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Abstract— This paper describes a method for removing
adherent noises from image sequences. In outdoor environ-
ments, it is often the case that scenes taken by a camera are
deteriorated because of adherent noises such as waterdrops on
the surface of the lens-protecting glass of the camera. To solve
this problem, our method takes advantage of image sequences
captured with a moving camera whose motion is unknown. Our
method estimates a camera motion only from image sequences,
and makes a spatio-temporal image to extract the regions of
adherent noises by examining differences of track slopes in
cross section images between adherent noises and other objects.
Finally, regions of noises are eliminated by replacing with image
data corresponding to object regions. Experimental results show
the effectiveness of our method.

I. INTRODUCTION

In this paper, we propose a noise removal method from

image sequences acquired with a moving camera whose

motion is unknown by a spatio-temporal image processing.

A spatio-temporal image can be generated by merging the

acquired image sequence (Fig. 1(a)), and then cross-section

images can be extracted from the spatio-temporal image

(Fig. 1(b)). In these cross-section images, we can detect

moving objects and estimate the motion of objects by tracing

trajectories of edges or lines.

In recent years, cameras are widely used for surveillance

systems in outdoor environments such as the traffic flow

observation, the trespassers detection, and so on. It is also

one of the fundamental sensors for outdoor robots. However,

the qualities of images taken through cameras depend on

environmental conditions. It is often the case that scenes

taken by the cameras in outdoor environments are difficult

to see because of adherent noises on the surface of the lens-

protecting glass of the camera.

For example, waterdrops or mud blobs attached on the

protecting glass may interrupt a field of view in rainy days.

It would be desirable to remove adherent noises from images

of such scenes for surveillance systems and outdoor robots.

Professional photographers use lens hoods or put special

water-repellent oil on lens to avoid this problem. Even in

these cases, waterdrops are still attached on the lens. Cars

are equipped with windscreen wipers to wipe rain from their

windscreens. However, there is a problem that a part of the

scenery is not in sight when a wiper crosses.
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(a) Spatio-temporal image. (b) Cross-section.

Fig. 1. Spatio-temporal image.

Therefore, this paper proposes a new noise removal

method from images by using image processing techniques.

A lot of image interpolation or restoration techniques for

damaged and occluded images have been also proposed

in image processing and computer vision societies [1]–

[10]. However, some of them can only treat with line-

shape scratches [1]–[3], because they are the techniques for

restoring old damaged films. It is also required that human

operators indicate the region of noises interactively (not

automatically) [4]–[10]. These methods are not suitable for

surveillance systems and outdoor robots.

On the other hand, there are automatic methods that can

remove noises without helps of human operators [11], [12].

Hase et al. have proposed a real-time snowfall noise elimina-

tion method from moving pictures by using a special image

processing hardware [11]. Garg and Nayar have proposed

an efficient algorithm for detecting and removing rain from

videos based on a physics-based motion blur model that

explains the photometry of rain [12]. These techniques work

well under the assumptions that snow particles or raindrops

are always falling. In other words, they can detect snow

particles or raindrops because they move constantly.

However, adherent noises such as waterdrops on the sur-

face of the lens-protecting glass may be stationary noises

in the images. Therefore, it is difficult to apply these tech-

niques to our problem because adherent noises that must be

eliminated do not move in images.

To solve the static noise problem, we have proposed the

method that can remove view-disturbing noises from images

taken with multiple cameras [13], [15]. Previous study [13]

is based on the comparison of images that are taken with

multiple cameras. However, it cannot be used for close scenes

that have disparities between different viewpoints, because

it is based on the difference between images. Stereo camera

systems are widely used for robot sensors, and they must

of course observe both distant scenes and close scenes.
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Fig. 2. Cross-section of spatio-temporal image (camera motion: rotation).
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Fig. 3. Image acquisition by using camera rotation.

Therefore, we have proposed a method that can remove

waterdrops from stereo image pairs that contain objects both

in a distant scene and in a close range scene [14], [15].

This method utilizes the information of corresponding points

between stereo image pairs, and thereby sometimes cannot

work well when appearance of waterdrops differs from each

other between left and right images.

We have also proposed a noise removal method by using

a single camera [16]–[19]. These methods use a rotating

camera, and eliminate adherent noises in the image sequence.

These methods work well when the accurate camera motion

is known. However, in real world application, it is often the

case that the camera motion is unknown. In that case, it is

necessary to estimate the direction and the velocity of the

camera motion only from image sequences.

Therefore, in this paper, we estimate the camera motion

from the information of spatio-temporal image sequences,

and then detect and remove adherent noises in cross section

images of the spatio-temporal image (Fig. 2).

II. NOISE DETECTION AND REMOVAL METHOD

As to adherent noises on the protecting glasses of the

camera, the positions of noises in images do not change when

the direction of the camera changes (Fig. 3). This is because

adherent noises are attached to the surface of the protecting

glass of the camera and move together with the camera. On

the other hand, the position of static background scenery and

that of moving objects change while the camera rotates.
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Fig. 4. Overview of our method.

We transform the image after the camera rotation to the

image whose gaze direction (direction of the principal axis)

is same with that before the camera rotation. Accordingly,

we can obtain a new image in which only the positions of

adherent noises and moving objects are different from the

image before the camera rotates.

A spatio-temporal image is obtained by merging these

transformed images. In the spatio-temporal image, trajecto-

ries of adherent noises can be calculated. Therefore, positions

of noises can be also detected in the image sequence from

the spatio-temporal image. Finally, we can obtain a noise-

free image sequence by estimating textures on adherent noise

regions.

The procedure of our method is shown in Fig. 4. The

methods of noise removal and detection are based on [19].

III. SPATIO-TEMPORAL IMAGE

A. Image Acquisition

An image sequence is acquired while a camera rotates .

At first (frame 0), one image is acquired where the camera

is fixed. In the next step (frame 1), another image is taken

after the camera rotates �1 rad about the axis which is

perpendicular to the ground and passes along the center of

the lens. In the t-th step (frame t), the camera rotate �t rad

and the t-th image is taken. To repeat this procedure n times,

we can acquire n/30 second movie if we use a 30fps camera.

B. Distortion Correction

The distortion from the lens aberration of images is recti-

fied. Let (x′, y′) be the coordinate value without distortion,

(x̃, ỹ) be the coordinate value with distortion (observed

coordinate value), and �1 be the parameter of the radial

distortion, respectively [20]. The distortion of the image is

corrected by (1) and (2).

x̃ = x′ + �1x
′
(

x′2 + y′2
)

, (1)

ỹ = y′ + �1y
′
(

x′2 + y′2
)

. (2)
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Fig. 5. Projective transformation.

C. Projective Transformation

In the next step, the acquired t-th image (the image after

�t rad camera rotation) is transformed by using the projective

transformation. The coordinate value after the transformation

(x, y) is expressed as follows (Fig. 5):

x = f
f tan �t + x′

f − x′ tan �t
, (3)

y = f

√

1 + tan2 �t
f − x′ tan �t

y′, (4)

where (x′, y′) is the coordinate value of the t-th image before

transformation, and f is the image distance (the distance

between the center of lens and the image plane), respectively.

The t-th image after the camera rotation is transformed to

the image whose gaze direction is same with that before the

camera rotation.

The estimation method of the direction and the angle of

the camera rotation is explained in Chapter V.

D. Cross-Section of Spatio-Temporal Image

Spatio-temporal image I(x, y, t) is obtained by arraying

all the images in chronological order (Fig. 6(a)).

We can clip a cross-section image of I(x, y, t). For exam-

ple, Fig. 6(b) shows the cross-section image of the spatio-

temporal image in Fig. 6(a) along y = y1.

Here, let S(x, t) be the cross-section spatio-temporal im-

age. In this case, S(u, t) = I(x, y1, t).
In the cross-section spatio-temporal image S(x, t), the

trajectories of the static background scenery become vertical

straight lines owing to the effect of the projective transfor-

mation. On the other hand, the trajectories of adherent noises

in S(x, t) become curves whose shapes can be calculated by

(3) and (4)1.

In this way, there is a difference between trajectories of

static objects and those of adherent noises. This difference

helps to detect noises.

IV. NOISE DETECTION

A. Median Image

Median values along time axis t are calculated in the cross-

section spatio-temporal image S(x, t). After that, a median

1In Fig. 6(b), the trajectory of an adherent noise looks like a straight line,
however, it is slightly-curved.

(a) Spatio-temporal image I(x, y, t).

(b) Cross-section image S(x, t). (c) Median image M(x, t).

(d) Difference image D(x, t). (e) Binarized image B(x, t).

(f) Noise region image R(x, y).

Fig. 6. Spatio-temporal image processing.

image M(x, t) can be generated by replacing the original

pixel values by the median values (Fig. 6(c)).

Adherent noises are eliminated in M(x, t), because these

noises in S(x, t) are small in area as compared to the

background scenery.

A clear image sequence can be obtained from M(x, t) by

using the inverse transformation of (3) and (4) if there is no

moving object in the original image. However, if the original

image contains moving objects, the textures of these objects

blur owing to the effect of the median filtering. Therefore, the

regions of adherent noises are detected explicitly, and image

restoration is executed for the noise regions to generate a

clear image sequence around the moving objects.

B. Difference Image

A difference between the cross-section spatio-temporal

monochrome image and the median monochrome image is

calculated for obtaining the difference image S(x, t) by (5).

D(x, t) = ∣S(x, t)−M(x, t)∣ . (5)

Pixel values in regions of D(x, t) where adherent noises

exist become large, while pixel values of D(x, t) in the

background regions are small (Fig. 6(d)).

C. Noise Region Image

The regions where the pixel values of the difference

images are larger than a certain threshold Tb are defined
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as the noise candidate regions. The binarized image B(x, t)
is obtained by

B(x, t) =

{

0, D(x, t) < Tb

1, D(x, t) ≥ Tb
. (6)

The region of B(x, t) = 1 is defined as noise candidate

regions (Fig. 6(e)). Note that an adherent noise does not

exist on the same cross-section image when time t increases,

because y-coordinate value of the adherent noise changes

owing to the influence of the projective transformation in

(4). Therefore, we consider the influence of this change and

generate B(x, t) in the way that the same adherent noise is

on the same cross-section image.

In the next step, regions of adherent noises are detected

by using B(x, t). The trajectories of adherent noises are

expressed by (3). Therefore, the trajectory of each curve is

tracked and the number of pixel where B(x, t) is equal to

1 is counted. If the total counted number is more than the

threshold value Tn, this curve is regarded as the noise region.

As mentioned above, this tracking procedure is executed in

3-D (x, y, t) space. This process can detect adherent noise

regions precisely, even when there are moving objects in

the original image sequence thanks to the probability voting

(counting).

After detecting noise regions in all cross-section spatio-

temporal image S(x, t), the noise region image R(x, y) is

generated by the inverse projective transformation from all

B(x, t) information (Fig. 6(e)).

Ideally, the noise regions consist of adherent noises.

However, the regions where adherent noises don’t exist are

extracted in this process because of other image noises.

Therefore, the morphological operations (opening, i.e. ero-

sion and dilation) are executed for eliminating small noises.

V. ESTIMATION OF CAMERA MOTION

The direction and the angle of the camera rotation are

estimated only from image sequences. At first, they are

estimated by an optical flow. However, the optical flow

may contain error. Therefore, the rotation angle is estimated

between two adjacent frames by an exploratory way. Finally,

the rotation angle is estimated between each frame and base

frame.

A. Motion Estimation by Optical Flow

An optical flow between two images can be obtained by

using the following equation [21].

Ixu+ Iyv + It = 0 (7)

where I(x, y, t) is an image sequence, optical flow (u, v) =
(dx/dt, dy/dt) is a velocity vector in the image, (Ix, Iy) =
(∂I/∂x, ∂I/∂y) is a spatial gradient of pixel value, and It =
∂I/∂t is a temporal derivation of pixel value, respectively.

This equation contains two unknown parameters (u, v),
and cannot be solved uniquely. We can solve the equation

under the assumption that the optical flow in a certain local

region is constant.

Ga = −b, (8)

(a) Time t. (b) Time t+ 1.

(c) Optical flow by [21].

(d) Optical flow after step 1. (e) Optical flow after step 2.

Fig. 7. Optical flow.

where

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I1x I1y
...

...

Iix Iiy
...

...

IN2x IN2y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,a =

[

u
v

]

,b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I1t
...

Iit
...

IN2t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

The optical flow can be calculated by using the least square

method.

â = −(GT
G)−1

G
T
b. (10)

However, the obtained optical flow sometimes contains

errors. In this paper, we reduce errors by considering the

following two constraints.

Step 1:We can remove large optical flow that exceeds the

maximum velocity of the camera (umax, vmax).
In addition, small optical flow that is less than

(umin, vmin) can be removed.

Step 2:The rotation direction of the camera in each frame

is whether clockwise or counterclockwise. The

rotation direction can be estimated by calculating

the average optical flow of whole image plane

after Step 1. Therefore, counterrotating optical flow

against the average flow can be removed.

Fig. 7 shows the calculation result of the optical flow.

Removal results in Step 1 are indicated as blue lines, and

those in step 2 are indicated as red lines, respectively.

After Step 1 and 2, the average optical flow (uave, vave)
in the whole image plane is calculated. The rotation angle
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can be estimated by (3) (Initial estimation angle �start).

�start = tan−1
uave

f
, (11)

However, �start may still contain errors. Then, we intro-

duce the following estimation method.

B. Motion Estimation between Two Adjacent Frames

Estimation of the rotation angle between two adjacent

frame can be achieved by considering the difference between

I(x, y, t) and I(x, y, t+ 1) after the projective transforma-

tion.

At first, average brightness of I(x, y, t) and I(x, y, t+ 1)
are normalized. Then, Euclidean distance between I(x, y, t)
and I(x, y, t+ 1) in the RGB color space (Drgb(x, y))
is calculated. If the estimated rotation angle is accurate,

the difference between I(x, y, t) and I(x, y, t+ 1) becomes

small. Therefore, the sum of Drgb(x, y) in all common field

of view becomes small in the case of accurate rotation angle.

Dave =
1

M

∑

x

∑

y

Drgb(x, y), (12)

where M is a number of pixel in common field of view

between two frames.

Then, we can search �opt1 in greedy search algorithm by

solving the following equation.

�opt1 = arg
�

minDave. (13)

C. Motion Estimation between Each Frame and Base Frame

After the estimation method mentioned in Section V-B,

we can obtain the almost exact angle. However, accumulated

error increases when I(x, y, t) is transformed according to

the base frame image I(x, y, tbase). Finally, the optimal

rotation angle �opt2(= �t) is calculated. In this case, initial

estimation angle is calculated as follows.

�′start =

t
∑

tbase

�opt1. (14)

Then, we search the optimal rotation angle �opt2 from

�′start in a similar way of Section V-B.

VI. NOISE REMOVAL

Adherent noises are eliminated from the cross-section

spatio-temporal image S(x, t) by using the image restoration

technique [7] for the noise regions detected in Section IV.

At first, an original image S(x, t) is decomposed into a

structure image f(x, t) and a texture image g(x, t) [22].

After the decomposition, the image inpainting algorithm

[4] is applied for the noise regions of the structure image

f(x, t), and the texture synthesis algorithm [23] is applied for

the noise regions of the texture image g(x, t), respectively.

This method [7] overcomes the weak point that the original

image inpainting technique [4] has the poor reproducibility

for a complicated texture. After that, noise-free image can

be obtained by merging two images.

Finally, a clear image sequence without adherent noises is

created with the inverse projective transformation.

(a) I(x′, y′, t). (b) I(x, y, t).

Fig. 8. Spatio-temporal image (waterdrop).

Fig. 9. Estimation result of camera rotation (waterdrop).

VII. EXPERIMENT

Image sequence was acquired in the outdoor environment.

We used a pan-tilt-zoom camera (Sony EVI-D100) whose

image distance f was calibrated as 261pixel.

Fig. 8(a) shows an example of the original spatio-temporal

image, and Fig. 8(b) shows the result of the projective

transformation, respectively.

Fig. 9 shows the estimation result of camera rotation

angle. In Fig. 9, green line indicates the estimation result

from optical flow (Section V-A), blue one indicates that of

Section V-B, and red one indicates the final result (Section

V-C), respectively. The final estimation result coincides with

the ground truth very well (maximum error: within 0.1deg),

although the result of optical flow has error (maximum error:

0.4deg).

Figs. 10 and 11 show the intermediate results of the noise

removal. Figs. 10(a) and (b) show the cross-section spatio-

temporal image S(x, t) in color and monochromic formats,

respectively. There is a moving object (a human with a red

umbrella) in this image sequence. Figs. 11(a), (b), (c) show

the median image M(x, t), the difference image D(x, t), and

the binarized image B(x, t), respectively. Fig. 11 (d) shows

the noise region image R(x, y), and Fig. 11 (e) shows the

noise removal result from the cross-section spatio-temporal

image, respectively.

Fig. 12 shows the final results of noise removal for

the image sequence. All waterdrops are eliminated and the

moving object can be seen very clearly in all frames.

Figs. 13 and 14 show results of mud blob removal.

From these results, it is verified that our method can

remove adherent noises on the protecting glass of the camera

regardless of their positions, colors, sizes, existence of mov-
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(a) Color.

(b) Grayscale.

Fig. 10. Cross-section spatio-temporal image S(x, t) (waterdrop).

ing objects, and the direction and the speed of the camera

rotation.

Fig. 15 shows comparison results of the rotation angle

estimation. Fig. 15(a) shows the result of Section V-A, Fig.

15(b) shows the result of Section V-B, Fig. 15(c) shows the

result of Section V-C, respectively. In Figs. 15(a) and (b),

trajectories of objects are not parallel to the time axis, while

the results of our method (Figs. 15(c)) are almost parallel to

time axis.

To verify the accuracy of the noise detection, the results of

our methods (Figs. 17(c) and 17(c)) are compared with the

ground truth that is generated by a human operator manually

(Figs. 17(b) and 17(b)). In Figs. 16(d) and 17(b), red regions

indicate the correct detection, blue regions mean undetected

noises, and green regions are false (exceeded) detection

regions. Actually, undetected noises are hard to detect when

we see the final result (Fig. 12(b)). This is because the image

interpolation works well in the noise removal step.

Figs. 18 and 19 show comparison results of texture inter-

polation with an existing method. In these figures, (a) shows

the ground truth, (b) shows the position of noise region, (c)

shows the noise removal result, and (d) shows the difference

between (a) and (c). Fig. 18(c) shows the result by the image

inpainting technique [7], and Fig. 19(c) shows the result by

our method. The result by the existing method is not good

(Fig. 18(d)), because texture of the noise region is estimated

only from adjacent region. In principle, it is difficult to

estimate texture in several cases from only a single image.

On the other hand, our method can estimate texture robustly

by using a spatio-temporal image processing (Fig. 19(d)).

From these results, the validity of our method is verified.

VIII. CONCLUSION

In this paper, we propose a noise removal method from

image sequence acquired with a rotating camera whose

motion is unknown. The camera motion is estimated by

using an optical flow and an additional optimization method.

We makes a spatio-temporal image to extract the regions

of adherent noises by examining differences of track slopes

in cross section images between adherent noises and other

(a) Median image M(x, t).

(b) Difference image D(x, t).

(c) Binarized image B(x, t).

(d) Noise region image R(x, t).

(e) Cross-section spatio-temporal image after noise removal.

Fig. 11. Result of noise detection (waterdrop).

objects. Regions of adherent noises are interpolated from the

spatio-temporal image data.

Experimental results show the effectiveness of our method

even when the camera motion is unknown.

As future works, a camera translation should be considered

in addition to a camera rotation.
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(a) Original. (b) Ground truth. (c) Our method.

(d) Comparison.

Fig. 16. Accuracy of noise removal (waterdrop).

(a) Original. (b) Ground truth. (c) Our method.

(d) Comparison.

Fig. 17. Accuracy of noise removal (mud blob).

Fig. 18. Accuracy of noise removal (one frame [7]).

Fig. 19. Accuracy of noise removal (our method).
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