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Abstract— While a robot is moving, the joints inevitably
generate noise due to its motors, i.e. ego-motion noise. This
problem is very crucial, especially in humanoid robots, because
it tends to have a lot of joints and the motors are located closer
to the microphones than the sound sources. In this work, we
investigate methods for the prediction and suppression of the
ego-motion noise. In the first part, we analyze the performance
of different noise subtraction strategies, assuming that the noise
prediction problem has been solved. In the second part, we
present some results for a noise prediction scheme based on
the current robot joint status. Performance is evaluated for a
number of criteria, including Automatic Speech Recognition
(ASR). We demonstrate that our method improves recognition
performance during ego-motion considerably.

I. INTRODUCTION

An active auditory perception system is very essential for
robots to be able to interact with their environment. Tasks
like sound localization and speech recognition have to be
performed with high accuracy even when the head (or whole
robot) is moving. Unfortunately, the research done in the field
of active audition suffers highly from this additive motor
noise, which deteriorates the quality of the recorded sounds
considerably. Therefore two restricting assumptions are made
very often: Either the sounds are selected loud enough to
ignore the motor noises generated during the body motion,
or the sound processing is performed without movement
at all [1]. An alternative method that overcomes the noise
problem is utilization of a separate close-talk microphone [2],
nevertheless it limits human-robot interaction.

In our research, the goal is to tackle the noise problem
directly. We propose to utilize a biologically-inspired method
for learning and suppressing the ego-noise that weakly-
electric fishes exploit in the nature. They have evolved
sensory systems that make use of copies of their self-
generated dynamic electric wave patterns to decode the
temporal characteristics of incoming sensory signals from
the surrounding waves [3]. Localization and scene analysis
procedures involve the computation of the spatial map of
sensory expectations from recent inputs, and removal of the
ego-motion effects, namely the spike events, from the total
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input image [4]. The ego-noise cancellation on a robot could
be accomplished by autonomous mechanisms similar to the
electrosensory system of the electric fishes, just like the
way the animal learns what kind of noise template it has to
subtract in case of the execution of a certain motor plan. In
this paper, we first deal with fixed motion patterns that follow
known trajectories. This approach is suitable for focusing on
the noise suppression problem explicitly. Then, we generalize
the ego-noise problem for freely moving robots by showing
methods how the noise could be predicted. We demonstrate
that the proposed methods can eliminate motor noise by
evaluating them qualitatively in terms of ASR results.

A. Comparison to Related Work

In the field of ”Robot Audition”, noise suppression is
mostly carried out using sound source seperation techniques
with a microphone array [5]. However, in our case, the
motors are located in the near field of the microphones and
produce more like diffuse rather than directional sounds. In a
standard task with robot motions where acoustic conditions
such as power, frequencies and locations of the motor noise
sources dynamically change at each time instance, the per-
formance of sound source separation and ASR deteriorates
drastically even when a microphone array is used. Nakadai
et al [6] proposed a noise cancellation method with two pairs
of microphones. One pair in the inner part of the shielding
body records only internal motor noise and helps the sound
localizer to distinguish between the spectral subbands that
are noisy and not noisy, and to ignore the ones where the
noise is dominant. In contrary to our approach, this technique
does not suppress the noise. Nishimura et al [7] estimates
the ego-noise using robot’s gestures and motions. With the
help of the motion command, the pre-recorded correct noise
template matching to the recent motion is selected from the
template database and subtracted. Compared to their small
set of noise template database of limited motions, we target
to deal with the whole ego-noise space that is generated
by any possible motor combination of the robot. Ito et
al [8] developed a new approach of frame-by-frame based
prediction with a neural network (NN) to cope with unstable
walking noise. The trained network had to predict the noise
spectrum from angular velocities of the joints of the robot.
However, they concentrated on a small robot with limited
degrees of freedom. For a huge dataset, NN will have a slow
training speed and online adaptation is difficult to achieve.
Therefore we rather propose the usage of a template database
due to its efficiency and additionally enhance the accuracy
of the templates further by incorporating more information
related to the joints. Besides, both Nishimura [7] and Ito [8]
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based their research mainly on the estimation of templates
for different motions, but neither focused on the possibility
of quality improvement by utilizing spectral enhancement
optimization factors nor evaluated the performance with any
other criteria except ASR.

II. BLOCKWISE TEMPLATE SUBTRACTION

This section gives an outline of the noise reduction strategy
that we followed. Main point of investigation in this section
is clearly not the prediction of the noise, but the suppression
of it. Therefore, we concentrated especially on a single
motion (quick horizontal motion of the neck) generated by
the experimental robot head (see Fig. 1(a)).

Fig. 1. Hardware setup of (a) robot head and (b) ASIMO.

A. Template Generation

Spectro-temporal investigations conducted on the recorded
ensemble of noise data for the same motion (same origin,
target, velocity and onset time) revealed following results:

• The regions of the spectrum where noise power is den-
sely distributed, correspond to the increased rotational
velocity of the motor (see Fig. 2 for the case of one
active joint). Most critical phases are acceleration and
breaking.

• The energy distribution remains nearly the same during
the constant velocity phase.

• The duration of the signals does not change by more
than a few samples.

• Envelope shape does not deviate much from the mean
envelope of the same motions.

The underlying notion for our first method, blockwise
template estimation, relies on the idea that the motor noise
can be predicted, if the motion performed by the robot
has a pattern of a prior known duration and onset time.
Noise spectra of different motions can be recorded by
repeating the same motion M times. An important prepro-
cessing step after short-time spectral decomposition is the
removal of stationary background noise, which involves an
adapted version of Cohen’s Minimum Controlled Recursi-
ve Averaging [9]. Furthermore, the electrical noise of the
motors (static noise caused by the electrical circuits) is
also suppressed by this background noise reduction scheme,
so that only non-stationary mechanical noise remains as a
final product of the processing chain. Template generation
follows as the consequent stage. Time alignment of recorded

Fig. 2. Envelope spectrum of the head motor noise for a rotation from
-70◦ to 70◦ in the horizontal plane

motor noise is required before calculating the templates. The
synchronization point regarding each element is determined
at the sample number where the cross-correlation function of
each spectrum and pilot (one specific pre-selected instance)
spectrum gets its maximum value. Let D(n,Ω) be the short-
time basis frequency spectrum of the distortion (motor noise),
where Ω stands for the discrete frequency representation and
n for the current frame. A single template is represented by
an average matrix D(n,Ω) and a standard deviation matrix
σD(n,Ωi) such as follows:

D(n,Ω) =
1
M

M

∑
k=1

D(n,Ω) (1)

σD(n,Ω) =

√
1
M

M

∑
k=1

(
Dk(n,Ω)−D(n,Ω)

)2 (2)

B. Template Subtraction

Let S(n,Ω) and D(n,Ω) be the spectrum of useful signal
and motor noise, respectively. Then the spectrum of the
observed signal Y (n,Ω) is defined by

Y (n,Ω) = S(n,Ω)+D(n,Ω). (3)

The spectrum of the useful signal can be estimated by using
the inverse operation:

Yr(n,Ω) = Y (n,Ω)−D(n,Ω), (4)

where Yr(n,Ω) stands for the spectral magnitude comprising
the magnitudes of useful sound and residual motor noise. The
reason for the existence of this residual magnitude is that the
original magnitudes of the motor noise D(n,Ω) deviate from
their arithmetic mean D̂(n,Ω). To compensate this error, we
further suggest to use spectral subtraction approach that ex-
ploits overestimation factor, α , and spectral floor, β . α , also
termed aggressiveness factor, allows a compromise between
perceptual signal distortion and noise reduction level. On
the other hand, β is required to deal with the problem called
musical noise. The cause of musical noise is a non-linear
mapping of the negative or small-valued spectral estimates,
producing a metallic noise sounding like the sum of tone
generators with random fundamental frequencies which are
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turned on and off constantly [10]. β reduces the effect of
the sharp valleys and peaks in the spectrum which is caused
by the smaller attenuations of the frequencies compared to
relatively larger attenuations of their neighboring frequencies
due to the random fluctuations in the magnitude estimations.
Overestimated template subtraction is introduced such as in
the following formula:

ĤSS(n,Ω) = max
(

1−α(n,Ω)
σ̂D(n,Ω)
Yr(n,Ω)

,β (n,Ω)
)

, (5)

Finally, the template is conceptually ’subtracted’, by
weighting the signal Yr(n,Ω) with the gain coefficients
ĤSS(n,Ω):

Ŝ(n,Ω) = Yr(n,Ω) · ĤSS(n,Ω) (6)

III. PARAMETERIZED TEMPLATE SUBTRACTION

In this section, we explain the techniques that are ne-
cessary to extend the proposed solution of the ego-noise
reduction problem from a stereotyped motion level towards
complicated motions with higher degrees of freedom. So
far disregarded subjects like synchronization of templates,
effect of increased number of motors and noise prediction
are inspected further in this section.

Note that the blockwise template subtraction had several
shortcomings, e.g. it could be performed properly only after
the detection of the exact starting moment of the template,
which is a very hard task to achieve. Another drawback was
that it would require a large collection of signal represen-
tations consisting of the motor noise statistics like average
values and standard deviations of the whole dataset of a given
motion. Besides, it requires a huge amount of data for each
possible motion. Considering the impossibility to collect and
produce templates for each joint of different combinations of
origin, target, position, velocity and acceleration parameters,
the former approach was simply not feasible to be applied
in a realistic scenario.

To overcome these deficits, a new technique is proposed
that parameterizes a discrete audio segment under conside-
ration using motor status and get a spectral energy vector to
represent the ego-noise at that time instant. The experiments
for parameterized template subtraction are conducted on
Honda (humanoid robot) ASIMO (Fig. 1(b)) due to the
necessity of additional body joints beside the head motors.
ASIMO has sensors that measure the angular positions of all
of its joints separately.

A. Template Generation

For that purpose, joint status information provided by the
sensors on the motors will be utilized, with the following
assumptions:

• Current motor noise depends on position, velocity and
acceleration of that specific motor.

• Similar combinations of joint status will result in similar
motor noise spectral vectors at any time instance.

• The superposition of single joint motor noises at any
arbitrary time equals to the whole body noise at that
specific time instance.

Figure 3 illustrates the proposed template generation sche-
me. During the motion of the robot, actual position (θ ) in-
formation regarding each motor is gathered regularly. Using
the difference between consecutive sensor outputs, velocity
(θ̇ ) and acceleration (θ̈ ) values are calculated. Considering
that N joints are active, feature vectors consisting of 3N
attributes are generated. Each feature is normalized to [-
1 1] so that all features have the same contribution on
the prediction. The resulting feature vector has the form of
F = [θ1, θ̇1, θ̈1,θ2, θ̇2, θ̈2, . . . ,θN , θ̇N , θ̈N ]. At the same time,
motor noise is recorded and spectrum of the motor noise
is calculated by the sound processing branch running in
parallel. Both feature vectors and spectra are continuously
labeled with time tags so that templates are generated when
their time tags match. Finally, a large noise template data-
base that consists of short noise templates for many joint
configurations is created.

Fig. 3. Flowchart of the proposed template generation and database
creation.

B. Template Prediction and Selection

The prediction phase starts with a search in the database
for the best matching template of motor noise for the current
time instance. Finding the correct template involves a search
among all the templates in the database for most similar joint
configuration. We implemented a nearest neighbor (1-NN)
search to accomplish this task. The spectral vector associated
with the point in the database that has the shortest distance
to the query point is used as the template. The prediction
process is applied for every frame. In that sense, the block
template for an arbitrary motion (e.g. neck motion template
in Sec. II) can be regarded as the concatenation of smaller
templates that are predicted according to the abovementioned
approach on a frame-by-frame basis.

C. Template Subtraction

On contrary to blockwise template subtraction, there is
no ready-to-use average template for parameterized template
subtraction. Occasionally, the prediction accuracy could even
become very low. In this respect, we employ a slightly
changed version of weight calculation formula for spectral
subtraction:
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ĤSS(n,Ω) = max
(

1−α(n,Ω)
Dpr(n,Ω)
Y (n,Ω)

,β (n,Ω)
)

, (7)

where Dpr(n,Ω) stands for predicted template. This ope-
ration is followed by Eq. 6 to finish the noise reduction
operation.

IV. RESULTS

For the first part of our experiments, we evaluated the
blockwise template subtraction. Tests are done on the robot
head which is a close derivative of the actual ASIMO head. It
is equipped with Sennheiser DPA 4060-BM omni-directional
microphones for recording. We used only one microphone
on the left side. For more information regarding the ears and
pinnae refer to [11]. The head motor is an Amtec Robotics
PowerCube070. Data was recorded in a noisy, very echoic
room (T60 = 1100ms). The tests for blockwise template
subtraction are focused on motor noise signals generated
by a horizontal motion of 140◦ with a very high angular
velocity (vmax = 200◦/sec). Sampling rate was set to 48kHz.
We used a Gammatone filterbank with 60 channels where
center frequencies are increasing quasi-logarithmically from
100Hz to 10 kHz.

The obtained noise signals are added to clean male
speech. Not only the signal-to-noise ratio (SNR) is very
low (nominalSNR=-5.7dB and segSNR=-2.8dB), but also
the frequency bins with high energy content of both speech
and noise are overlapping. These signals and their spectrally
enhanced versions after noise reduction are evaluated using
Perceptual Evaluation of Speech Quality (PESQ, ITU-T
P.862 Standard). It is designed to calculate an index value
of quality that correlates to a mean opinion score (MOS)
given by human subjects in evaluation sessions. It predicts
subjective opinion scores of a degraded audio sample in a
range from 4.5 to -0.5, with higher scores indicating better
quality. Results in relation with α and β are given in Tab. I.
When the aspect of intelligibility is considered, overestimated
subtraction with low spectral floor is not appropriate for
speech enhancement, because the human ear is especially
sensitive to musical noise. Therefore, high spectral floor
values (β > 0.3) are desirable. The best score is achieved
when mean template subtraction is applied.

TABLE I
PESQ RESULTS FOR MAGNITUDE SPECTRAL SUBTRACTION

MOS for noisy MOS after mean template
signal: 0.361 subtraction: 2.681

MOS β

values 0.0 0.2 0.3 0.5 0.8 0.9
1 0.329 0.309 0.277 0.221 1.526 2.429
1.5 0.322 0.291 0.216 0.249 1.535 2.606

α 2 0.313 0.312 0.262 1.448 1.541 2.592
2.5 0.331 0.248 0.244 1.464 1.545 2.194
3 0.35 0.241 0.291 1.476 1.546 2.619
4 0.255 0.338 1.371 1.439 1.547 2.62

The second evaluation criteria we utilize, exploits the
Precedence Effect [12], which makes localization in echoic
environments possible for humans. Using this model, the
detection of noise and sound signals is to be verified on
their onset points. Onsets are the points where a position
measurement for sound localization is done. They are frames
where the signal amplitude increases and the effect of echoes
is still small. Therefore we assume, the larger the energy of
the onset, the larger the impact on localization. They are
used particularly for sound localization in order to suppress
the onsets caused by the echoes of the same sound source,
by introducing the inhibition of the local echo onset points
other than these particular desired signal onsets (See [13]).

Provided that the noisy signal consists of the superposition
of the noise and speech signals, the onsets of both signals can
be extracted separately by giving only the interested signal to
the input. That way, the energies and positions of the onsets
are saved individually. A likelihood method is introduced
so that the onsets of the degraded signal can be compared
with the onsets of its noise and speech components assessed
before. Given a certain confidence area (explained below),
it should return an objective measure how likely the onsets
of the degraded signal are to its nearest onset belonging to
either one of those classes.

Considering that the onsets are computed for each channel,
two parameters are selected to tune the confidence area,
namely the timing and the energy of the onsets. An optimized
timing confidence interval of 60 ms defines the limit of
interest for the corresponding onsets. The onsets beyond the
limits are considered as completely dissimilar onsets. The
second parameter in the confidence area is the energy level
of the onset. The onset of a class whose energy seems to be
reduced far more than the other class is rewarded more. The
total confidence value (product of the position and energy
confidence) acts as an indicator for the competition between
the noise and speech onsets in the reference onset set. The
candidate which has the greatest confidence value is selected
as the winner and the onset is assigned to belong to either
speech, motor noise, or indecisive category. This method
gives out a measurement bench how many onsets from the
noise are suppressed, how much energy has remained in the
onsets of the noise (see Fig. 4).

Fig. 4. Onset based results using magnitude spectral subtraction for (a)
voice onset energy suppression rates (b) noise onset energy suppression
rates

The results demonstrated that the higher the overesti-
mation factor is selected, the more the noise reduction is
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achieved. Template reduction can suppress 76% of the total
energy of noise onsets, while keeping voice suppression in
low rates like 15%. (see Tab. I and Fig. 4 for α = 4 and
β = 0.5)

We also evaluated the speech recognition results with
Sphinx-4 to inspect the qualitative aspects of our noise
suppression scheme. Totally 200 evaluation word sequences
(Resource Management Speech Corpus) are selected each
comprising of 5 to 12 words chosen randomly. Utterances
belong to both male and female speakers. The recognition is
performed speaker- and gender- independent. No grammar is
used in the tests. The results will be evaluated for 7 different
SNR values between approximately -10 and 40 dB.

Fig. 5. ASR results

The experiments carried out with ASR show that the
word error rate after mean template subtraction decreases
substantially in the sensible region between -5dB and 30dB
compared to both the reference recognition results with
noisy signals and to the results after applying stationary
background noise reduction scheme as shown in Fig. 5. For
an SNR value of 17dB, the improvement is 12% and for 8dB
case 16% improvement is achieved. For an additional test
bench, the recognition performance of an perfect template is
introduced as well. This perfect template is in fact nothing
but the identical spectrogram that the motor noise has.
This defines the upper limit of performance and defines a
benchmark for the comparison of all methods by providing
a best case scenario.

It is also clear that the templates generated by variance
weighting (Overestimated Temp. Subtraction) are not sui-
table to be applied to the signals with high SNR. They
worsen the Word Error Rate (WER), which is an expected
consequence coinciding with the results obtained from the
previous PESQ and onset measurement tests. However, reco-
gnition for low SNRs (below 0dB) yields better performance
if an overestimation of the noise variance is used (within a
certain range). For moderate SNR levels, usage of variance
weighting techniques reduces WERs by up to 10%.

The second part of the experiments is carried out on
ASIMO. Experiment involves random motions of 10 diffe-
rent joints simultaneously. We rotated the head of ASIMO
(elevation = [-30◦ 30◦], azimuth = [-90◦ 90◦]) randomly,

while the arms were performing a random grasp motion in
the reaching space of the body without moving its torso or
hip. Status information of the motors are gathered from the
joints with an average acquisition rate of 7.3 ms. ASIMO also
has a circular array consisting of 8 microphones mounted on
the head. We made evaluations using the data recorded from
the third microphone that corresponds to a spatial position of
90◦ counterclockwise with respect to the front. The training
data was a joint database consisting of 30 minutes of motor
noise and the corresponding feature vectors stored during
this time span. The probability was very high that no similar
motions could be generated for this scenario with another
arbitrarily generated random trajectory. In that case, the
performance of the experiments would be biased by the
inappropriately selected test set. Therefore, we followed a
similar trajectory used in the training session but with a
sequence of slightly different destination points as before
that deviated in their final positions by a certain random
displacement. This distance is determined by a Gaussian
distribution with a variance of σ=0.1. We stored a test
database of 10 minutes long. Data is recorded in a noisy
and echoic room (reverberation time (RT20) was about 0.2
seconds). Data was sampled on 16kHz and frame shift was
12.5 ms. Hamming window of 16 ms was used.

We evaluated the effectiveness of the proposed approach
using Julius which is an open-sourced ASR. For this expe-
riment, we created 35 different motor noise patterns from
the test set. The length of each test set is kept flexible
so that it matches the duration of the utterances used in
the wordset. As speech corpus, ATR phonemically-balanced
wordset (ATR-PB) was used. This word-set includes 216
Japanese words and average word correct rate was calculated
as depicted in Fig. 6. Please note that the signals were
formerly subject to stationary background noise reduction.
Hence, SNR values are given for signal-to-motor noise ratio
(background noise of the room was approx. 5dB).

Fig. 6. Recognition performance for different spectral subtraction settings

The graph shows that a template subtraction with α = 2
and β = 0.5 is slightly better than a subtraction with α = 1
and β = 0.5 for high SNR values. Latter set of parameters
allow us to obtain improvement rates of up to 10% for
SNR conditions that can be observed in a realistic human-
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robot interaction. Ideal template represents the template that
is constructed for the current test motor noise using the
predictions from the test set. The reason of the gap between
ideal template subtraction performance and the results for
overestimated template subtraction with optimal settings is
due to the incorrect predictions of the template. Nearest
neighbor search does not make a decision on whether the
final prediction is a reasonably correct template, that is why
it is called a lazy learning algorithm. The errors are mostly
caused by the absence of similar templates that are available
for the current motor status combination.

Because the feature set has big impact on the predic-
tion accuracy, we also tested the influence of the feature
vector selection. For that purpose, we reduced the number
of features from 30 to 20 by excluding the acceleration
values. In the second condition, we eliminated the angular
velocities and provided only the position and acceleration
features (20 in total) for the prediction. We found out (See
Tab. II) that angular velocity and acceleration information do
not provide independent features. The combination of (θ ,θ̇ )
has outperformed the other feature combinations. Additional
benefit of this feature reduction is that the search algorithm
works now considerably faster and is less affected by the
curse of dimensionality.

TABLE II
ASR PERFORMANCES FOR THREE FEATURE SETS (α = 2 AND β = 0.5)

(θ ,θ̇ ,θ̈ ) (θ ,θ̇ ) (θ ,θ̈ )
SNR = 1dB 48.0 47.8 47.9
SNR = 3dB 37.2 36.8 37.1
SNR = 6dB 24.2 23.8 24.2

V. SUMMARY AND OUTLOOK

In this paper, we have presented methods for removing
ego-motion noise from sound signals. We showed that there
is a trade-off between quality and intelligibility of the speech.
Results are very promising in the sense that high suppression
rates are achieved while keeping the speech as untouched
as possible. We also demonstrated methods to maintain
the same intelligibility while improving the quality of the
speech by tuning the spectral subtraction parameters, α and
β . We suggest to choose these parameters depending on
one’s purpose in using the enhancement algorithm: If the
aim is sound localization, template subtraction can be used
aggressively to remove the onsets originating from motor
noise. For speech recognition, however, no harm to the
speech signal can be tolerated, hence only milder suppression
is recommended. We have also investigated methods for
noise prediction based on joint status information. Results
are preliminary, but they show that described concept works.

In its current form, our system has difficulties in achie-
ving precise prediction of templates. Therefore, additional
features that utilize cues about time series expansion of
consecutive motion elements and incorporate information on
motion primitives and motion-sequences would improve the

reliability and performance of the predictions. Next steps
involve an online implementation of the template subtraction
scheme on ASIMO that performs motions using more joints.
Besides, more sophisticated online compatible learning and
indexing techniques will increase the speed of our approach
and endow the system with a capability of online adaptation.
An important advantage of parameterized approach would
be that it can update the database on the fly making the
prediction more adaptive and accurate in case any change in
the characteristics of the motor noise (e.g. due to heating or
alterations in the material) occurs at any time. Moreover,
it can run online on the background while the robot is
performing its duties and tasks. In order to improve the
robustness, we plan to embed the current single-channel ego-
noise reduction stage into a general multi-channel micropho-
ne array processing framework for speech recognition that
utilizes geometric source separation and post filtering.
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