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Abstract— This paper describes a real-time walking control
system developed for the biped robots JOHNNIE and LOLA.
Walking trajectories are planned on-line using a simplified
robot model and modified by a stabilizing controller. The
controller uses hybrid position/force control in task space based
on a resolved motion rate scheme. Inertial stabilization is
achieved by modifying the contact force trajectories. The paper
includes an analysis of the dynamics of controlled bipeds, which
is the basis for the proposed control system. The system was
tested both in forward dynamics simulations and in experiments
with JOHNNIE.

I. INTRODUCTION

Both the commercial potential of humanoid robots in

the service and entertainment industries [1] and interesting

research topics in hardware design and control have lead

to the development of a number of sophisticated humanoid

robots by companies [2], [3] and academic institutions [4]–

[7]. For many potential applications reliable, fast and flexible

biped locomotion is a basic requirement.

In this paper we describe a walking control system de-

veloped for the biped robots JOHNNIE (Fig. 8) and LOLA

(Fig. 1). We give an overview of related work in biped walk-

ing control and the control of robot manipulators (Section II).

Based on an analysis of the control problem (Section III) we

describe the basic control strategy and give a derivation of

the proposed control law (Section IV). Finally, we show

results from dynamics simulations of LOLA and walking

experiments with JOHNNIE (Section V).

II. RELATED WORK

A. Control of Biped Locomotion

The most common method of biped walking control is to

first calculate theoretically stable walking patterns either on-

line [8], [9] or off-line [10]. The trajectory is then modified

on-line using feedback control in order to achieve stable

walking.

A large number of methods for stabilizing control of

bipeds have been proposed and a number of similar ideas

have been successfully implemented on full-size humanoid

robots. Without attempting to review all methods, we briefly

describe the ones we consider to be the most relevant to our

approach.

A common strategy for stabilizing the upper body in-

clination is to control the contact torques at the feet [6],
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Fig. 1. Snapshot of simulation of LOLA walking with the proposed control
system with trajectory planning results overlaid (left) and photograph of
LOLA (right).

[11], [12]. Usually, the foot torques are measured by six-axis

force/torque sensors and controlled via position control of the

ankle joints. Another common strategy is to accelerate the

center of mass (CoM), creating a reaction force that stabilizes

the robot [3], [13].

An interesting strategy for stabilizing planar bipeds based

on methods for torque limited control of robot manipulators

[14] was proposed in [15]. By using time scaling of the

trajectory, both the geometric path and the center of pressure

(CoP) can be tracked. However, since time scaling only adds

one additional control input, application to three dimensional

robots is not straightforward.

In order to reduce landing impacts, many robots also

incorporate an active control of vertical contact forces. This

can be achieved by measuring the contact force and chang-

ing position set points [6], [11]. Another strategy involves

reducing joint position control gains during initial contact

[3], [16], i.e. using indirect force control.

FUJIMOTO proposed a hybrid position/force control

scheme based on task space position control [17]. Contact

torques in the ground plane are used for tracking a reference

CoP and not for stabilizing the robot. The remaining contact

forces are used for controlling the robot’s pose and torso

height. Contrary to our approach, stabilization of the CoM

trajectory is achieved by modifying the swing leg trajectory

according to KAJITA’s Linear Inverted Pendulum Mode [18].

LÖFFLER proposed an approach based on feedback lin-

earization for the biped JOHNNIE. The performance of

this method was limited by the available sensor bandwidth,

computational power and accuracy of the models, so the per-

formance of a method based on Impedance Control proved

to be superior [6].

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3019



Fig. 2. Hybrid position/force control for a torque controlled device, as
proposed in [19]. S, S̄ denote the selection matrices for position and force
controlled dimensions respectively.

B. Hybrid Position/Force Control

Hybrid position/force control was originally proposed by

CRAIG and RAIBERT for interaction control of robot manipu-

lators [19]. The basic approach is to partition the task space

into force and position controlled sub-spaces according to

the geometry of the assembly or manipulation problem. This

allows precise motion control in unconstrained directions

while force control leads to an adaptation of the robot’s

motion to the environment’s geometry and stiffness.

In [19] the individual joint control terms are a linear

combination of contributions from a PID-type position con-

trol and direct force control (cf. Fig. 2). More sophisti-

cated approaches using dynamics models of the manipulator

and nonlinear decoupling were subsequently proposed by

KHATIB [20] and others.

Classically, hybrid position/force control was formulated

for torque controlled manipulators. However, for robots with

high structural stiffness, actuated by electric motors through

reduction gears with relatively high ratios (≥ 50), decoupled

joint position control often leads to more than adequate mo-

tion control performance. Furthermore, direct joint position

control enables good disturbance rejection and compensation

of gear friction with high bandwidth [21]. This has led to the

development of hybrid position/force control based on inner

position or velocity control loops [22, Ch. 7].

III. PROBLEM ANALYSIS AND SYSTEM OVERVIEW

In this section we present a simplified dynamics model

of our robot and use it to identify two basic challenges

in biped walking control: determining physically feasible

motions and dealing with the underactuation of the robot.

Based on this analysis, we describe the basic structure of

our walking control system.

A. Problem Analysis

To analyze the walking control problem, we model the

robot as a rigid multibody system (MBS) with compliant,

unilateral ground contact:

Mq̈ + h = W ττ + W λλ (1)

Cidi = f i ∀i ∈ Ic (2)

gIE(f , q) ≥ 0 (3)

λ =
∑

i

T f,if i (4)

Here M and h are the mass matrix and the vector of smooth

forces respectively and q are the generalized coordinates.

W τ and W λ are the Jacobians of the contact forces λ and

joint torques τ . The contact with the environment is modeled

as a set of point contacts with forces f i, deformations di

and stiffness Ci. The resulting contact force vector λ ∈
IR12 that can be measured by the two six-axis force/torque

sensors, is calculated from the individual contact forces f i

using the transform matrix T f,i ∈ IR6×3, which depends

on the position of f i relative to the force sensor reference

frame.

Conditions from the unilateral contact are summed up in

the vector inequality gIE. λ is determined by summing over

all i in the set of active contacts Ic.

Due to the unilateral ground contact (3) not all robot

motions are feasible. This is one of the basic difficulties in

biped walking control. One solution is to generate physically

feasible walking patterns on-line using an adequate motion

planning algorithm. Our implementation of this strategy is

described in [8].

Theoretically, perfect tracking of planned trajectories leads

to stable walking. However, disturbances and modeling errors

of both robot and environment inevitably lead to deviations

from the ideal walking trajectory.

Due to the compliant ground contact, the joint torque

Jacobian does not have full rank:

W τ =

[

0
6×n

W τ,2

]

(5)

That is, the first six degrees of freedom (DoFs) q1 corre-

sponding to the robot’s upper body position and orientation

cannot be directly controlled, i.e. the system is underactuated.

From (1) it is apparent that we can control q1 either via λ or

h. Since accelerating the CoM is equivalent to changing the

horizontal contact force, both this strategy and ankle torque

control rely on manipulating λ for stabilizing the robot.

B. System Overview

The basic structure of the real-time walking control system

is shown in Fig. 3. General control commands are input

via a finite state machine (FSM) that coordinates the entire

walking control system. Depending on the FSM’s state,

planning and control modules are selected and configured.

Based on a desired walking direction and speed, a se-

quence of three walking steps is planned. The step sequence

is represented as an array of walking parameters that serve

as input to the walking pattern generator. The step sequence

planner uses tables generated off-line to choose parameter

combinations of step length, step frequency, double support

period etc. leading to smooth and stable walking [8].

The step sequence is used for generating walking trajecto-

ries xid in task space. Table I summarizes the definition of

xid for LOLA. For both LOLA and JOHNNIE we control the

CoM trajectory according to the MBS model, not the torso

position.

Using data from the inertial measurement unit (IMU), the

force torque sensors and the current state of the robot, the

desired contact forces λ are modified (cf. Section IV-A).
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TABLE I

TRAJECTORY PARAMETRIZATION FOR LOLA

right foot from robot CoM rLR − rCoM

left foot from robot CoM rLL − rCoM

relative right foot/upper body orientation ϕLR

relative left foot/upper body orientation ϕLL

right arm CoM from robot CoM rAR − rCoM

left arm CoM from robot CoM rAL − rCoM

upper body orientation ϕUB

robot CoM from stance foot rCoM

Fig. 3. Structure of the real-time walking control system.

Desired contact forces and remaining task space dimen-

sions are controlled using a hybrid force position control

scheme based on an inner position control loop (cf. Sec-

tion IV-B).

IV. STABILIZING CONTROL

For stabilizing control, we propose a generalization of the

Impedance Control method previously used for JOHNNIE

[6]. Based on the analysis in Section III, we modify the

desired contact forces λid in order to stabilize q1.

The theoretical justification for this approach derives from

the fact that (1) has pronounced slow-fast dynamics. If we

assume for simplicity that the contact state does not change

and partition the degrees of freedom into six upper body

DoFs q1 and n − 6 joint angles q2 = θ, the system can be

rewritten as:

M11q̈1 + M12q̈2 + h̃1 = 0 (6)

M21q̈1 + M22q̈2 + h̃2 = 0 (7)

Here h̃1, h̃2 include contact forces and joint torques. The

structure of the dynamics of the controlled robot becomes

more apparent by scaling the EoM so the norm of the force

vectors ‖h̃i‖ are in the order of 1:

1

σM11
σh1

M11q̈1 +
1

σM11
σh1

(M12q̈2 + h̃1) = 0 (8)

1

σM11
σh2

M22q̈2 +
1

σM11
σh2

(M21q̈2 + h̃2) = 0. (9)

Here σM11
≈ ‖M11‖ and σhi

≈ ‖∂hi/∂q‖. The struc-

ture of the MBS leads to ‖M11‖ / ‖M22‖ ≫ 1 and

‖M12‖ / ‖M11‖ ≫ 1, while the inequality ‖σh2
‖ ≫

1 is even more pronounced due to the high gain joint

position control. In sum ‖ 1
σM11

σh2

M22‖ ≪ 1 while

‖ 1
σM11

σh1

M11‖ ≈ 1. We denote the nominal walking

trajectory by q1,id, q2,id. Then, in the terminology of singular

perturbation theory, we can describe q1 − q1,id as the slow

manifold, while q2 − q2,id is the fast manifold.

Based on the preceding analysis, we divide the robot’s

control into a slow and a fast component. We start by

partitioning x into xT
IN = (ϕT

UB, rT
CoM) and xREL, where xIN

depends on both q1 and q2 and xREL depends only on q2.

In the slow module we then stabilize xIN via λ, while the

fast module controls xREL and λ via q2.

A. Contact Force Modification

For stabilizing xIN we adopt a simple PD-type control

with saturation:

λd = sat (λid + KP ∆xIN + KD∆ẋIN). (10)

sat is the saturation function used to obtain only physically

feasible contact force references λd. Boundaries of admis-

sible force setpoints are calculated from the foot geometry,

the current force sensor signal and the current state of the

walking FSM.

The control gains KP ,KD are calculated by the walking

pattern generator and are responsible for distributing the

overall contact force between left and right foot during

double support.

B. Hybrid Position/Force Control

For real-time control, the foot-ground contact is modeled

as a set of decoupled point contacts with stiffness Ci and

negligible damping (cf. Fig. 4). By using an explicit contact

model, changing foot geometries, contact states and contact

stiffness can easily be taken into account, which is usefull for

LOLA during heel or toe contact. A further advantage is the

fact that the terms in the force control equations have a clear

physical meaning. More importantly, control of individual

force components is decoupled. If the foot’s “tool center

point” and/or the force sensor is not at the center of the foot

or the foot’s contact stiffness is not homogeneous, controlling

only the rotation of the foot relative to the upper body or only

the ankle joints will generally alter both the contact torque

and the normal contact force. This is avoided by taking the

foot geometry, contact stiffness and force sensor location into

account.
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Using the known contact state, i. e. which contacts are

opened or closed, the total force F j and torque T j acting

on foot j are given by

(

F j

T j

)

=
∑

i∈Ic,j

(

jCi dc,i

j∆rc,i × jCi dc,i

)

(11)

where Ic,j denotes the subset of Ic on foot j, dc,i is the

deformation of the i-th contact element and j∆rc,i is the

vector from the force sensor frame to the contact element.

Fig. 4. Contact model for stabilizing control.

Similar to the use of a binary selection vector by CRAIG

et al. to specify force or position controlled dimensions [19],

we use selection matrices to specify subsets of λ and x to

be actively controlled:

λc = Sλλ (12)

xc = Sxx (13)

Here the subscript c denotes the actively controlled variables

and Sλ,Sx are binary selection matrices. Currently, we

actively control the forces normal to and the torques in the

contact plane.

In the non-position controlled dimensions we allow a

modification of the reference trajectories by ∆xλ for force

control. With Kλ as a control gain, we choose the linear

error dynamics

Sλ

(

∆λ̇ + Kλ∆λ
)

= 0 (14)

for the actively controlled forces. With S̄x denoting the

complement of Sx, we have

∆ẋλ = S̄x∇qxq̇∆ẋλ
. (15)

From the contact model (11) we obtain the relationship:

λ̇ = ∇qλq̇ (16)

Substituting (16) into (14) and rearranging yields:

(Sλ∇qλ) q̇ = Sλ (λd + Kλ∆λ) (17)

Because of the linear relationship between generalized ve-

locities and workspace velocities we have q̇ = q̇id + q̇∆ẋλ
,

where q̇id are the ideal generalized velocities corresponding

to ẋid. Using this relationship and the MOORE-PENROSE

pseudoinverse (·)† we can solve for the trajectory modifica-

tion:

∆ẋλ =
(

Sλ∇qλ
(

S̄x∇qx
)†

)†

Sλ (λd + Kλ∆λ − ∇qλq̇id)
(18)

Our trajectory generator does not take the compliant foot-

ground contact into account, i. e. foot trajectories are planed

to not penetrate the environment. This means that for q =
qid, the contact element deformations dc,i and the corre-

sponding contact force λ vanish and ∇qλq̇id ≡ 0. Using

this relationship we obtain the following reference trajectory

modification:

∆ẋλ =
(

Sλ∇qλ
(

S̄x∇qx
)†

)†

Sλ

(

λ̇d + Kλ∆λ
)

(19)

For the ideal case of an exact contact model and no dis-

turbances, the term due to λ̇d leads to λ = λd, i. e. the

reference trajectory modification compensates the deforma-

tions in the foot-ground contact. Alternatively, we could take

the compliant contact into account in the trajectory planner.

In this case the terms ∇qλq̇id and λ̇d in (18) would cancel,

leading to the same trajectory modification.

Due to the varying contact state, we cannot use (19)

directly. For the swing leg all contacts are inactive, ∇qλ

becomes singular and we cannot compute the pseudoinverse

in (19). Since the contact force is independent of the tra-

jectory modification ∆ẋλ, we blend from force to position

control for DoFs with vanishing contact stiffness:

∆ẋλ =
{

[

Sλ∇qλ(S̄x∇qx)†
]†

αλSλ

[

Kλ,ff λ̇d+

Kλ(λd − λ)
]

}

+ αx

[

S̄xKλx(xd − x)
]

(20)

Here αλ + αx = E, αi,jk ∈ [0, 1] are gain matrices

determining which DoFs are position or force controlled.

Additionally, a damping term is added to each vanishing row

of ∇qλ, to enable calculation of the pseudoinverse. Since the

corresponding elements in αλ are zero, the magnitude of the

damping term does not influence the result of (20).

The actual contact dynamics are more complex than the

model (11) used in the controller. We therefore introduce

the additional control gain Kλ,ff to modify the feed-forward

term in (20). This parameter is tuned manually during

walking experiments.

After adding the modification (20) to the original reference

trajectory, we must map the modified reference xd to the

generalized coordinates q. If we choose dim(x) < dim(q),
as we have done for LOLA, this mapping is not unique. For

calculating the desired generalized coordinates qd, we chose

the resolved motion rate control method originally proposed

by WHITNEY [23] combined with the minimization of an

objective function H in the null-space of ∇qx, as proposed
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by LIÉGEOIS [24]:

ẋd = ẋid + S̄
T

x ∆ẋλ +
Kx

∆t

(

∆xpos + S̄
T

x ∆xλ

)

∆xλ =

∫

∆ẋλdt

q̇d = (∇qx)†ẋd − αNN∇qH

qd =

∫

q̇ddt

(21)

Here N is the null-space projection matrix, αN a gain for

minimizing the objective function H , ∆t is the time step and

∆xpos = xid − x.

Without null-space optimization, (21) gives the least

squares solution for q̇d, leading to a local minimization of

joint velocities.

We currently use the objective function H to avoid joint

limits and to choose symmetric and “comfortable” poses. For

both components we use quadratic cost functions. However,

joint limit avoidance is only activated close to the edges of

the working range (cf. Fig. 5).

qcmf

deceleration out of range

0

qmin 0 qmax

H(q)

Hlimit(q)

Hcmf(q)

Fig. 5. Schematic representation of the objective function H for a single
joint. Hlimit, Hcmf are the terms for joint limit avoidance and convergence
towards the preferred joint angle qcmf respectively.

C. Run-Time Performance

To reduce the computational cost during real-time control,

we avoid explicitly calculating pseudo-inverses and null-

space projection matrices. Instead, we solve two linear

systems of equations as proposed by KLEIN and HUANG

[25]. On the on-board computers (Intel T7600 mobile CPU,

2.33 GHz, 32-bit mode) the average run-time for a single

threaded version of the proposed stabilizing control is 393 µs
for JOHNNIE and 720 µs for LOLA. While this is fast

enough for an overall control cycle of 1.5 ms, the results also

show that the run-time strongly increases with the number

of DoFs. However, on a more recent desktop CPU (Intel

E8400, 3.0 GHz, 64-bit mode) the execution time for LOLA

is reduced to 211 µs. The authors also believe that there still

is much room for optimization in the current code, so it

should be possible to further reduce the run-time, making the

proposed approach applicable to systems with more DoFs.

V. RESULTS AND DISCUSSION

The proposed control system has been analyzed in sim-

ulations of JOHNNIE and LOLA and walking experiments

with JOHNNIE.
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Fig. 6. Simulation of LOLA’s upper body oscillations while walking in a
straight line. ϕx, ϕy are the angles between the upper body and the gravity
vector in the sagittal and lateral plane respectively.
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Fig. 7. Measurement of JOHNNIE’s upper body oscillations while walking
in a circle. ϕx, ϕy are the angles between the upper body and the gravity
vector in the sagittal and lateral plane respectively.

Fig. 6 shows the upper body oscillations for LOLA walking

in a straight line calculated using a refined version of the

simulation program described in [26] and Fig. 1 a snapshot

of an animation including the planned walking pattern.

Figs. 8 and 7 show snapshots of walking experiments

with JOHNNIE and JOHNNIE’s upper body orientation

measured with the on-board IMU respectively. The upper

body oscillations are not perfectly periodic, since the desired

average walking speed and direction was controlled by a

joystick and therefore constantly changing.

The results show that reliable walking in arbitrary direc-

tions and with arbitrary curvature is possible and distur-

bances are rejected effectively.

Furthermore, the control system is quite flexible and many

extensions and modifications are easily implemented. For

example, adding an integral action to the force control to

improve disturbance rejection is achieved by simply adding

Kλ,INT

∫

∆λdt in (14). Another straight-forward addition

to the control framework is the on-line adaptation of model

parameters, especially of the ground contact stiffness.

Future work will include refining the proposed control

system by incorporating more precise models in order to

further improve performance and evaluating the method in

walking experiments with LOLA.
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