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Micky Rakotondrabe, Member, IEEE, Joël Agnus, Kanty Rabenorosoa and Nicolas Chaillet, Member, IEEE

Abstract—Piezoelectric cantilevers have proved
their performances for actuating microgrippers dedi-
cated to micromanipulation and microassembly tasks.
While the control of one degree-of-freedom (dof)
piezocantilevers have been well whelmed, the control
of multi-dof one has not been addressed. Indeed,
to assemble complex structures, the use of multi-
dof microgrippers is recognized. Unfortunately, strong
coupling between the axis and nonlinearities indeni-
ably limit their performances.

This paper deals with the modeling and control
of a piezocantilever that has 2 degrees of freedom:
in-plane and out of plane deflections. While such
a characteristic allows the microgrippers perform
both orientation and translation during microma-
nipulation/microassembly tasks, the strong coupling
between the two dof makes difficult their control.
Moreover, nonlinearities (hysteresis and creep) raise
when the piezocantilever is used in high deforma-
tion. To overcome these, we consider the coupling
as a disturbance, model the nonlinearities with the
quadrilateral approximation and we apply a robust
H∞ controller that accounts them. The experiments
show the efficiency of the synthesized controller and
the obtained performances are convenient for micro-
manipulation/microassembly tasks.

I. Introduction

Face to the need of small products that have sev-
eral functions (sensing, actuation, ...) and natures
(mechanical, electrical, optical, ...), micromanipula-
tion/microassembly tasks become more and more studied
and used in laboratories nowadays. To perform such
tasks, systems with high performances should indeniably
be utilized. In most of cases, these systems are based
on active materials because hinges based elements derive
frictions and then imprecisions. Piezoelectric materials
are among the most utilized materials. While they offer
both high resolution and low response time, they can be
used for sensing and for actuation. One of their actuation
applications is the piezoelectric microgripper [1][2][3][4].

A piezogripper (piezoelectric microgripper) is com-
posed of two piezoecantilevers (piezoelectric cantilevers)
working in deflection (Fig. 1). The first piezocantilever
is used to position the manipulated micro-object whilst
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the second one is used to control the force, both along
the y-axis [5]. On the one hand, despite the difficulty
to measure or estimate the force, the force control in a
piezocatilever is being emerging [6]. On the other hand,
the deflection control of a piezocantilever is nowadays
overcome, [7] gives a survey of several applied techniques.
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Fig. 1. Scheme of a piezoelectric microgripper made up of two
piezocantilevers.

If the development and control of 1-dof piezocantilevers
based piezogrippers are enough advanced, the tasks that
they can performed are limited to either rotation or
translation but not the combination of both. Hence,
Agnus et al. developed a two-fingered piezoelectric mi-
crogripper (Fig. 2)[8], each finger being able to move
independently from the other in two orthogonal direc-
tions: in plane and out of plane deflections. A finger
is made up of a 2-dof piezocantilever and eventually a
tool. Here, in plane deflection is defined as the deflection
in the same plane than a piezocantilever electrodes.
This microgripper has therefore four articular dof able
to grip, hold and release submillimetric-sized objects in
the y-axis. The fingers can also move up and down (z-
axis) for fine motions like micro-insertion tasks. Finally,
they are able to orientate (around x-axis) micro-objects
by combining opposite out-of-plane motions of the fin-
gers. The microgripper characteristics are very useful
in micromanipulation/microassembly and have proved
its utilities in micromanipulation of watch screws or in
microspectrometers alignment tasks [10].
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Fig. 2. Picture of the microgripper.

Notwithstanding, when applying a reference deflection
along y-axis (resp. z-axis), a residual deflection is ob-
tained in the z-axis (resp. y-axis). This is due to me-
chanical imperfection of the structure and particularly to
the misalignment of the electrodes. This coupling makes
very inaccurate the system because unwanted move-
ments appear during micromanipulation/microassembly
tasks. In addition, hysteresis and creep phenomena be-
come non-negligible when the applied electrical field is
large. The applied voltage should effectively be relatively
enough in order to cover the required deflection ranges.
This paper presents the deflection control of the 2-dof
piezocantilever in taking into account the axis coupling
and the nonlinearities. A robust H∞ controller is used
because model uncertainty due to the hysteresis must be
taken into account and specifications relative to perfor-
mances required for tasks should be ensured. The paper
is organized as follows. First, the 2-dof piezocantilever
is presented. After that, we present its characteristics,
notably the hysteresis and coupling parts. Then, the
modeling and robust control follow the section. Finally,
experimental results end the paper.

II. Presentation of the 2-dof piezocantilever

The functioning principle of one finger of the mi-
crogripper is based on a piezoelectric cantilever with
local electrodes, called ’duo-bimorph’, for which a static
modelling has been established [9]. It can be assimilated
to a cantilever beam clamped at one end. The two dof
are obtained with a judicious application of voltages on
the piezoelectric plates.

Fig. 3 pictures the functioning of the actuator with cross
section views. The structure at rest is presented with
solid area and the deformed actuator with dashed lines.
P indicates the polarisation of the piezoelectric material
(Fig. 3-a). In the first configuration (Fig. 3-b), the four
electrodes are set to the same voltage VZ > 0. The upper
layer stretches along x while the lower layer contracts,
which leads to a flexion along −z, as the layers are glued
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Fig. 3. Cross section of a gripper finger (Y-Z plane): working
principle of the actuator.

one to each other. In the second situation (Fig. 3-c), the
voltages on two adjacent and two opposite electrodes are
VY and −VY (VY > 0); the electric fields are in the
same direction as the polarisation in the left half-part
of the beam and in the opposite direction in the right
half-part of the same beam. Thus, the left part stretches
while the right part contracts, which leads to a deflexion
along y. Finally, in the last configuration (Fig. 3-d), the
electrodes are set at voltages VZ +VY and VZ−VY , which
yields a deflexion in y and z directions. The four articular
dof (two per finger) of the gripper are useful to perform
gripping, insertion or rotation tasks. They also permit
to correct a possible misalignment of the tools. In this
paper, we are interested by the modeling and control of
one finger (piezocantilever).

III. Open-loop analysis

In this section, we characterize the piezocantilever.
The experimental setup is based on:
• one 2-dof piezocantilever,
• two optical sensors to measure the deflections of the

two axis (Fig. 4-a). Each sensor (Keyence-2420) has
10nm of resolution,

• a computer-DSpace hardware and the Matlab-
Simulink c© software for the data-acquisition and
control,

• and a voltage amplifier.
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The piezocantilever can be considered as a MIMO system
with two-inputs and two ouptuts (Fig. 4-b). In the sequel
we analyze the nonlinearities (hysteresis and creep) and
the vibration of the system. It has been shown that
for piezocantilevers, the hysteresis only affect the static
part while the creep can be considered as an additional
disturbance [11]. Moreover the hysteresis, the vibration
during the transient part and the creep can be separately
analyzed and identified. The vibration and the creep will
be characterized using a step input. The former is the
transient part of the response while the latter is the drift
that appears after the end of the transient part. The
hysteresis will be characterized using a sine input voltage.
The frequency of the sine input is chosen such as it is not
too low (to avoid the creep effect) and not too high (to
avoid the dynamic part effect).

A. Dynamic analysis and vibration compensation
First, we analyze the transient part of the system. The

analysis is performed as follows. A step voltage Vy = 20V
is first input while Vz = 0. The transient part of the
obtained deflection Y is plotted. At the same time, its
effect on the deflection Z is also plotted. After that, a
step voltage Vz = 20V is applied and Vy is reset to zero.
Thus, the direct deflection Z and the resulting coupling
Y are plotted. The four results are pictured in the Fig. 5.

Fig. 5-a and Fig. 5-d respectively indicate that
the transient parts of the direct transfers Vy → Y
and Vz → Z are very oscillating. In micromanipula-
tion/microassembly tasks, vibrations are unwanted. In
fact, a microgripper with oscillating piezocantilevers may
destroy a breakable manipulated micro-object if the over-
shots are high. Elsewhere, the coupling effect Vz → Y
is also oscillating (Fig. 5-b). Despite that, the coupling
effect Vy → Z is low (less than 3µm) (Fig. 5-c).
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Fig. 5. Transient part characteristics: experimental results.

In closed-loop technique, it is very difficult to synthesize
controllers for oscillating systems if the specified settling-
time is largely low relative to the settling-time of the vi-
bration. So, before synthesizing a closed-loop controller,
we propose to attenuate the vibration. We choose the
input-shaping Zero-Vibration technique [12] because of
its ease of implementation. Because of the limited length
of the paper, this part will not be detailed in this
paper. However, the readers can see more detail on its
computation and application for one dof piezocantilever
in our previous work [14]. In this paper, to compensate
the vibration, we do not consider the coupling between
the axis:
• one compensator is used to compensate the vibra-

tion of the transfer Vy → Y . The compensator
computation is based on the step response pictured
in Fig. 5-a,

• another compensator is used for the transfer Vz →
Z. It is computed using the Fig. 5-d.

V'y

V'z

Vy

Vz

Y

Z

system

vibration

compensator Y

vibration

compensator Z

Fig. 6. Scheme of the piezocantilever with vibrations compensa-
tion.

Fig. 6 presents the bloc-scheme of the piezocantilever
with the vibration compensators. In the figure, Vy and
Vz are the input voltages while V

′

y and V
′

z are the new
inputs of the piezocantilever. The experimental results
are interesting and are pictured in the Fig. 7. When a step
input Vy = 20V is applied, the obtained deflection Y is
henceforth without vibration (Fig. 7-a)). Similarly, when
a step input Vz = 20V is applied the initial vibration
of the deflection Z is attenuated (Fig. 7-d). Finally, the
vibration of the coupling transfer has been attenuated
(see Fig. 7-b and -c respectively).

B. Static analysis

Here, we analyze the static characteristics, i.e. the
behaviors in the voltages-deflections plane, of the piezo-
cantilever. For that, we use sine input voltages. For
the experimented piezocantilever, various experiments
lead us to choose a frequency of 0.5Hz. The results are
pictured in Fig. 8.

Fig. 8-a shows the deflection Y vs a sine applied
voltage Vy and for three constant values of Vz. We first
remark that the direct transfer Vy → Y is hysteretic.
Secondly, it appears that this transfer is influenced by
the constant input Vz. Indeed, not only the hysteresis
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Fig. 7. Transient part characteristics when using vibrations
compensation: experimental results.

obtained with Vz = 20V is slightly angled relative to
others but the three curves are shifted each other. To well
understand the coupling and more evaluate the shift, we
apply a sine voltage Vz and plot the resulting deflection Y
(Fig. 8-b). It appears that the coupling is nonlinear and
the effect of V z on Y ranges between ±5µm for Vy = 0.

Similarly to the previous experiments, Fig. 8-d shows
the deflection Z vs a sine applied voltage Vz and for
three constant values of Vy. Like Vy → Y , we also remark
that the direct transfer Vz → Z is hysteretic. However, it
seems that whatever an applied constant Vy is, the hys-
teresis curves are neither shifted nor angled themselves:
the coupling seems negligible. To more analyze that, we
apply a sine voltage Vy and check its influence on the
deflection Z. The results are plotted in the Fig. 8-c and
clearly indicate that the coupling is negligible. Indeed,
from the curves, we a priori have a low value of ∂Z

∂Vy
.

C. Creep analysis
Now let us analyze the creep phenomenon that may

behave the piezocantilever. The creep is defined as the
slow drift that appears after the transient part when
a step voltage is applied. The amplitude of the creep
depends on the amplitude of the input. In general, the
transient part of piezocantilevers has a settling-time less
than 100ms whilst the creep has more than 3min.

The experiments are performed with a step Vy = 20V
while Vz = 0V and then Vy = 0V while Vz = 20V . To
well observe the drift, the duration of the acquisition data
is 600s. The results lead to the following remarks.
• Fig. 9-a: the creep in the transfer Vy → Y is

considerable: more than 2.5µm (i.e. 27% = 2.5
9 ,

where 9µm is the final value before creep).
• Fig. 9-d: despite the noise, the creep in the transfer

Vz → Z is also considerable: more than 10µm (i.e.
40% = 10

25 ).
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Fig. 8. Static characteristics: experimental results.

• Fig. 9-c: the effect of Vy to Z seems not providing
any creep.

• Fig. 9-b: finally, the coupling effect of Vy on Z
added with the creep is more than 3.5µm. The whole
should be rejected when closed-loop controling the
piezocantilever.
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Fig. 9. Creep characteristics: experimental results.

IV. Modeling

In order to synthesize a controller, we give a model
of the system in this section. The considered system
is now the 2-dof piezocantilever including the vibration
compensators as shown in Fig. 6.

Consider the following multivariable nonlinear model:(
Y
Z

)
= Γ (Vy, Vz, s) ⇔

{
Y = Γy (Vy, Vz, s)
Z = Γz (Vy, Vz, s)

(1)
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where Γi (Vy, Vz, s) represents a nonlinear operator de-
pendent at the same time on the input Vy and Vz. The
reliance of Γi on the Laplace variable s means that it also
includes dynamic parts. According to [11], nonlinear 1dof
piezocantilevers can be described by a static hysteresis
followed by a linear dynamic part. Moreover, the creep
can be considered as an additional disturbance. This is
expressed as follow:

δ = Γ (V, s) = H(V ) ·D(s) + C(V, s) (2)

where δ is the output, H(V) is the static hysteresis part
that depends on the amplitude of V , D(s) is the linear
dynamic part and C(V, s) is the creep part that depends
on the amplitude of V and has its own dynamic part.
In some applications, the dynamic part inside C(V, s)
is approximated by a linear transfer function [15]. The
result given by (equ 2) makes easy the analysis because
we can first model the static part.

According to the Fig. 8-a, the hysteresis curves of
Vy → Y are similar but only angled and shifted them-
selves when using different values of Vz. Because of the
importance of the shift and the weakness of the tilt of
the curves, we neglect the latter. However it will be
considered during the controller synthesis. From these
remarks, we can write:

Y = Hy(Vy) + TV z→Y (Vz) (3)

where Hy(Vy) is the static hysteresis of (Vy → Y ) at
Vz = 0 and TV z→y(Vz) represents a nonlinear operator
modeling the coupling (Vz → Y ). The latter can be
expressed using one of the curves of Fig. 8-b.

Based on Fig. 8-c and Fig. 8-d, the similar remarks can
be applied to the deflection Z. We have:

Z = Hz(Vz) + TV y→Z(Vy) (4)

Fig. 8-c shows that TV y→Z(Vy) may be approximated
by a linear function with low value of ∂Z

∂Vy
. However, in

order to maintain the generality, we keep the notation
TV y→Z(Vy).

According to the four figures of Fig. 7, each transfer
has its own transient part.Based on (equ 2), we can write:

Y = Hy(Vy) ·Dy(s) + TV z→Y (Vz, s) + CV y→Y (Vy, s)
+CV z→Y (Vz, s)

Z = Hz(Vz) ·Dz(s) + TV y→Z(Vy, s) + CV y→Z(Vy, s)
+CV z→Z(Vz, s)

(5)
where:
• Dy(s) and Dz(s) are respectively the dynamic parts

of the direct transfers and can be identified using
Fig. 7-a and Fig. 7-d,

• TV z→Y (Vz, s) and TV y→Z(Vy, s) are respectively
the coupling transfers of Vz → Y and Vy → Z.
Each of these transfers include the static linear or
nonlinear part (pictured in Fig. 8-b and Fig. 8-c) and
the dynamic part (pictured in Fig. 7-b and Fig. 7-c),

• CV y→Y (Vy, s) and CV z→Y ·(Vz, s) are the creeps that
appear in Y when Vy and Vz are respectively applied,

• CV y→Z(Vy, s) and CV z→ZVz, s) are the creeps that
appear in Z when Vy and Vz are respectively applied.

During a micromanipulation/microassembly task, a
piezogripper applies a force to the manipulated micro-
object. This manipulation force disturbs the functioning
of each piezocantilever and may decreases its perfor-
mances. So it is careful to account this force during the
modeling and controller synthesis of the piezocantilever.
As the force can be considered as an external distur-
bance, it can be easily introduced into (equ 5). We obtain:

Y = Hy(Vy) ·Dy(s) + TV z→Y (Vz, s) + CV y→Y (Vy, s)
+CV z→Y (Vz, p) + sFy · Fy

Z = Hz(Vz) ·Dz(s) + TV y→Z(Vy, s) + CV y→Z(Vy, s)
+CV z→Z(Vz, s) + sFz

· Fz

(6)
where Fy and Fz are the components of the external
manipulation force respectively along y-axis and z-axis.
The coefficients sFy

and sFz
are the compliance of the

piezocantilever.
Assembling the coupling, the creep and the force into

one disturbance, (equ 6) becomes: Y = Hy(Vy) ·Dy(s) + dy

Z = Hz(Vz) ·Dz(s) + dz

(7)

with dy and dz the disturbances respectively along y-axis
and z−axis.

A. Identification of the dynamic part
The dynamic part Di(s) can be easily identified using

the Fig. 7-a, Fig. 7-d and an ARMAX method. Di

should be normalized, i.e. Di(0) = 1, because the gain is
expressed by the static hysteresis. The identified models
and the experimental results are presented in the Fig. 10-
a (for Vy → Y ) and Fig. 10-b (for Vz → Z). Because
the gains of the models are equal to one, the simulation
pictured in the figures have been scaled in order to allow
the comparison. We have:

Dy(s) =
(3333)2

(s + 3333)2
(8)

and

Dz(s) =
111

(
s + 1.07× 104

) (
s2 − 3.3s + 5.2× 104

)
(s2 + 5.8s + 4.7× 104) (s2 + 2023s + 1.4× 106)

(9)

B. Approximation of the hysteresis
In the literature, there are various models of hysteresis

that have been applied to piezocantilevers, as exemple:
the Prandtl-Ishlinskii model [14], the Preisach model [15],
the Bouc-Wen model [16]. Despite the accuracy of these
models, the synthesized controllers are often complex and
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Fig. 10. Experimental result and simulation of the identified
transient part.

nonlinear. Therefore, in order to use a linear controller,
in our previous work [11], we proposed to approximate
the 1dof static hysteresis by a linear expression with a
nominal gain α subjected to a direct multiplicative input
uncertainty ∆ ·We. In this approximation, the hysteresis
curve is approximated by a quadrilateral (Fig. 11). The
gain α is the slope of its axis. While ∆ ∈ R and |∆| 6
1, the weighting We ∈ R is chosen to cover the radius
αmax−αmin

2 .

slope: α

slope: αmax

input

output
slope: αmin

Fig. 11. Quadrilateral approximation of the hysteresis [11].

For Vz → Z, the coefficients are easily computed using
one of the three curves of Fig. 8-d. We have: αz =
1.5

[
µm
V

]
and Wez = 0.15

[
µm
V

]
.

For Vy → Y , we must take into account the tilt
between the three hysteresis curves of Fig. 8-a. Hence,
the maximal and minimal slopes, and then the weighting
function Wey, are computed using the three curves. How-
ever, α is only computed with one curve: we choose the
hysteresis curve corresponding to Vz = 0V . We obtain:
αy = 0.45

[
µm
V

]
and Wez = 0.075

[
µm
V

]
.

C. Final model
According to (equ 7), the initial coupled model be-

comes two independent models because the coupling
parts were input inside the disturbance di. From the

previous sub-section, each model is linear but subjected
to an uncertainty. So, the controllers synthesis is based
on the models presented in the Fig. 12. In the figure, i
denotes for y or for z and δ represents the deflection Y
or Z. Wei is the previous weighting function.

di

Vi δαi.Di(s) +
+

+
+

Wei

∆

Fig. 12. Scheme of the models.

V. H∞ control

In this section we present the synthesis of a H∞
controller for each axis. Such a controller has been chosen
to ensure the stability and the required performances
despite the uncertainty and the coupling effects.

A. Scheme and problem formulation

During the controllers synthesis, the following points
are taken into account:
• the stability should be ensured despite the presence

of uncertainty on the static gain αi,
• the disturbance di should be rejected,
• and the performances required for micromanipula-

tion/microassembly tasks must be ensured.
For each system, the Fig. 13-a shows the closed-loop
system with the weighting functions. From it, the stan-
dard scheme can be formed (Fig. 13-b). In the figure:
δref is the reference input, Ki(s) is the controller to be
synthesized, W1i is the weighting for the pereformances
specifications, W2i is the weighting for the disturbance
rejection and Wei is the previous weighting for uncer-
tainty.

Using the two bloc-schemes of Fig. 13 and applying
the standard H∞ problem [17], the problem consists in
finding the corrector Ki and an optimal value of γ such
as:

|Si| < γi

|W1i| , |Si| < γi

|W1iW2i| ,

|Si| < γi

|W2iW3i| , |SiGiKi| < γi

|W2iW3i|
(10)

where Gi = αiDi(s) is the nominal system and Si =
1

1+KiGi
is the sentitivity function.

B. Weighting functions

1) For the y-axis: the following specifications are used
to compute the weighting functions.
• the settling time is less than 40ms,
• the accuracy is better than 1% and the overshot is

nul,
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Fig. 13. (a): scheme of the closed-loop with weighting functions.
(b) standard scheme.

• the settling time for the disturbance rejection is
30ms,

• when an external force 4mN , voltages of Vy = 20V
and Vz = 20V are applied, they normally (i.e. in
open-loop) generate an elastic deflection, a creep and
a coupling of more than 15µm. So we want that the
maximal deflection in closed-loop due to them is less
than 1µm.

From these, we choose:
W1y =

s + 75
s + 0.75

W2y =
1.25 (s + 100) (s + 0.75)

(s + 75) (s + 7.5)

(11)

2) For the z-axis: we use the following specifications.
• the settling time is less than 30ms,
• the accuracy is better than 1% and the overshot is

nul,
• the settling time for the disturbance rejection is

20ms,
• when an external force 4mN , voltages of Vy = 20V

and Vz = 20V are applied, they generate an elastic
deflection, a creep and a coupling of more than
11µm in open-loop. So we want that the maximal
deflection in closed-loop due to them is less than
1µm.

From these, we choose:
W1z =

s + 100
s + 1

W2z =
1.25 (s + 1) (s + 0.18)
(s + 100) (s + 0.013)

(12)

C. Computation of the controllers

The controllers Ky and Kz have been computed using
the Glover-Doyle algorithme [18][19]. Each of the correc-
tor has respectively an order equal to 5 and 7 and have

been reduced into 2 and 5 using the balanced realization
technique [20]. We have: Ky =

0.103 (s + 1683) (s + 4.05)
(s + 7.5) (s + 0.75)

γopt = 1.6
(13)

and Kz =
1301

(
s2 + 5.8s + 4.7× 104

) (
s2 + 2023s + 1.3× 106

)
(s + 1) (s2 − 11.7s + 8.7× 104) (s2 + 7172s + 2× 107)

γopt = 1.7
(14)

VI. Experimental results

The two controllers have been implemented in a
computer-Dspace material. The first experiments consist
in applying a series of steps reference Yref = 10µm and
Zref = 30µm and observing the coupling. The results
show that the influence of an input Zref on the Y -axis is
rapidly rejected (zoom of Fig. 14-a) while the influence
of Yref on the Z-axis is negligible (zoom of Fig. 14-b).

0 2 4 6 8 10 12
−15

−10

−5

0

5

10

15

0 2 4 6 8 10 12
t[s]

t[s]

Y[µm]

Z[µm]

−40

−20

0

20

40

 

 

Fig. 14. Experimental coupling analysis of the closed-loop piezo-
cantilever.

In the step responses, the settling time of Y is lower
than 40ms and the overshot is null so that the wanted
specifications are satisfied (Fig. 15-a). However, while
the response of Z presents a slight overshot, its settling
time is nearly 60ms (Fig. 15-b). The difference rela-
tive to the specifications is due to γ = 1.7. Despite
that, these results are well suited for micromanipula-
tion/microassembly tasks.

Finally, a harmonic analysis is performed. For that, a sine
input Yref with 10µm of amplitude is applied. Fig. 16-
a pictures the responses 20 log

(
Y

Yref

)
and 20 log

(
Z

Yref

)
.

It shows that whatever the frequency is, the coupling is
rejected (Z-magnitude less than −5dB). Similarly, when
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Fig. 15. Experimental steps response of the closed-loop piezocan-
tilever: zoom.

a sine input Zref = 30µm is applied, its effect on Y

is largely rejected (Fig. 16-b) as 20 log
(

Y
Zref

)
is nearly

−30dB.
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Fig. 16. Experimental harmonic analysis of the closed-loop piezo-
cantilever.

VII. Conclusion

The scope of this paper is the characterization, mod-
eling and control of a 2-dof piezocantilever dedicated to
micromanipulation/microassembly tasks. In addition to
the hysteresis and the creep, the piezocantilever presents
a coupling in the two axis that can compromise accurate
tasks. Hence, a model was developed and a controller
was synthesized. In order to account the hysteresis, the
creep, the coupling and the performances specifications,
a H∞ robust controller was applied. The experimental
results show the efficiency of the method and indicate
that the obtained performances are well suited to the
micromanipulation/microassembly requirements.
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