius of

the pan. Many tasks require self-imposed task constraints

to be fulfilled in order to achieve adequate performance.

For example when pouring water from a bottle to a cup

the orientation of the bottle must be constrained so that the

stream of water falls within the mouth of the cup. When

wiping a window, one’s hand must be constrained to maintain

contact with the wiping surface [9].

A promising approach to rapidly providing robots with

skills such as opening doors and washing windows (ref.

Fig. 1), is to take examples of motion from existing systems,

such as humans, and attempt to learn a control policy that

somehow captures the essence of the desired behaviour

[1], [7], [15]. Such techniques offer (i) a simple, intuitive

interface for programming robots, (ii) effective methods

for motion recognition and segmentation [7], and; (iii) ac-

celerated optimisation of movements by seeding learning

from demonstrations [12]. However, while a wide variety of

approaches for learning and representing movements have

been proposed in recent years (for a review, see [1] and

references therein), few have explicitly considered the effects

of constraints on motion and ways to cope with these in

learning.
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Fig. 1. Anthropomorphic DLR light-weight arm used in our experiments.

In this paper we address the problem of modelling control

policies in a way that is consistent with the fact that they

may be subject to generic (environmental or task-based)

constraints on motion. Our approach is inspired by direct

policy learning1 (DPL) [15] whereby we attempt to learn a

continuous model of the policy directly from motion data.

However, our method differs from standard DPL in that

we consider observations from policies projected into the

nullspace of a set of dynamic, non-linear, or even discon-

tinuous constraints, and that these constraints may change

between observations, or even during the course of a single

observation. In doing this we aim to illustrate how existing

DPL approaches (e.g. Dynamic Movement Primitives [13]

and other dynamical system-based approaches [6]) that cur-

rently rely on traditional supervised learning techniques can

be extended to cope with the effect of motion constraints in

the data.

In previous work we proposed a reformulation of the risk

functional used for learning by introducing a projection of

the estimated policy onto the observations before calculating

errors [5]. This allowed us to effectively reconstruct policies

from constrained movements without explicit knowledge

of the constraints, provided the data was ‘rich enough’ in

terms of the different constraints contained in that data. This

was found to be highly effective for learning from data

containing high variability in the constraints, even for very

high dimensional systems such as 22-DOF ASIMO joint

space data. However, in its basic form the method presented

in [5] tends to prefer to explain variations in observations as

variations in constraints instead of as variations in the policy

itself. This can result in poor performance when learning

on unconstrained data or data where constraints are highly

correlated between observations.

In this paper we propose an extension to that method to

deal with these problems. As a key ingredient, we partition

1To clarify the terminology used, we refer to DPL as the supervised
learning of policies from given data. This is in contrast to the learning
of policies directly from cost/reward feedback without the use of a value
function, which is also sometimes referred to as DPL.
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our model optimisation into two parts. The primary part uses

the constraint-consistency objective function proposed in [5]

to deal with the effect of the constraints in the data. We then

perform a secondary optimisation to tighten the fit on the data

in regions where there is little variation in the constraints. By

extending the method in this way, we are able to seamlessly

integrate constraint-consistent learning with optimisation of

more standard risk functionals. We demonstrate the utility

of our approach for learning a car washing task from human

demonstration data.

II. LEARNING FROM CONSTRAINED POLICIES

Here, we briefly characterise the problem of direct policy

learning when constraints are applied to motion. Following

[15], [11], we consider the learning of the autonomous policy

mapping

u(t) = π(x(t)) , π : IRn 7→ IRd (1)

where x ∈ IRn and u ∈ IRd are some appropriately chosen

state and action vectors2. We consider policies that are

constrained in such a way that there are hard restrictions

on movement. Analytically [16], this means that, under a set

of k-dimensional constraints

A(x, t)u = 0 (2)

the policy is projected into the nullspace of those constraints

u(x, t) = N(x, t)π(x(t)), (3)

where N(x, t) ≡ (I − A†A) ∈ IRd×d is in general a

non-linear, time-varying projection operator3 and A(x, t) ∈
IRk×d is some matrix describing the constraint. Constraints

of this form are common in scenarios where manipulators

interact with the environment, for example when grasping

a tool or turning a crank or pedal. They are also common

in controlling of redundant degrees of freedom [10], where

policies such as (3) are used, for example, to aid joint

stabilisation under task constraints.

In general, the goal of DPL is to approximate the policy π

as closely as possible given observations (often in the form

of trajectories) of the states and actions u(t), x(t). Here, the

fact that the observed action is constrained (3) complicates

learning in several ways [4], [5]. First there is the fact that

commonly the constraint A(x, t) (and therefore N(x, t) also)

is not explicitly known and may be ambiguous. For example

when opening a door one might not know the exact radius

or opening arc of the door, or might not observe an obstacle

behind the door, blocking it. Second, the data set may be non-

convex (from the point of view of standard DPL approaches)

in the sense that there may be multiple observations made

at any given point under different constraints. For example

when observing wiping on several surfaces, the constraints

(and therefore the observed u) will differ between surfaces

2For example in kinematic control, the state vector could be the joint
angles, x ≡ q, and the action could be the velocities u ≡ q̇, or in dynamic
control a suitable state might be, x ≡ q, q̇, with actions corresponding to
applied torques, u ≡ τ .

3Here and throughout the paper A† denotes the Moore-Penrose pseu-
doinverse of the matrix A and I denotes the identity matrix of appropriate
dimension.

depending on their orientations in the work space. Finally,

there is a degeneracy problem due to the fact that, under any

given constraint and for any set of observations, there may

be multiple policies π that could be projected to produce

those observations.

While these issues prove problematic for methods that

do not take into account the effect of constraints, it was

recently shown that an effective strategy for dealing with

this is to seek the underlying unconstrained policy, π, rather

than directly trying to fit the raw (constrained) data [4],

[5]. In previous work we proposed methods to do this for

the special case of potential-based policies [4], and later

extended this to learning generic policies [5]. For effective

learning the latter required rather high variability in the

constraints, and its performance sometimes suffered from

a tendency to misinterpret variability in the policy (as a

function of x) with variability in the constraints, particularly

in case the observations were not constrained at all.

Here we further develop the method proposed in [5] in

order to (i) improve robustness by avoiding the misinter-

pretation problem, and (ii) seamlessly integrate constraint-

consistent learning with more standard learning approaches.

We turn to the details of the approach in the next section.

III. METHOD

Our method works on data that is given as tuples (xn,un)
of observed states and constrained actions. We assume that

all commands u are generated from the same underlying

policy π(x), which for a particular observation might have

been constrained, that is un = Nnπ(xn) for some projection

matrix4 Nn. We assume that the projection matrix for any

given observation is not explicitly known, i.e. our data is

unlabelled with respect to the active constraints at the time

of observation. Our goal is to approximate the unconstrained

policy π(xn) as closely as possible. In the following we

briefly review how this can be done by optimisation of

the constraint-consistency objective function [5], and then

propose an extension to this method through a secondary

optimisation approach. We then use the extended method to

derive learning rules for two example policy models, based

on parametric and local linear regression.

A. Optimisation of the Inconsistency

In [5] a reformulation of the standard risk was proposed for

estimating a policy π̃(·) that is consistent with our observed

un, knowing that it may be constrained (projected) by an

unknown constraint. For this a key observation is to note

that, in order to uncover the unconstrained policy we must

find a policy model that can be projected in such a way that

the observed actions are recovered. That is, we require

u(x) := Pπ(x)

for an appropriate projection matrix P, that either projects

onto the same space as the (unknown) N (i.e. the image

of N), or an (even smaller) subspace of that. Since N is

unknown, we must seek an alternative projection P that

4Note that unconstrained observations are incorporated into this formu-
lation as special case where N = I.
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Fig. 2. Illustration of our learning scheme. Left: Direct least-squares
regression on constrained commands u1,u2 results in averaging of the
observations ū in a way that cannot explain the observed actions. Right:
The projection of the correct policy π onto the observations matches those
observations.

approximates it. One such projection, which we know to

lie within this subspace, is the 1-D projection onto the

observed command itself, that is P = ûûT (ref. Fig. 2, right).

Furthermore, since u is given, we have all the information we

need to calculate this projection and use it for learning, neatly

side-stepping the need to explicitly model the full constraint

matrix N.

With this as motivation, it was proposed [5] to minimise

the inconsistency, defined as the functional

Ei[π̃] =

N
∑

n=1

‖un − ûnûT
n π̃(xn)‖2

=
N
∑

n=1

(

rn − ûT
n π̃(xn)

)2

with rn = ‖un‖, ûn =
un

rn

. (4)

Note that this reformulated risk functional avoids the model

averaging that would result from using the standard least

squares fit to the data (xn,un) (cf. Fig. 2, left) [5].

B. Secondary Optimisation of the Standard Risk

Optimisation of the inconsistency (4) has been demonstrated

to be effective when learning from data containing high

variability in the constraints for systems of varying size

and complexity [5]. However, in the simple form outlined

so far, it can suffer from the problem of degeneracy in the

set of models that are optimal with respect to (4). Because

the observations u influence the estimated policy in a more

complex way than in direct regression, small variations in

the observations may result in large variations of the learnt

policy5, which can become catastrophic when the method is

given data with insufficient variability in the constraints to

disambiguate the best policy models.

To illustrate the problem, Fig. 3 shows three candidate

policy models π̃1, π̃2 and π̃3 as well as data under a

single constraint (right) and two different constraints (left).

Consider that we have to select one of these candidates as our

policy model based on the available data. For the multiple

(i.e. variable) constraint case (Fig. 3, left), optimising the

5In machine learning terms, the pure inconsistency-based estimator has
high variance.

Fig. 3. Illustration of the model degeneracy problem. Shown are three
different models with equal inconsistency with respect to the observation
u1. Left: Given observations under different constraints, e.g. u2, the incon-
sistency error disambiguates between the three candidate models selecting
that which is consistent with both observations (i.e. π̃1). Right: Given only
observations under a single constraint there is ambiguity in which is the best
model since we cannot be sure about the policy components in the vertical
dimension.

inconsistency (4) clearly determines the best model given

the available data: In this case we would choose π̃1, since

this has the lowest inconsistency error, Ei[π̃1] < Ei[π̃2] <
Ei[π̃3].

However, when there is less variability in the constraints,

for example we only see an observation under a single

constraint (Fig. 3, right) there may be little difference in the

inconsistency for the three models (here, Ei[π̃1] = Ei[π̃2] =
Ei[π̃3]) resulting in ambiguity as to which model to choose.

This is a critical problem, since if we select the wrong model,

e.g. π̃3, then it may significantly degrade performance both

in terms of prediction of the unconstrained policy (compare

π and π̃3 in Fig. 3) and also the constrained policy (consider

the projection of π̃3 onto the vertical plane, and compare

with u2). Note also that this is a manifestation of the fact that

Ei is a lower bound on both the unconstrained policy error

(UPE) and the constrained policy error (CPE) [5], since it is

precisely these components of the policy that are projected

out in the calculation of the inconsistency error that lead to

the degeneracy in the models.

In order to deal with this problem, our proposal is to

perform an additional secondary optimisation to select be-

tween models. For this, we propose to optimise the secondary

objective

E2[π̃] =

N
∑

n=1

‖un − π̃(xn)‖2 (5)

under the constraint that

π̃ ∈ arg min
π

′

{Ei[π
′]} . (6)

That is, we propose to optimise the standard risk subject

to the model being consistent with the constrained observa-

tions6.

By performing this additional secondary optimisation we

tighten our fit to the available data and avoid models that are

6It should also be noted that in principle we may choose alternative
secondary optimisation functions depending on the application. For example,
we may wish to bias solutions toward a particular dynamic behaviour,
e.g. stabilising movements, subject to consistency with the demonstrated
observations.
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not strongly supported by the inconsistency. For example, in

Fig. 3 (right), optimisation of (5) will result in model π̃2

being chosen since this has the lower E2. Since we have no

information about the vertical component of the policy here,

choosing this model is more appropriate since there is little

support for π̃1 or π̃3 based on the available data. In effect

this acts to regularise our model and improve safety in its

performance: In the case that observations are given under

an impoverished set of constraints, the model will at worst

reproduce the behaviour under those same constraints7.
Finally, it should be noted that in practice, the hard

constraint (6) may need to be softened to improve robustness

and avoid numerical instabilities. For this reason, in the

following sections we describe how this can be done by

looking at eigenvalues derived from gradients of Ei.
The proposed approach can be used in conjunction with

many standard regression techniques. However, for the ex-

periments in this paper, we restrict ourselves to two classes

of function approximator (i) simple parametric models with

fixed basis functions (Sec. III-C), and (ii) locally linear

models (Sec. III-D). In the following we describe how these

two models can be reformulated to take advantage of the

new approach.

C. Parametric policy models

A convenient policy model is given by π̃(x) = Wb(x),
where W∈ IRd×M is a matrix of weights, and b(x)∈ IRM

is a vector of fixed basis functions. This notably includes the

case of (globally) linear models where we set b(x) = x̄ =
(xT , 1)T , or the case of normalised radial basis functions

(RBFs) bi(x) = K(x−ci)
P

M
j=1

K(x−cj)
calculated from Gaussian

kernels K(·) around M pre-determined centres ci, i =
1 . . .M . With this model, the inconsistency error from (4)

becomes

Ei(W) =

N
∑

n=1

(

rn − ûT
nWb(xn)

)2

=

N
∑

n=1

(

rn − vT
n w
)2

= Ei(w),

where we defined8 w≡vec(W) and vn≡vec(ûnb(xn)T )=
b(xn) ⊗ ûn in order to retrieve a simpler functional form.

Since our objective function is quadratic in w, we can

rearrange to give

Ei(w) =
∑

n

r2
n − 2

∑

n

rnvT
n w + wT

∑

n

vnvT
n w

= E0 − 2gTw + wT Hw

with H =
∑

n vnvT
n and g =

∑

n rnvn. Now, to solve for

the optimal weight vector, we could take the direct inverse

w1 = argmin Ei(w) = H−1g.

7This is similar to the minimum performance guarantee reported in [4]
for the special case of potential-based policies, now extended to the learning
of any arbitrary policy.

8To clarify notation: We denote the vector version of a matrix A ∈

IRn×m as vec(A) = a ∈ IR1×nm where the vector a is formed by
stacking the columns of A on top of one another. Additionally, the notation
A⊗B is used to denote the Kronecker product of the two matrices A and
B.

However, this would ignore degeneracy in the solutions

and may result in over-fitting. To avoid this we instead

only optimise on elements of the weight vector that make

a significant contribution to Ei. For this we perform an

eigendecomposition for the inversion

w1 = V1Λ
−1VT

1 g (7)

where Λ is a diagonal matrix containing the large eigenval-

ues of H (i.e. eigenvalues above some minimum threshold

λ ≥ λt) and the columns of V1 are the corresponding

eigenvectors.

In the part of the parameter space spanned by the re-

maining small eigenvectors9 (λ ≤ λt) we then perform the

secondary optimisation. For the parametric model, we wish

to minimise

E2(W) =
N
∑

n=1

‖un − Wb(xn)‖2 (8)

subject to the solution being optimal with respect to the

inconsistency. We therefore look for a solution that has the

form

w = w1 + V2z. (9)

where the columns of V2 contain the remaining eigenvectors

of H and z is a vector. Using a solution of this form

means that our optimisation of the model with respect to the

secondary objective does not affect the primary optimisation

of the inconsistency error.

Rearranging (8), we have

E2(W) =
∑

n

uT
nun−2

∑

n

uT
nWbn +

∑

n

‖Wbn‖
2 (10)

which can be written in terms of w as

E2(w) =
∑

n

uT
nun − 2

∑

n

(bn ⊗ uT
n )w

+wT

(

∑

n

bnbT
n ⊗ I

)

w (11)

= E0,2 − 2mTw + wT Mw.

where E0,2 =
∑

n uT
nun, m ≡

∑

n(bn ⊗ uT
n )T =

vec(UBT ) and M ≡
(
∑

n bnbT
n ⊗ I

)

= BBT ⊗ I.

Substituting (9) and differentiating, we can then retrieve

the optimal z:

zopt = (VT
2 MV2)−1VT

2 (m − Mw1). (12)

We then combine (7) and (12) to find the optimal weights

for our model

wopt = V1Λ
−1VT

1 g + V2z
opt. (13)

Finally, in order to automatically select the minimum eigen-

value threshold λt we perform a line search, repeating the

above optimisation for a series of values of λt on a subset

of the data, and picking the λt which minimises the quantity

Eλ[π̃] = Ei[π̃] + αE2[π̃].

9Note that in the limit that λt = 0, (6) acts as a hard constraint on the
secondary optimisation so that it only effects on model components that are
strictly undetermined by the primary optimisation of Ei.
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Here α is a weighting factor that reflects our prior belief on

whether the data contains variable constraints. For example

one would choose a very low α for data containing very high

variance in the constraints.

D. Locally linear policy models

The basis function approach quickly becomes nonviable

in high-dimensional input spaces. Alternatively, we can fit

multiple locally weighted linear models π̃m(x) = Bmx̄ =
Bm(xT , 1)T to the data, learning each local model inde-

pendently [14]. For a linear model centred at cm with an

isotropic Gaussian receptive field with variance σ2, we can

write the inconsistency error

Ei(Bm) =

N
∑

n=1

wnm

(

rn − ûT
nBmx̄n

)2

=

N
∑

n=1

wnm

(

rn − vT
n bm

)2
= Ei(bm)

(14)

where we defined bm = vec(Bm) and vn ≡ vec(ûnx̄T
n )

similarly to the parametric case. The factors wnm =
exp(− 1

2σ2 ‖xn−cm‖2) weight the importance of each obser-

vation (xn,un), giving more weight to nearby samples. The

optimal slopes Bm with respect to (14) are again retrieved

using an eigendecomposition:

b1,m = argminEi(bm) = V1,mΛ−1
m VT

1,mgm (15)

where Λm and V1,m are the large eigenvalues and corre-

sponding eigenvectors of the Hessian Hm =
∑

n wnmvnvT
n

for the mth local model and gm =
∑

n wnmrnvn. We select

the number of eigenvalues used for the primary optimisation

of the inconsistency using a subset-validation approach sim-

ilar to the parametric case.

The secondary objective for this model is

E2(Bm) =
N
∑

n=1

wnm‖un − Bmx̄n‖
2

= E0,2 − 2mT
mbm + bT

mMmbm = E2(bm)

where E0,2 =
∑

n wnmuT
nun, mm ≡

∑

n wnm(x̄n ⊗ uT
n )T

and Mm ≡
(
∑

n wnmx̄nx̄n
T ⊗ I

)

. Similar to the parametric

case, we look for a solution of the form bm = b1,m +
V2,mzm. This yields optimal weights

bopt
m = V1,mΛ−1

m VT
1,mgm + V2,mzopt

m (16)

with

zopt
m = (VT

2,mMmV2,m)−1VT
2,m(mm − Mmb1,m). (17)

Finally, for predicting the global policy, we combine the local

linear models using the convex combination

π̃(x) =

∑M

m=1 wmBmx̄
∑M

m=1 wm

; wm = exp

(

−
1

2σ2
‖x − cm‖2

)

.

IV. EXPERIMENTS

In this section we report experiments exploring the perfor-

mance of the new approach when learning on data from

systems of varying complexity and size. First, in order to

illustrate the concepts involved, we apply our method to data

from a simulated 2-D toy system. We then test the scalability

of the method to higher dimensional systems with more

complex constraints using data from the joint-space of the 7-

DOF DLR lightweight arm (Fig. 1). Finally we demonstrate

the utility of our approach for learning a car-washing task

from human motion capture data.

A. Toy Example

Our first experiment demonstrates the robustness of our

approach for learning unconstrained policies from variable-

constraint data. For this we set up a simple toy example

consisting of a two-dimensional system with discontinuously

switching motion constraints. As an example policy, we used

a limit cycle attractor of the form

ṙ = r(ρ − r2), θ̇ = ω (18)

where r, θ are the polar representation of the Cartesian state

space coordinates (i.e. x1 = r sin θ, x2 = r cos θ), ρ is the

radius of the attractor and θ̇ is the angular velocity. For the

experiments we set ρ = 0.5 m and ω = 1 rad s−1 with a

sampling rate of 50 Hz. Data was collected by recording 40

trajectories with random start states, of length 40 time steps,

generated by (i) the unconstrained policy and (ii) the policy

subject to random 1-D constraints. The latter had the form

A(x, t) = (α1, α2) ≡ α (19)

where the α1,2 were drawn from a normal distribution, αi =
N(0, 1). The constraints (19) mean that motion is constrained

in the direction orthogonal to the vector α in state space.

These were randomly switched by generating a new α twice

at regular intervals during the trajectory, inducing sharp turns

in the trajectories as can be seen in Fig. 4.

We used a parametric model to learn the policy through the

hybrid optimisation approach as described in section III-C.

For this toy problem, we chose our function model as a set of

36 normalised RBFs centred on a 6× 6 grid, and we simply

fixed the kernel width to yield suitable overlap. We repeated

this experiment on 100 data sets and evaluated the normalised

UPE and CPE (i.e. the prediction error with no constraints,

and that under the training data constraints [4], [5]) and

the inconsistency10, divided by the number of data points

and the variance of the policy πn on a subset held out for

testing. For comparison, we repeated the experiment using

(i) direct regression on the observations (i.e. minimising the

standard risk) and (ii) optimisation of the inconsistency alone

(i.e. minimising the functional (4) without the secondary

optimisation step) with the same RBF model.

Table I shows the results of learning with the different

methods under the different constraint settings. Looking at

the first row, we see that the direct regression approach is

effective for learning on unconstrained data, but performs

10Actually, for u ∈ IR2 the inconsistency is exactly equivalent to the
CPE, since both necessarily involve the same 1-D projection.
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Fig. 4. Policy learnt with the direct approach (blue) and pure inconsis-
tency approach (red) when training on unconstrained (left) and randomly
constrained (right) data. The true policy (thin black arrows) and training
data (grey trajectories) are overlaid.

Method Constr. nUPE nCPE Norm. Incon.

Direct None 0.034± 0.044 0.034± 0.044 0.026± 0.039
Rand. 58.338± 9.556 8.596± 2.813 8.596± 2.813

Incon. None 26.640± 52.737 26.640± 52.737 0.014± 0.031
Rand. 0.118± 0.162 0.007± 0.010 0.007± 0.010

Hybrid None 0.065± 0.268 0.065± 0.268 0.042± 0.143
Rand. 0.373± 1.109 0.011± 0.017 0.011± 0.017

TABLE I

ERROR FOR THE DIRECT, INCONSISTENCY AND HYBRID OPTIMISATION

APPROACHES WHEN LEARNING ON K = 40 TRAJECTORIES OF LENGTH

N = 40 POINTS, SAMPLED FROM THE LIMIT CYCLE POLICY. ALL

VALUES GIVEN AS (MEAN±S.D.)×10−2

poorly on data containing random constraints. This is in line

with expectations since for the former the data is unaffected

by constraints and is thus already consistent (i.e. a unique

output is observed at each point in the input space), whereas

for the latter the variability in the constraints causes model

averaging. In contrast, looking at the second row we see

that optimisation of the inconsistency is highly effective for

learning the unconstrained policy when there is high varia-

tion in the constraints. However, on the unconstrained data,

though the normalised inconsistency (5th column) is low,

the policy errors are relatively large. The pure inconsistency

approach misinterprets the variation in the policy as variation

in the constraints, and fits an incorrect model (shown in red

in Fig. 4).

In contrast, the proposed hybrid approach achieves very

low errors both on the unconstrained and the constrained

data. With this approach we get the best of both of the

other approaches: For data that is already self-consistent

it benefits from the tight fit offered by direct least-squares

regression. Conversely if data contains variable constraints

a model that is consistent with the observations under the

different constraints is learnt.

To further test this, we repeated the experiment on data

containing several levels of variability in the constraints. For

this we again sampled a set of K = 40 trajectories of length

N = 40 points from the limit cycle policy, however this time

we applied the constraints

A(x, t) = I − α̂
T
π
α̂π (20)

where α̂π ≡ απ/‖απ‖, απ ≡ R(θ)π(x) and R(θ) is a

rotation matrix with rotation angle θ. The latter was drawn

uniform randomly with increasing angular range, that is

θ ∼ U [−θmax, θmax] for increasing θmax. This constraint

was chosen since it allows us to smoothly vary the effect of

the constraints on the observations. For example, for θ = 0
the direction of the constraint is exactly orthogonal to the

policy at that point so that the resultant projection has no

effect on the policy. As the range of θ increases however,

the observations of the unconstrained policy are increasingly

corrupted by the projections induced by the constraints.

Fig. 5 depicts how the UPE and CPE evolve with increas-

ing constraint variance (i.e. increasing θmax) for the direct,

pure inconsistency and hybrid optimisation approaches. For

the direct approach, the UPE and CPE are low when the

constraint variance is low, but rapidly increase as the variance

grows due to increased model-averaging. In contrast, the pure

inconsistency approach deals well with constraints of high

variance since this increases the span of the observations, re-

sulting in most of the components of the policy being picked

up by the inconsistency error. However when the variance

in constraints decreases, the pure inconsistency approach

misinterprets the remaining variability in the observations

(due to variation in the policy) as variation in the constraints,

causing an increase in error. Finally, the proposed hybrid

approach achieves consistently low errors irrespective of

the variance in the constraints, by automatically finding the

direct least-squares fit for low-variance in the constraints,

and increasingly using the constraint-consistent fit for high-

variance constraints.

B. Higher Dimensional Policies and Constraints

The goal of our second set of experiments was to evaluate

the scalability of the approach to higher dimensional systems

with constraints of varying dimensionality. This is important

when considering systems where the number of constraints

is near to the number of degrees of freedom of the system,

for example constraining the position and orientation of the

end-effector of a manipulator such as an anthropomorphic 7-

DOF arm. It is also the case that with increasing numbers of

dimensions there are increasing numbers of ways in which

the system can be constrained, in terms both of the different

dimensionalities of the constraints (i.e. rank of the constraint

matrix) and the ways in which constraints can be combined.

For our experiment, we used a kinematic simulation of the

7-DOF DLR lightweight robot (LWR-III). The experimental

procedure was as follows: We generated a random initial

posture by drawing 7 joint angles uniformly from half the

range of each joint, that is xi ∼ U [−0.5xmax
i ; 0.5xmax

i ],
where for example xmax

1 = 170◦. We set up a joint limit

avoidance type policy as π(x) = −0.05∇Φ(x), with the

potential given by Φ(x) =
∑7

i=1 |xi|
1.8. We then generated

100 trajectories with 100 points each following the policy

under 6 different constraints of differing dimensionality,

which we refer to as 1, 1-2, 1-2-3, etc. Here, the numbers de-

note which end-effector coordinates in task space11 we kept

fixed, that is, 1-2-3 means we constrained the end-effector

11The numbers can also be read as row indices of the 6×7 Jacobian matrix.
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Fig. 5. Normalised UPE and CPE versus variance in the constraints for learning with the direct (left), pure inconsistency (centre) and hybrid optimisation
(right) approaches.

position, but allowed arbitrary changes in the orientation.

Similarly, 1-2-3-4 means we constrained the end-effector

position and the orientation around the x-axis, while allowing

movement around the y and z axes. For all constraint types,

we estimated the policy from a training subset and evaluated

the normalised CPE on test data from the same constraint,

as well as the normalised UPE.
For learning in the 7-D state space, we selected locally

linear models as described in Sec. III-D, where we chose

rather wide receptive fields (fixing σ2 = 3) and placed the

centres {cm} of the local models such that every training

sample (xn,un) was weighted within at least one receptive

field with wm(xn) ≥ 0.7. On average, this yielded about 50

local models.
The results are shown in Table II where we can see the

following trends. First, as the constraint dimension increases,

learning with the direct approach yields increasingly poor

performance in terms of UPE and roughly consistent perfor-

mance in terms of CPE. This is to be expected since, being

naive to the effect of constraints, the direct approach attempts

to find the closest fit to the constrained observations. Further,

as the number of constraints increases the difference between

the constrained and unconstrained policy vectors increases

(since the number of components of the unconstrained policy

projected out by the constraints increases). As a result the

directly learnt model, while fitting the constrained policy

closely, performs increasingly poorly in terms of UPE.
Second, for the pure inconsistency approach, we see that

the CPE is worse for the 1-D constraint compared to the

direct approach, but much better for the higher dimensional

constraints. We also see much better performance in terms

of the UPE for the intermediate constraints, but very large

errors for the 6-D constraint. For the hybrid approach the

UPE is uniformly better, and the CPE lower in all but the

1-D constraint case.
The improved UPE performance for these methods may be

surprising given that the same constraint is applied for each

observation. This would suggest that certain components of

the policy are undetermined by the observations since they

are never unconstrained. However, here the constraint matrix

(i.e the Jacobian) is state-dependent, yielding some spatial

variability in the constraints, and thereby sufficient infor-

mation to improve the reconstruction of the unconstrained

policy.
Looking at the inconsistency and hybrid approaches, we

Method Constr. nUPE nCPE

Direct

1 26.94± 3.02 3.63± 0.54

1 - 2 70.51± 2.22 5.72± 0.66

1 - 2 - 3 80.70± 1.59 4.09± 0.33

1 -. . . - 4 86.63± 1.36 4.66± 0.44

1 -. . . - 5 91.47± 0.91 3.59± 0.39

1 -. . . - 6 96.78± 0.78 1.85± 0.27

Incon.

1 18.30± 5.46 14.53± 5.08

1 - 2 6.53± 2.90 1.04± 0.37

1 - 2 - 3 6.93± 2.79 0.50± 0.11

1 -. . . - 4 4.57± 2.49 0.27± 0.02

1 -. . . - 5 5.28± 3.40 0.16± 0.02

1 -. . . - 6 233.37± 136.97 0.04± 0.01

Hybrid

1 10.54± 4.56 6.98± 3.90

1 - 2 5.85± 1.94 1.00± 0.30

1 - 2 - 3 18.17± 8.00 0.55± 0.14

1 -. . . - 4 8.04± 4.16 0.28± 0.03

1 -. . . - 5 8.98± 5.25 0.18± 0.03

1 -. . . - 6 41.30± 3.93 0.05± 0.01

TABLE II

NORMALISED UPE AND CPE FOR THE THREE METHODS WHEN

TRAINING ON DATA FROM THE DLR ARM. ALL ERRORS NORMALISED

BY THE VARIANCE OF THE POLICY. WE REPORT (MEAN± S.D.)×10−2

OVER 50 TRIALS WITH DIFFERENT DATA SETS.

see that performance (especially in terms of CPE) increases

with constraint dimensionality which can be explained by the

approximation of the projection (as discussed in Sec. III-

A) becoming increasingly accurate. In fact, for the 6-D

constraint the approximation is exact.

However, for this latter constraint, we see an explosion in

UPE for the pure inconsistency approach which is not seen

for the hybrid approach. We attribute this to the combined

spatial variation in the policy and the constraints in this

particular case, to which the inconsistency approach is overly

sensitive. On inspection we noted that the Hessian matrices

of the local models had become ill-conditioned in this case.

The secondary optimisation in the hybrid approach avoids

this problem and emphatically outperforms the two other

approaches.

C. Car Washing Experiment

Having validated our approach on data where the ground

truth (true unconstrained policy) was known, in this section

we report experiments on learning from human demonstra-

tions for seeding the robot motion. For this experiment

we chose to investigate the problem of learning to wash a

car. This is an example of a task which can be intuitively
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described in terms of a simple movement policy (‘wiping’)

subject to contact constraints that vary depending on the

different surfaces of the car to be wiped. Due to the different

shapes and orientations of the car surfaces, complex, non-

linear contact constraints are imposed on the motion. The

resultant trajectories appear periodic, but are perturbed in

different ways by the constraints. The goal of our experi-

ments was to learn a policy that captured the periodic nature

of the movements, and generalised well over the constraints,

i.e. to unseen surfaces.

The experimental setup was as follows. Seven demonstra-

tions of a human wiping different surfaces with a sponge

were given to the robot. To simulate observations of washing

different surfaces of the car, the wiping was performed on

a perspex sheet placed at different tilts and rotations with

respect to the robot (see Fig. 6). Specifically, the sheet

was oriented to be flat (horizontal), tilted ±16◦ and ±27◦

about the x-axis (horizontal axis pointing directly ahead from

the robot) and ±16◦ about the y-axis (horizontal right-left

axis). The three-dimensional coordinates of the sponge were

tracked by a stereo vision system at a rate of 20 frames per

second (for details on the vision system see [2]).

We selected the local linear model for learning, with a

fixed kernel width of σ2 = 0.025, and centres placed so

that every data point was weighted with at least wm(xn) ≥
0.7. For this data set this yielded about 22 local models.

We trained this model with the three approaches on the five

trajectories corresponding to surface rotation about the x-

axis, holding the remaining two trajectories out for testing.

To evaluate performance we compared the policy pre-

dictions from the three models under different constraints

with the observed data. Specifically, since the ground truth

(including the true constraints) is unknown, we assumed

constraints of the form Aj(x, t) = n̂j where n̂j is the normal

to the jth surface, i.e. that the sponge did not penetrate, and

could not be lifted from the surface.

Under this approximation of the constraints, we found that

the policy learnt with the hybrid approach produced smooth,

periodic trajectories when implemented on the DLR arm both

under the test and training constraints (see accompanying

video). We regard this as remarkably good performance on

this very noisy data set.

V. CONCLUSION

In this paper, we described a method for robust learning of

policies from constrained observations. Building upon earlier

work [5] we introduced a two-stage optimisation approach

which seamlessly combines standard direct policy learning

with our idea of fitting a model that is consistent with vari-

able constraint data. Although the previous approach could

handle cases where demonstrated movements are subject to

variable, dynamic, non-linear and even discontinuous con-

straints, it suffered from poor performance on data containing

highly correlated constraints or purely unconstrained data.

The novel approach proposed here avoids these problems as

demonstrated in our experiments. We illustrated the utility

of our method for learning a car washing task from human

demonstration data.

Fig. 6. Above: Human wiping demonstrations on surfaces of varying tilt
and rotations. A stereo vision system was used to track the 3-D coordinates
of the sponge (coloured rectangles show the estimated position). Tilts of
±16o and +27o about the x-axis are shown. Below: Reproduction of the
movement on the DLR Lightweight arm on a training constraint (top row)
and an unseen test constraint (bottom row).
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