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Abstract— A pose-estimation-based approach to perform vi-
sual control for differential-drive robots is presented in this
paper. Our scheme recovers the camera location (position and
orientation) using an Extended Kalman Filter (EKF) algorithm
with the 1D trifocal tensor (TT) as measurement model. This
new visual servoing scheme allows knowing the real world
path performed by the robot without the computational load
introduced by position-based approaches. A state-estimated
feedback control law is designed to solve a tracking problem
for the lateral and longitudinal robot coordinates. The desired
trajectories to be tracked ensure total correction of both
position and orientation using a single control law, even though
the orientation is a DOF in the control system. The effectiveness
of our approach is tested via simulations.

I. INTRODUCTION

A promising sensor-based control of mobile robots can

be found on the basis of visual servoing (VS). Vision as

the main source of information on a robotic platform has

allowed to improve its navigation capabilities in a single

robot task or in robot coordination tasks. Recently, in order to

extract matched features from images in a robust way, some

geometric constraints relating two views have been applied.

Two of them have been well exploited to control mobile

robots, epipolar geometry (for instance [1], [2]) and the

homography model ([3], [4]). Nevertheless, these geometric

constraints have both serious drawbacks. Epipolar geometry

is ill-conditioned with short baseline and with planar scenes,

while the homography model is not well defined if there are

no dominant planes in the scene or with large baselines.

In this field of geometric constraint-based control a less

explored is the trifocal tensor (TT). We propose to exploit its

properties in order to overcome the drawbacks of the typical

geometric constraints. The TT describes all the geometric

relations between three views and is independent of the

observed scene [5]. In the general case, it is a 3 × 3 × 3
TT, however, when the motion is constraint to be planar,

the TT can be expressed with eight elements. The TT has

proved its effectiveness to recover the robot location in [6]

and [7]. In the first work conventional cameras and artificial

landmarks are used, while in the second one both con-

ventional and omnidirectional cameras are used to analyze

linear approaches of estimating the TT. Both of these works

propose the TT to be used for initialization of bearing-only

SLAM algorithms. In [8], a visual control for mobile robots
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based on the elements of a 2D TT constrained to a planar

motion is presented. It shows good performance reaching

the target location, however, the stability properties of the

controller should be studied.

In image-based VS approaches there exist an intrinsic

problem because the real world path that is performed by the

robot is unknown. Whereas position-based approaches over-

come this issue, the control loop is very slow. A possibility

that has not been explored for mobile robots is to estimate

the location using an observer scheme from machine vision.

There are two papers in which visual servoing with observer

is introduced for applications with manipulators ([9], [10]).

A visual tracking scheme that includes a kinematic model for

the object to be tracked is used. An approach that introduces

estimation in a visual servoing scheme for mobile robots is

presented in [11]. It proposes a method to obtain just depth

estimation for point features using a nonlinear observer.

Another work that is related to camera-motion estimation

is [12], which presents an EKF algorithm to tackle the

vision-based pose-tracking problem for augmented reality

applications. A constant velocity motion model is used as

dynamic system and the TT constraint is incorporated into

the measurement model.

Using the classical teach-by-showing strategy, this paper

proposes a visual control scheme for differential-drive robots

based on the recovery of on-line camera motion with an

EKF algorithm. The kinematic motion model of the camera

mounted on the robot is used as dynamic system and the

TT as measurement model. We concern for the observability

analysis of the discrete linear approximation of the system.

Observability can be assured by selecting a suitable set of

measurements from the TT elements. The kinematic motion

model allows us to design a static state feedback control law

to track desired trajectories for the lateral and longitudinal

robot coordinates. Thus, the proposed visual control solves

the problem of not knowing the real world path of image-

based schemes, but without the computational load intro-

duced by position-based approaches. Moreover, the defined

path allows to correct position and orientation simultaneously

using smooth control inputs, regardless of the orientation is

a degree of freedom in the control system.

The paper is organized as follows. Sect. II describes the

kinematic motion model of the robot-camera and its relation-

ship with the TT. Sect. III details the EKF implementation

and issues on observability. Sect. IV presents the synthesis of

the control law. In Sect. V the stability is analyzed. Sect. VI

shows the control system performance through simulations,

and finally, Sect. VII provides conclusions.
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II. MATHEMATICAL MODELING

A. Robot-Camera Model

Fig. 1. Kinematic configuration of the robot.

This work focuses on controlling a differential-drive robot

under the framework that is depicted in Fig. 1. The velocity

vector in the robot reference frame {R} is sR =
[

0 υ
]T

.

This velocity in the world reference frame {W} is given by

sW =
[

ẋ ż
]T

= RsR, where R is the rotation ma-

trix relating both reference frames R=

[

cosφ − sinφ

sin φ cosφ

]

.

The decomposed linear velocity together with the angular

velocity gives the relationships ẋ = −υ sin φ, ż = υ cosφ

and φ̇ = ω. These equations represent the dynamics of

the robot reference frame {R} with respect to the world

frame. Now we are interested in knowing the dynamics of

a point translated a distance ℓ along the zR axis, i.e. the

point cR, where a camera is fixed to the robot. Using a

general transformation between frames, which is given as

cW = RcR + t, its derivative is ċW = RċR + Ṙc
R

+ ṫ.

Applying this expression to the point cR =
[

0 ℓ
]T

,

which has no relative velocity with respect to the robot

reference frame ċR =
[

0 0
]T

and knowing that

ṫ =

[

ẋ

ż

]

=

[

−υ sin φ

υ cosφ

]

and φ̇ = ω,

Ṙ =

[

−ω sin φ −ω cosφ

ω cosφ −ω sin φ

]

,

it results in the following system

ẋ = −ωℓ cosφ − υ sinφ, (1)

ż = −ωℓ sinφ + υ cosφ,

φ̇ = ω.

It is important to keep in mind that such system represents

the dynamics of the point where the camera is fixed to the

robot with respect to the world frame, and thus, any subscript

is avoided from now on. Applying an Euler approximation

(forward difference) for the continuous derivative, we obtain

the following discrete time nonlinear system.

xk+1 = xk − δωkℓ cosφk − δυk sinφk , (2)

zk+1 = zk − δωkℓ sinφk + δυk cosφk,

φk+1 = φk + δωk.

We can write the state vector as xk =
[

xk zk φk

]T

and the input vector as uk =
[

υk ωk

]T
. In general, an

increment of input is given by δuk = Tsuk, where Ts is the

sampling time. In the sequel, we use the notation sβ = sin β,

cβ = cosβ.

B. The 1D Trifocal Tensor

The TT relates geometrically three views. It only depends

on the relative locations of the observed scene in the three

images. Let us define a global (world) reference frame as

depicted in Fig. 2(a) with the origin in the third camera.

Then, the camera locations with respect to that global

reference are C1 = (x1, z1, φ1), C2 = (x2, z2, φ2) and

C3 = (0, 0, 0). We assume that the motion is constrained to

be planar. The relative locations between cameras is defined

by a local reference frame in each camera as is shown in

Fig. 2(b).

(a) (b)

Fig. 2. (a) Global reference definition, (b) Relative location between
cameras.

The expression of the tensor as it is obtained from metric

information of the three views is

T1 =

[

T111 T112

T121 T122

]

(3)

=

[

tz1
sφ2 − tz2

sφ1 −tz1
cφ2 + tz2

cφ1

tz1
cφ2 + tx2

sφ1 tz1
sφ2 − tx2

cφ1

]

,

T2 =

[

T211 T212

T221 T222

]

=

[

−tx1
sφ2 − tz2

cφ1 tx1
cφ2 − tz2

sφ1

−tx1
cφ2 + tx2

cφ1 −tx1
sφ2 + tx2

sφ1

]

where txi
= −xicφi−zisφi, tzi

= xisφi−zicφi for i = 1, 2.

Equations in (3) can be verified as described in [7].

We can note that in the elements of the TT we have

eight nonlinear relationships relating information of cam-

era locations. From now on, let us define the initial lo-

cation of a camera mounted on a robot as described in

Fig. 1 to be (x1, z1, φ1), the target location (0, 0, 0) and

(x2 (t) , z2 (t) , φ2 (t)) the current location, which varies as

the robot moves. The rates of change of the current location
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are given by (1). We can obtain the Jacobian of each element

of the tensor as follows

∂Tijk

∂x2
=

























−sφ1sφ2 sφ1cφ2 tz1cφ2 + tx2sφ1

cφ1sφ2 −cφ1cφ2 tz1sφ2 − tx2cφ1

−sφ1cφ2 −sφ1sφ2 −tz1sφ2 + tz2sφ1

cφ1cφ2 cφ1sφ2 tz1cφ2 − tz2cφ1

−cφ1sφ2 cφ1cφ2 −tx1cφ2 + tx2cφ1

−sφ1sφ2 sφ1cφ2 −tx1sφ2 + tx2sφ1

−cφ1cφ2 −cφ1sφ2 tx1sφ2 + tz2cφ1

−sφ1cφ2 −sφ1sφ2 −tx1cφ2 + tz2sφ1

























.

(4)

In the sequel, we avoid to use the subscript for the current

location, second view.

III. EKF FOR THE 1D TT

The elements of the TT are very useful providing infor-

mation of position and orientation of a camera [7]. In our

previous work [13], we have introduced the use of the 1D

TT in visual servoing by taking the elements of the tensor

directly in the control law. In this paper, we propose to make

use of the information provided by the TT to estimate the

camera motion according to the nonholonomic motion model

(2). Once the state estimation is available, we can use such

model to design a feedback control law.

Consider as the framework for the EKF the discrete ver-

sion of the system that describes the kinematic motion of the

fixed camera on the robot (2) together with a measurement

model given by some elements of the TT. Due to the robot

system (1) is a driftless one, we consider that the control

input is the source of noise in the state, which is modeled as a

Gaussian noise process vk. Besides, the noisy measurements

can be modeled adding a Gaussian noise wk to a nonlinear

function h as follows

xk+1 = f (xk,uk + vk) , (5)

yk = h (xk) + wk

where v ∼ N (0,M) ,w ∼ N (0,N), and E
[

viw
T
j

]

= 0.

These are the continuous noise processes, with M ∈ R
2×2

the process noise covariance and N ∈ R
3×3 the measurement

noise covariance. Under this framework an extended direct

Kalman filter can be designed. The prediction equations to

compute the estimates are

x̂k+1|k = f
(

x̂k|k,uk,0, k
)

, (6)

Pk+1|k = FkPk|kF
T
k + GkMkG

T
k

where the linear approximation x̂k+1|k = Fkx̂k|k + Gkuk,

ŷk|k = Hkx̂k|k of the nonlinear system is used.

Fk =

∣

∣

∣

∣

∂f

∂xk

∣

∣

∣

∣

xk=x̂k|k,vk=0

=

=





1 0 ℓδωksφk − δυkcφk

0 1 −ℓδωkcφk − δυksφk

0 0 1





φk=φ̂k|k

,

Gk =

∣

∣

∣

∣

∂f

∂uk

∣

∣

∣

∣

xk=x̂k|k

=





−sφk −ℓcφk

cφk −ℓsφk

0 1





φk=φ̂k|k

.

The update equations to correct the estimates are

Qk+1 = Hk+1Pk+1|kH
T
k+1 + Nk+1, (7)

Kk+1 = Pk+1|kH
T
k+1Q

−1
k+1,

x̂k+1|k+1 = x̂k+1|k + Kk+1

[

yk+1 − h
(

x̂k+1|k

)]

,

Pk+1|k+1 = [I − Kk+1Hk+1]Pk+1|k .

In these equations, x̂k+1|k, Pk+1|k represent an a priori

estimate of the state and its covariance, and x̂k+1|k+1,

Pk+1|k+1 provide an a posteriori estimated state for step k.

It means that the a posteriori information utilizes feedback

error in order to improve the state estimation. The required

output matrix can be computed as follows

Hk+1 =

∣

∣

∣

∣

∂h

∂xk

∣

∣

∣

∣

xk=x̂k+1|k,wk=0

,

and the resulting matrix from the 1D TT will be specified in

the next section.

A. Observability of the EKF with the TT as output

There are few works concerned about observability when

an estimation based on Kalman filtering is applied. Some of

them are [14] and [15]. To analyze our case, let us consider

the linear approximation (Fk, Gk, Hk) of the system (2) in

the time k. Due to the matrices Fk and Hk are changing at

each instant time, observability may be lost, which affects

the convergence properties of the estimation algorithm. As

is mention in [14], a system that is locally observable over

every time segment [tk, tk+1] in the interval [t0, tk+1] will

also be completely observable over the interval [t0, tk+1].
Then, the condition to accomplish for every k to ensure the

system to be completely observable is

rank

(

[

HT
k (HkFk)T · · ·

(

HkF
n−1
k

)T
]T

)

= n.

Because of the left superior identity matrix in Fk, the

rows of the observability matrix become linearly dependent.

The only possibility of reaching the full rank condition is by

building Hk of full space. It can be done by taking three

elements of the TT as outputs. From (4), we can see that

a suitable selection of measurements is T122, T211, T222, in

such a way that

Hk+1 =





cφ1cφ̂ cφ1sφ̂ tz1cφ̂ − t̂zcφ1

−cφ1sφ̂ cφ1cφ̂ −tx1cφ̂ + t̂xcφ1

−sφ1sφ̂ sφ1cφ̂ tz1cφ̂ + t̂xsφ1



 (8)

where φ̂ = φ̂k+1|k, t̂x = −x̂k+1|kcφ̂k+1|k − ẑk+1|ksφ̂k+1|k,

t̂z = x̂k+1|ksφ̂k+1|k − ẑk+1|kcφ̂k+1|k , and tx1, tz1 and φ1

are constant values. The output matrix in (8) ensures local

observability for every k even for some particular initial

conditions, for instance φ1 = 0, in which case this matrix

remains full rank due to the cosines in the main diagonal.

It is worth noting that the measurement Jacobian requires to

know the initial location C1, which can be computed using

the localization scheme presented in [7]. It can also be used

for the EKF initialization. As the scale factor is introduced

in the initial location, the normalization of the values of the

TT is not required.
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IV. NONLINEAR CONTROLLER DESIGN

We present the design of a static state feedback linearizing

control law that is able to drive the camera on the robot to a

desired location without switching to a different control law.

We solve a tracking problem for the nonlinear system (1)

in order to correct x and z positions. At the same time, by

tracking suitable reference signals, orientation correction is

also ensured. This controller can be applied considering that

the camera location is known, in our case, estimated by the

EKF as described previously.

A. Input-Output Linearization

The goal is to drive the robot to the target location, which

means to reach (x2, z2, φ2) = (0, 0, 0). We will control the

location of the point c instead of the robot reference frame.

In this section we assume that this location is known and is

given by the EKF estimation by using three elements of the

TT as measurements. The advantage of our proposal with

respect to previous works is that the state estimation makes

possible to tackle the visual servoing problem as a trajectory

tracking problem. The outputs to be controlled are the camera

position coordinates y1 = x, y2 = z. Consequently, the

orientation (φ) is left as a DOF which is automatically

corrected by tracking suitable desired trajectories as will be

proven in Section V.

To take the value of both outputs to zero in a smooth way,

we design a tracking controller. Let us define the tracking

errors as e1 = x− xd, e2 = z − zd. Thus, the error system

is given as

[

ė1

ė2

]

=

[

− sinφ −ℓ cosφ

cosφ −ℓ sinφ

] [

v

ω

]

−

[

ẋd

żd

]

. (9)

This system has the form ė = D (φ, ℓ)u − ẏd, where

D (φ, ℓ) corresponds to the decoupling matrix, whose inverse

matrix is given in (10), and ẏd represents a known distur-

bance for the error dynamics. We can see that the control

inputs appear in the first derivative of each output. Then the

system (1) with outputs (x, z) has a vector relative degree

{1,1}. Due to the sum of the indices of the system (1 + 1)

is less than the order of the system (n = 3) we have a first

order zero dynamics, which will be analyzed in Section V.

D−1 (φ, ℓ) =
1

ℓ

[

−ℓ sinφ ℓ cosφ

− cosφ − sin φ

]

. (10)

A static state feedback control law that achieves

global stabilization of the system (9) has the form

u = D−1 (−ke + ẏd), which is

[

v

ω

]

=
1

ℓ

[

−ℓ sinφ ℓ cosφ

− cosφ − sinφ

] [

u1

u2

]

(11)

where u1 = −k1e1 + ẋd, and u2 = −k2e2 + żd. The error

behavior will be exponentially stable iff k1 > 0, k2 > 0.

Note that this input-output linearization via static feedback

is only possible for the system (1) with ℓ 6= 0. Otherwise, a

singular decoupling matrix is obtained and a static feedback

fails to solve the input-output linearization problem. How-

ever, the case of having the camera shifted from the robot

rotation axis over the longitudinal axis is a common situation.

Besides, the value of ℓ can be easily measured.

B. Desired Trajectories

The objective of reference tracking is to take the outputs to

zero in a smooth way and consequently, the robot performs a

smooth motion in a desired time. We propose the following

references

zd = z(0)
2

(

1 + cos
(π

τ
t
))

, 0 ≤ t ≤ τ (12)

zd = 0, t > τ

xd = x(0)

z(0)2

(

zd
)2

, 0 ≤ t ≤ τ

xd = 0, t > τ

where τ is the time to reach the target. Note that the robot

always begins over the desired path and the controller has to

maintain it tracking that path.

V. STABILITY ANALYSIS

The controller behavior is based on zeroing the defined

outputs, therefore, when these outputs reach to zero the so-

called zero dynamics in the robot system is achieved. Zero

dynamics is described by a subset of the state space which

makes the output to be identically zero [16]. In the particular

case of the robot system (1) with outputs y1 = x, y2 = z,

this set is given as follows

Z∗ =
{

[

x z φ
]T

| y1 ≡ 0, y2 ≡ 0
}

=
{

[

0 0 φ
]T

, φ = constant ∈ R

}

.

The constant value of φ is the result of the differential

equation that characterize the zero dynamics, that in this case

is

φ̇ = −
1

ℓ
(u1 cosφ + u2 sin φ) = 0

because u1 = 0 and u2 = 0 when y1 ≡ 0 and y2 ≡ 0. Thus,

zero dynamics in this control system means that when x

and z-coordinates of the robot are corrected, the orientation

may be different to zero. Now we focus on proving how

orientation correction is achieved.

Proposition 1. The control inputs in (11) with complete

knowledge of the state (x, z, φ)T
provided by the 1D

TT-based EKF estimation and using the reference signals

in (12) drive the robot-system (1) to reach the location

(x = 0, z = 0, φ = 0)T
, i. e. orientation is also corrected.

Proof: It is clear the global exponential stability of

the error system (9) with the inputs in (11), which drives the

depth and lateral error to zero after τ seconds. It only remains

to prove that the orientation is also zero after τ seconds.

From the decomposition of the translational velocity vector

(ẋ = −υ sinφ, ż = υ cosφ), we have that

φ = arctan

(

−
ẋ

ż

)

.
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Let us be the parabolic relationship between Cartesian

coordinates x = x(0)

z(0)2
z2 according to the desired trajectories.

Its corresponding time-derivative is ẋ = 2 x(0)

z(0)2
zż. Thus, the

orientation angle can be computed as follows when the x

and z-coordinates track the desired trajectories

φ = arctan
(

−2 x(0)

z(0)2
z
)

.

As have been mentioned, when the robot has followed the

reference path and t = τ the position reaches zero (x = 0,

z = 0), and consequently φ = arctan (0) = 0. This proves

that the location (x = 0, z = 0, φ = 0)T is always reached

in τ seconds, even though the orientation is a DOF for the

control system.

VI. RESULTS

This section presents some simulation results that have

been performed in Matlab by applying the control system

as established in the Proposition 1. These results show that

the main objective of driving the robot to a desired pose is

always attained with good precision. For these simulations,

we compute the 1D TT from point correspondences on

virtual images using the approach described in [7]. The

distance from the rotation axis to the camera position on

the robot is set to ℓ = 10 cm. For the controllers, the time to

reach the target position (τ ) is fixed to 120 s and the control

gains are set to k1 = 1, k2 = 1. Related to the Kalman

filtering, the sampling time Ts is set to 0.5 s. We have tuned

the matrices M and N in such a way that we have more

confidence in the model than in the measurements, otherwise,

the robot motion may be uncertain. This is done by using

small standard deviations in M and relatively large standard

deviations in N. The standard deviation of the noise affecting

the control inputs (related to M) is set to σv = [0.01
m/s, 0.001 rad/s]. The standard deviation of the measurement

noise process (related to N) is set to σw = [20 cm, 30 cm, 5
cm]. Finally, we suggest initial standard deviation for the

state estimation errors P = diag(52 cm, 102 cm, 12 deg).
Fig. 3 shows the paths traced by the robot and the state

variables evolution from four different initial locations. The

thick solid line begins from (-8,-6,-50o), the solid line from

(0,-10,0o), the long dashed line from (4,-18,-5o) and the short

dashed line from (10,-14,35o). We can see that an initial

rotation is performed automatically in order to align the robot

with the parabolic path to be tracked. This kind of path is

traced except for the case when there is no lateral error to

correct. In Fig. 3(b) we can see that both outputs (x and z

positions) are driven to zero in 120 s and the robot reaches

the target with the right orientation.

An example of the good performance of the tracking

control law is presented in Fig. 4(a). For the initial location

(4,-18,-5o), both tracking errors are maintained bounded with

a bandwidth around 0.5 cm. These errors are used by the

feedback control law and they are computed as the difference

between estimated positions and their reference values. The

smooth control inputs computed from the shown tracking

(a) Paths on the x − z plane

(b) State variables of the robot

Fig. 3. Resultant paths and state evolution.

errors are presented in Fig. 4(b). Note that these signals start

and end with zero value and they are always well defined.

In Fig. 5(a) the evolution of the elements of the TT that

are taken as measurements for the EKF is plotted for the

initial location (4,-18,-5o). From these noise measurements

the state estimation errors of Fig. 5(b) are determined. The

first plot presents the evolution of the trace of the state

estimation error covariance matrix (P). It shows that the

EKF is converging because the standard deviations of the

state estimation error is decreasing at each step. Convergence

is expected because the discrete linear approximation of the

nonlinear system remains observable along the navigation.

However, the plot trace(P) could increase during short

periods of time in some cases due to the nonlinearity of

the system. The next three plots in Fig. 5(b) show that the

estimation errors are maintained within the 1σ confidence

bounds. The errors are computed from the truth state (avail-

able in simulation) and the estimated state.

Finally, Table I shows that the target location (0,0,0o) is

reached with good precision, in the order of centimeters for

position and less than one degree for rotation in most of the

cases. The final rotation larger than one degree (first column)

corresponds to a large initial angle (-50o) and additionally,

the initial depth is less than the initial lateral error, which

forces a large rotation to reach the target. However, in this

case the depth is corrected better than in any other case.
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(a) Tracking Errors

(b) Control Inputs

Fig. 4. Tracking errors and control inputs for the initial location
(4,−18,−5o).

TABLE I

FINAL LOCATION FOR THE PATHS IN FIG. 3. TARGET LOCATION (0,0,0).

(-8,-6,-50) (0,-10,0) (4,-18,-5) (10,-14,35)
(m,m,o) (m,m,o) (m,m,o) (m,m,o)

xfinal (cm) -0.69 0.85 0.62 0.18

zfinal (cm) -0.5 -1.23 -1.84 -1.33

φfinal (o) -2.46 -0.84 -0.84 0.84

VII. CONCLUSIONS

In this paper we have presented a new pose-estimation-

based visual servoing scheme to perform visual control for

differential-drive robots using a teach-by-showing strategy.

This scheme allows knowing the real world path performed

by the robot without the computational load introduced by

position-based approaches. It recovers the camera location

(position and orientation) using an Extended Kalman Filter

(EKF) algorithm with the 1D trifocal tensor (TT) as mea-

surements. An observability analysis of the discrete linear

approximation is discussed. We solve a tracking problem for

the lateral and longitudinal robot coordinates with a static

state-estimated feedback control law. The desired trajectories

to be tracked ensure total correction of lateral error, depth

and orientation using a unique control law, even though the

orientation is a DOF in the control system. The performance

of our approach is proven via simulations.
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