
Learning Efficient Policies for Vision-based Navigation

Armin Hornung Hauke Strasdat Maren Bennewitz Wolfram Burgard

Abstract— Cameras are popular sensors for robot navigation
tasks such as localization as they are inexpensive, lightweight,
and provide rich data. However, fast movements of a mobile
robot typically reduce the performance of vision-based local-
ization systems due to motion blur. In this paper, we present a
reinforcement learning approach to choose appropriate velocity
profiles for vision-based navigation. The learned policy mini-
mizes the time to reach the destination and implicitly takes
the impact of motion blur on observations into account. To
reduce the size of the resulting policies, which is desirable in
the context of memory-constrained systems, we compress the
learned policy via a clustering approach. Extensive simulated
and real-world experiments demonstrate that our learned
policy significantly outperforms any policy that uses a constant
velocity. We furthermore show, that our policy is applicable
to different environments. Additional experiments demonstrate
that our compressed policies do not result in a performance
loss compared to the originally learned policy.

I. INTRODUCTION

Autonomous navigation is one of the most essential tasks
for a mobile robot. Hereby, the robot needs to find its way
to the destination or to a certain waypoint on its path. For
this, it is crucial that the robot knows its position. Cameras
are frequently used sensors for localization, especially in the
case of small robots such as humanoids or unmanned aerial
vehicles (UAVs) because they are compact and lightweight.
However, the movements of the vehicle typically introduce
motion blur in the acquired images, with the amount of
degradation depending on camera quality, on the lighting
conditions, and on the movement velocity. Typical images
of the floor recorded with a downward-looking camera on a
wheeled mobile robot moving at different speeds are depicted
in Fig. 1. As can be seen, with an increasing velocity the
features on the ground become more and more difficult to
recognize. While there are methods to reduce the influence
of motion blur [1], the problem in general remains since the
degradation obtained by motion blur cannot be completely
removed by filtering techniques.

In this paper, we present a new approach to vision-based
navigation that implicitly takes motion blur into account.
Our method applies reinforcement learning (RL) to learn
how fast the robot should move to reach its destination
as fast as possible and with appropriate accuracy. We use
an unscented Kalman filter (UKF) to track the pose of the
robot and include the uncertainty of the filter, measured by
the entropy, as one component of the state representation of

This work has partly been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8.

A. Hornung, M. Bennewitz, and W. Burgard are with the Department of
Computer Science, University of Freiburg, Germany. H. Strasdat is with the
Department of Computing, Imperial College London, UK.

Fig. 1. The same floor patch observed at different velocities (0.05 m/s,
0.4 m/s, 1.0 m/s), with motion blur of different magnitude.

the Markov decision process (MDP) modeling the navigation
task, thus leading to an augmented MDP [2]. Additionally,
the state representation contains the distance and relative
angle to the goal location. The action space of the augmented
MDP consists of setting the velocity of the robot. We
apply Sarsa(λ) RL [3] to determine the optimal action for
each state and provide experiments to evaluate the learned
policy in both simulated and real-world experiments. The
experiments demonstrate that the learned policy significantly
outperforms any constant velocity policy and additionally can
be transferred to different environments.

Furthermore, we developed a method of compressing the
policy using a clustering approach, which reduces the size
of the policy representation by one order of magnitude.
By employing X-means clustering [4] on the visited state
space when following the learned policy, the problem can
be regarded as a classification problem with the actions as
the individual classes. The cluster means can then be used
for a nearest-neighbor classification on which action to take.
As the experiments indicate, the compressed policy does not
lead to a loss of performance.

The contribution of our work is a system that allows for
implicitly learning about the effects of motion blur on the
observations during fast movements. In contrast to previous
works that aim at minimizing the uncertainty in the belief
distribution (e.g., [5], [6], [7]), our approach enables the
robot to choose a navigation strategy that minimizes the time
to reach the destination. Thereby, the robot avoids delays
caused by localization errors. Our technique is relevant
whenever time matters in navigation tasks, i.e., when a robot
is desired to execute a task as fast as possible and at the same
time reliably.

The remainder of this paper is structured as follows. We
first discuss related work in the next section, followed by the
preliminaries on state estimation and reinforcement learning
in Sec. III. We present the navigation task in Sec. IV and our
learning approach in Sec. V. Policy compression is discussed
in Sec. VI. Finally, in Sec. VII, we present and discuss the
experimental setup and the results.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4590

II. RELATED WORK

In the past, various frameworks were presented which
employ active methods in the context of localization and
navigation. Kollar and Roy [6] use reinforcement learning
to optimize a robot trajectory for exploration. Similar to our
approach, the authors learn the behavior of the controller to
navigate to a destination. While we consider the problem
of motion blur in vision-based localization, they learn the
translation and rotation behavior which minimizes the uncer-
tainty in laser-based SLAM (simultaneous localization and
mapping). A different method of minimizing the uncertainty
of localization is to plan a path for the robot which takes
the information gain into account. Roy et al. [7] presented
an approach for this called coastal navigation. Recently, He
et al. [5] applied this technique to a quadrotor helicopter
for indoor navigation with a short-range laser range finder.
Bryson and Sukkarieh [8] suggested a framework for UAV
localization and exploration in unknown environments. They
also use an intelligent path planning scheme to maximize the
quality of the resulting SLAM estimate.

Strasdat et al. [9] developed a reinforcement learning
approach for the problem of landmark selection in SLAM.
They learn a policy on which new landmark to integrate
into the environment representation to improve the navigation
capabilities of the robot. The motivation behind their work
is the application on memory-constrained systems. Kwok
and Fox [10] apply reinforcement learning to increase the
performance of soccer-playing robots by active sensing. A
camera is used for the localization of relevant objects on
the soccer field. As in our approach, the authors model the
uncertainty in the belief distribution explicitly as entropy in
the augmented state of the underlying MDP.

Bennewitz et al. [11] developed a localization method
based on visual features and presented experiments with a
humanoid robot. The authors mention the impact of motion
blur on feature extraction, but do not address the problem
specifically. Instead, the robot stops moving at fixed time
intervals to observe the environment. To overcome the prob-
lem of motion blur in the context of humanoid robots, Ido
et al. [12] explicitly consider the shaking movements of the
head and acquire images only during stable phases. Since
humanoid robots suffer a lot from blurred images, it would
be interesting to apply our approach of learning how fast to
move in which situation to these types of robots.

Pretto et al. [1] propose an additional image processing
step prior to feature extraction, in particular for humanoid
robots. While their approach increases the matching per-
formance, motion blur cannot be completely removed by
filtering. However, such a pre-processing technique could
be easily combined with our learning approach in order to
further improve the navigation performance of the robot.

To the best of our knowledge, we present the first approach
which considers the effect of motion blur on observations
and generates a policy to reach the destination reliably and
as fast as possible.

III. PRELIMINARIES

A. Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive Bayes
filter to estimate the state xt of a dynamic system [13]. This
state is represented as a multivariate Gaussian distribution
N(µ,Σ). The estimate is updated using controls ut and
measurements zt. The key idea of the UKF is to apply
a deterministic sampling technique that is known as the
unscented transform to select a small set of so-called sigma
points around the mean. Then, the sigma points are trans-
formed through the nonlinear functions, and the Gaussian
distributions are recovered from them thereafter. The UKF
can better deal with nonlinearities and thus leads to more
robust estimates compared to other techniques such as the
extended Kalman Filter.

B. Reinforcement Learning

In reinforcement learning, an agent seeks to maximize its
reward by interacting with the environment. Formally, this is
defined as a Markov decision process (MDP) using the state
space S, the actions A, and the rewards R. By executing
an action at ∈ A in state st ∈ S, the agent experiences a
state transition st → st+1 and gets a reward rt+1 ∈ R. The
overall goal of the agent is to maximize its return

Rt =
T∑

i=t+1

ri , (1)

where T is the time when the final state is reached. One
finite sequence of states s0, . . . , sT is called an episode.

The action-value function, also called Q-function, for the
policy π is defined as

Qπ(s, a) = Eπ{Rt | st = s, at = a} , (2)

which denotes the expected return of taking action a in
state s, and following policy π afterwards. The optimal
policy maximizes the expected return, which corresponds to
the maximum Q-value for each state-action pair.

Sarsa is a temporal difference (TD) learning algorithm,
combining the advantages of bootstrapping and sampling
methods [14]. Sarsa is model-free, which means that tran-
sition probabilities between states do not need to be defined.
The estimate of the Q-function is continuously updated.
Qπ(s, a) is learned on-policy, meaning the current behavior
policy π is learned and updated. The current estimate is
updated based on its old values, the new reward, and the
new value:

Q(st, at)← Q(st, at)
+α
(
rt+1 + γQ(st+1, at+1)−Q(st, at)

)
(3)

The parameters α and γ are step size and discounting factor,
respectively.

This form of Sarsa uses only the immediate reward rt+1

and belongs to the class of TD(0) learners. By looking
further into the future, a more accurate estimate of Rt can
be obtained. We use an extension of Sarsa that averages over

4591

a number of future rewards and which is called Sarsa(λ) [3].
The parameter λ ∈ [0, 1] determines the decay of the impact
of future rewards.

C. Augmented Markov Decision Process

In an MDP, it is assumed that the agent is able to infer
its state deterministically. If the belief about the state is
presented by a probability distribution, the system is ideally
modeled by a partially observable MDP (POMDP, [15]).
Since POMDPs require to model the probability distribution
explicitly, they are computationally hard to solve and imprac-
tical for many real-world tasks. In cases where the underlying
distribution can be modeled by a unimodal distribution, the
so-called augmented MDP [2] can be used as an efficient
approximation. The belief of the state is represented by its
most-likely estimate and the task is modeled as MDP. As
measure of the uncertainty of the belief distribution, the
entropy is included in the state.

IV. NAVIGATION TASK

We consider the scenario of a robot navigating from its
current pose to a (intermediate) goal location. We assume that
a longer and more complicated trajectory can be planned with
a path planner such as A∗, yielding waypoints the robots has
to reach on the way to its target location. The task is finished
as soon as the distance between the robot’s true pose and the
goal location is below a certain threshold.

We apply a straightforward controller to steer the robot to
the destination, based on the current pose estimate and the
desired target value vtarget for the velocity.

The velocity influences the visual perception of the robot
because the viewed scene is affected by motion blur. The
faster the robot moves, the more its visual perception is
influenced, with a direct impact on feature extraction and
matching. By selecting a low value for vtarget, the negative
impact of motion blur can be avoided, but the robot needs
more time to finish the navigation task.

V. LEARNING NAVIGATION POLICIES

We formulate this problem as a reinforcement learning
task. As learning algorithm, we employ Sarsa(λ). Through-
out the learning phase, we use an ε-greedy action selec-
tion (ε = 0.1). This selection method chooses all non-greedy
actions with equal probability.

We represent the learning task as an augmented MDP,
whereas the probability distribution over the robot pose given
all previous odometry information and visual observations
is estimated by an UKF. For the MDP, we define the state
space S , the set of actions A, and the rewards R as follows.

A. State Space

The complete state of the robot consists of the global
pose estimate xt modeled as Gaussian distribution (µ,Σ),
the current velocity, and a characterization of the environ-
ment. However, this complete state representation would be
impractical to consider for reinforcement learning. Thus,
we define a set of features, which characterizes the com-
plete state sufficiently detailed and general as needed for

learning. Based on the current, most-likely pose estimate
xt = (xt, yt, θt), we define the following features:
• The Euclidean distance to the goal (gx, gy)T

d =
√

(gx − xt)2 + (gy − yt)2 . (4)

• The angle relative to the goal

ϕ = atan2(gy − yt, gx − xt)− θt . (5)

In combination with d, this completely characterizes the
goal location.

• The uncertainty of the localization, computed as entropy
over the pose covariance Σ of the UKF:

h =
1
2

ln
(

(2πe)3 · |det (Σ)|
)
. (6)

This measures how well the robot is localized: A higher
entropy corresponds to a higher pose uncertainty.

We experimentally found these features d, ϕ, and h to be
most relevant and sufficient for completing the task. Other
combinations of them, also including the current velocity and
the landmark density in the state representation, did not lead
to a significant improvement of the robot’s performance.

We represent the state-action space by a radial basis
function (RBF) network, which is a linear function ap-
proximator [16]. The continuous features of the state are
approximated by a discrete, uniform grid. In between the
centroids of the grid, the state is linearly interpolated with a
Gaussian activation function. In contrast to a strictly discrete
representation as feature table, the RBF network suffers
less from the effects of discretization. We experimentally
determined a sufficient, small representation with 120 dis-
cretization steps (d: 10, ϕ: 3, h: 4).

B. Action Set

The behavior of the robot can be influenced by restricting
the overall velocity of the controller to a target veloc-
ity vtarget (in m/s). This is the action the agent learns via
reinforcement learning. We define the possible actions as

A = {0.1, 0.2, 0.3, 0.4, 1.0} . (7)

This discretization was determined according to the effect
of motion blur on the landmark observation probability,
which we observed in experiments. Velocities higher than
0.4 m/s blur the image almost beyond recognition.

C. Reward

We define the immediate reward at time t as

rt =

{
100 if t = T

−∆t otherwise ,
(8)

where T is the final time step and ∆t is the time interval in
between the update steps. The final state is reached when the
robot’s true pose is sufficiently close to the destination. This
has the effect that the agent is driven to reach the destination
as fast as possible.

We do not model an explicit punishment for delocalization
or running into a wall. We assume that the robot has some

4592

short range sensors for obstacle avoidance on board, such
as bumpers, infrared, or sonar. When the robot is in danger
of running into an obstacle, it is immediately stopped by the
obstacle avoidance. The time it takes to stop, re-localize, and
accelerate is the implicit punishment for getting off the track,
which is typically a few seconds.

VI. POLICY COMPRESSION

A policy learned using the framework described above is
represented by a huge table that contains for each given state
tuple (d, ϕ, h) of distance to destination, angle, and entropy,
the optimal target velocity vtarget. Especially in the context of
systems with memory constraints such as embedded systems
it is often desirable to find a more compact representation of
the learned policy.

While the learned table of the policy contains entries for
all values of (d, ϕ, h) within the discretized ranges, not all of
these values are relevant. Some combinations of them were
never experienced in the learning phase because they never
appear in the task. Thus, we do not use the actual learned
table for policy compression, but the visited state space while
the robot is following this policy.

A. Formulation as Classification Problem

The robot follows the learned policy for 100 episodes
in the learning environment. For each state (d, ϕ, h), the
chosen velocity vtarget is regarded as classification of the
state. Thus, we can treat the problem of finding the best
policy as a classification problem, where we have labeled
samples available from the executed episodes. This labeled
data naturally contains only the entries of the state that are
relevant for the task, while more common states appear more
frequently in the data.

B. X-means Clustering

We use X-means clustering [4] to find a number of clusters
which approximate this data. X-means is an extension of
K-means clustering, which finds the best number of clusters
according to the Bayesian Information Criterion. Like in K-
means, the data is clustered based on the Euclidean distance
to the cluster mean.

After the number of clusters and the location of their
means is found, each state (d, ϕ, h) is assigned to the cluster
that is closest by means of the Euclidean distance. To account
for different scales, such as distance in meters and angle in
radians, all values are normalized within their discretization
range. After all state entries are assigned to the closest
cluster, the velocity classification of that cluster is computed
as the average velocity of the samples assigned to the cluster.
The cluster means – each labeled with a velocity value – can
now be used as a compact represention of the learned policy.

VII. EXPERIMENTS

The practical experiments were conducted on a wheeled
Pioneer 2-DX8 robot with a top-mounted ImagingSource
DFK 31AF03 camera (shutter speed set to 1/25 s) to observe
the floor in front of the robot (Fig. 2). Speeded-Up Robust

Fig. 2. Pioneer 2-DX8 robot in the experimental environment (left) and
an observed floor patch with SURF as visual landmarks (right).

Features (SURF, [17]) are extracted from the images as visual
landmarks. These observations are integrated with odometry
in an UKF for localization. Additionally, a SICK laser range
finder on-board the robot is used for obstacle avoidance
and Monte Carlo localization, providing a ground truth for
evaluation. The experimental environment is a hallway with
wood parquet floor and a distance of approx. 8 meters
between the starting pose of the robot and the destination.
A map of this environment with global landmark positions
was built prior to the experiments. To make the experiments
more challenging, we introduced a systematic error on the
odometry by slightly deflating one tire of the robot.

The policy is learned in simulations. This allows us
to evaluate different parameter settings for the learning
algorithms and to run a large number of learning and
testing episodes. Additionally, we have an accurate true
pose available as reference. The simulated robot and its
environment is modeled as close to reality as possible.
Instead of modeling SURF detection and matching explicitly,
we use a map of artificial landmarks. The landmark positions
are randomly distributed with an average density matching
the real map (40 landmarks/m2). Because we want to avoid
an adaption of the robot’s behavior to a specific environment,
landmark positions are randomized in each new learning
and evaluation episode. In order to obtain a policy which
takes motion blur into account, we model motion blur as an
effect on the probability of an observation z given the current
velocity v. This dependency p(z | v) was estimated on the
real robot in our experimental setting with

lim
v→0

p(z | v) = 1 and lim
v→1

p(z | v) = 0 . (9)

For the learning parameters, we used α = 0.2, γ = 0.95,
and λ = 0.85. We found 500 learning episodes to be
sufficient for convergence of the policy. We then evaluated it
by using a greedy action selection in 100 evaluation episodes,
measuring the average time from start to destination and a
95% confidence interval. All statements concerning signifi-
cance are with respect to a t-test with 95% confidence.

A. Comparison to Constant Velocity

We now compare our learned policy with the standard
approach of setting a constant target velocity vtarget. Under
no influence of motion blur, the best choice minimizing the
time to destination would be the highest possible velocity. In
our scenario, however, there is not an immediate benefit of

4593

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

time [s]

d [m]
action vtarget [m/s]

v [m/s]
entropy

Fig. 3. A typical example of the trajectory (left) and state space over
time (right) of a learned policy. For clarity, the angle is not plotted though it
is included in the state. The robot maximizes its velocity until its uncertainty
gets too high. To re-localize, it slows down. As soon as the entropy decreases
as an effect of localization, it accelerates again.

a high velocity because the robot quickly gets lost, leading
to a higher time to destination.

1) Qualitative Analysis: Exemplary, a typical trajectory
and the corresponding state space over time of the learned
policy is displayed in Fig. 3. The robot optimizes its time
to destination by driving at maximum speed as long as
it is confidently localized. When there is risk of getting
lost, indicated by a high entropy, it slows down to observe
landmarks. The trajectory is close to the optimal path of the
straight-line connection between start and destination.

2) Quantitative Analysis: Figure 4 displays an extensive
evaluation of following a constant velocity from vtarget =
0.2 m/s to 1 m/s, compared to a learned policy. Up to 0.4 m/s,
an increased velocity directly improves the time to desti-
nation. For higher velocities, the robot is no longer able
to perform observations and regularly gets lost on its path.
Despite this, there is still a small improvement in the average
time to destination. The robot would then accept the risk of
nearly colliding and getting lost, in favor of a faster speed.

But even when choosing the best policy of constant ve-
locity, our learned approach is significantly better. While the
average time to destination at 1 m/s is 13.56 s±0.61 s (95%
confidence interval), the robot is able to finish the task with
our learned policy in 10.04 s± 0.18 s, which corresponds to
a reduction of 26%.

B. Generalization over Landmark Density

We will now examine how the density of landmarks
affects the learned policies, and how one can generalize
over different environments. To do so, we evaluate poli-
cies learned in an environment with an average landmark
density of 40 landmarks/m2 in significantly sparser (10
landmarks/m2) and denser (70 landmarks/m2) environments.
The performance is compared to learning in an environment
matching the respective test environment, which we expect
to yield the best results.

In order to obtain general results, we compare 50 indepen-
dently learned policies here, each learned in 500 learning
episodes and evaluated over 100 test episodes. The result-
ing times are displayed in Tab. I. There is no significant

learning landmark density in test environment
environment 10 40 70

const. avg. density 11.19± 0.44
10.42± 0.24

10.32± 0.25
density of test env. 10.78± 0.16 10.56± 0.18

TABLE I
INFLUENCE OF LEARNING ENVIRONMENT ON PERFORMANCE IN

VARIOUS TEST ENVIRONMENTS.

difference between using a constant density during learning
and the optimal case. This shows that our learned policy
generalizes over different environments, without the need of
explicitly accounting for this in the learning scenario.

C. Verification on a Real System

We now transfer the results from simulations into the real
world. Therefore, we apply the policy learned in simulation
on a real robot. Each policy is evaluated in 10 test runs of
navigating from start to destination. The resulting times are
shown in Fig. 5.

Similar to the results from simulations, our learned ap-
proach outperforms any policy of constant velocity by more
than 35% and is significantly better. When looking at the
trajectories generated by the policies qualitatively, the results
are also similar to the simulated ones (Fig. 6). At a slow
constant velocity, the robot stays close to the optimal path
of the straight-line connection between start and destination.
When driving faster at 0.8 m/s however, it is not able to
observe landmarks and quickly gets lost with the result of
a near-collision with the wall. Contrary to that, the robot is
not stopped by the obstacle avoidance when following the
learned policy. When it is in risk of getting lost, the robot
immediately slows down to re-localize. As a result, it reaches
the destination reliably and fast.

To summarize, the policy learned in simulations could be
successfully applied on a real robot and performs signifi-
cantly better than the naive approach.

D. Policy Compression

The policy we learned so far consisted of a table with
120 entries. The resulting clustering found via X-means is
shown in Figure 7 as projection into the two dimensions
of the state features distance and entropy. In total, four
clusters are found (0.26 m/s, 0.39 m/s, 2×1 m/s). These four
cluster means lead to a representation which is an order of
magnitude compacter than the initial table.

To decide on which velocity to set, the robot now
uses the previously determined cluster means instead of
the table-based action selection. According to the current
state (d, ϕ, h), the velocity assigned to the closest cluster
mean is selected. Using the original table, the robot needs
10.04 s ± 0.18 s to finish the task. Using the approximated
representation, it is able to finish the task within 10.29 s ±
1.42 s with no significant difference between using the two
representations. This shows that we were successfully able
to compress the learned policy to a significantly smaller
representation with no loss of performance in the task.

4594

 0

 5

 10

 15

 20

 25

 30

 35

 40

learned
policy

 0.2 0.4 0.6 0.8 1

ti
m

e
to

 d
es

ti
n

at
io

n
 [

s]

vtarget [m/s]

constant velocity
learned policy

Fig. 4. Comparison of a learned policy to fol-
lowing a constant velocity policy in simulation.
The learned policy is significantly better than all
policies with a constant velocity.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.1 0.2 0.3 0.4 0.5 0.6 0.8 learned
policy

ti
m

e
to

 d
es

ti
n

at
io

n
 [

s]

vtarget [m/s]

constant velocity
learned policy

Fig. 5. Comparison of constant velocity policies
to a learned policy on the real robot, each
averaged over 10 runs. The learned policy is sig-
nificantly better than all policies with a constant
velocity.

Fig. 6. Comparison of trajectories in reality at
constant velocity (top: 0.2 m/s, middle: 0.8 m/s)
and variable velocity, i.e., following the learned
policy (bottom).

Fig. 7. X-means clustering of the learned policy. Observed values of
distance, entropy, and angle are used for clustering, while only the projection
on distance and entropy is shown. Four clusters with three different velocity
classifications are found, highlighted in the single plots.

VIII. CONCLUSION

We presented a new approach to learning an efficient
navigation policy using visual features for localization. By
considering this as a reinforcement learning task, the robot
learns a policy for choosing the optimal velocity such that
it reaches its target location as fast as possible and with
minimum error. During learning, the inherent impact of
motion blur on the feature detections coming from the
movements of the robot is implicitly taken into account. In
simulated and real-world experiments, we demonstrate that
our learned navigation policy significantly outperforms any
strategy that applies a constant velocity in terms of time to
reach the destination. Furthermore, we were able to show
the general applicability of the learned policy to different
environments in terms of feature density, which simplifies
learning.

Additionally, we introduced a technique for compressing
the learned policy by employing X-means clustering on the
visited state space when following the learned policy. In our
experiments, the compressed policy yields a similar perfor-
mance as the original one. This is especially valuable for
memory-constrained systems such as lightweight UAVs and
humanoid robots, to which we plan to apply our approach
in the future.

REFERENCES

[1] A. Pretto, E. Menegatti, M. Bennewitz, W. Burgard, and E. Pagello,
“A visual odometry framework robust to motion blur,” in Proc. of the
IEEE International Conference on Robotics & Automation (ICRA),
2009, to appear.

[2] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” in
Advances in Neural Processing Systems 12 (NIPS), vol. 12, 1999.

[3] M. Wiering and J. Schmidhuber, “Fast online Q(λ),” Machine Learn-
ing, vol. 33, no. 1, pp. 105–115, October 1998.

[4] D. Pelleg and A. Moore, “X-means: Extending K-means with efficient
estimation of the number of clusters,” in Proceedings of the 17th
International Conference on Machine Learning, 2000.

[5] R. He, S. Prentice, and N. Roy, “Planning in information space for a
quadrotor helicopter in a GPS-denied environments,” in Proc. of the
IEEE International Conference on Robotics and Automation (ICRA),
2008.

[6] T. Kollar and N. Roy, “Using reinforcement learning to improve
exploration trajectories for error minimization,” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2006.

[7] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation–mobile
robot navigation with uncertainty in dynamic environments,” in IEEE
International Conference on Robotics and Automation (ICRA), vol. 1,
1999.

[8] M. Bryson and S. Sukkarieh, “Active airborne localisation and ex-
ploration in unknown environments using inertial SLAM,” IEEE
Aerospace Conference, 2006.

[9] H. Strasdat, C. Stachniss, and W. Burgard, “Which landmark is useful?
Learning selection policies for navigation in unknown environments,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2009, to appear.

[10] C. Kwok and D. Fox, “Reinforcement learning for sensing strategies,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2004), vol. 4, 28 Sept.–2 Oct. 2004, pp. 3158–3163.

[11] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke, “Metric lo-
calization with scale-invariant visual features using a single perspective
camera,” in European Robotics Symposium 2006, ser. STAR Springer
tracts in advanced robotics, H. Christiensen, Ed., vol. 22, 2006.

[12] J. Ido, Y. Shimizu, Y. Matsumoto, and T. Ogasawara, “Indoor Naviga-
tion for a Humanoid Robot Using a View Sequence,” The International
Journal of Robotics Research, vol. 28, no. 2, pp. 315–325, 2009.

[13] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to
nonlinear systems,” in International Symposium on Aerospace/Defense
Sensing, Simulation and Controls, 1997, pp. 182–193.

[14] G. A. Rummery and M. Niranjan, “On-line Q-learning using connec-
tionist systems,” Cambridge University, Cambridge, UK, Tech. Rep.
CUED/F-INFENG/TR 166, September 1994.

[15] E. J. Sondik, “The optimal control of partially observable Markov
decision processes,” Ph.D. dissertation, Stanford University, Stanford,
USA, 1971.

[16] K. Doya, “Reinforcement learning in continuous time and space,”
Neural Computation, vol. 12, no. 1, pp. 219–245, 2000.

[17] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded-up robust
features,” Proceedings of the ninth European Conference on Computer
Vision, vol. 110, no. 3, pp. 346–359, 2006.

4595

