
Online Classification of Gases for Environmental Exploration

Marco Trincavelli, Silvia Coradeschi and Amy Loutfi

Abstract— In this paper we investigate how a mobile robot
equipped with tin dioxide gas sensors and an anemometer can
use an online classification algorithm in order to improve the
exploration strategy. The purpose of the platform is to establish
the character of a gas source with accuracy while minimizing
the time required for exploration. For this to be possible, the
output of the classification algorithm is probabilistic, feeding
in a sequence of posterior probabilities to a path planner. To
further assist path planning, a 3d-ultrasonic anemometer is
available which give indication on the average wind speed and
direction. In addition to evaluating different olfaction driven
path planning strategies, experimental validations also evaluate
the classification algorithms and its application to different
environments with varying characteristics.

I. INTRODUCTION

Environmental monitoring and inspection of dangerous

areas are important applications for mobile robots. Equipped

with the appropriate sensor technology, mobile robots can

be dispatched to evaluate and inspect air and soil quality.

Particularly, in cases where hazardous contaminants are in-

volved mobile robots can play an important role in assessing

the presence of dangerous substances, identifying their char-

acter and if possible quantifying their concentration. Within

the field of mobile robot olfaction, gas sensor technology

(often tin dioxide based) has shown potential to be used for

environmental inspection or exploration of areas where toxic

contaminants might be present [1]. An important aspect to be

considered for such a platform is the ability to detect specific

odours when more than one substance might be present. The

classification should also cope with the properties of the area

of inspection which may include a turbulent airflow and a

patch-like distribution of the gas. Moreover the system is

most likely deployed in a different location from the one

it has been trained and therefore it needs to be robust to

variations in the environmental conditions.

To date, many algorithms for gas classification using metal

oxide sensors have been developed under the assumption of

a controlled sampling process and with offline data process-

ing [2], [3]. In these cases, a standard three phase sampling

process is used where first a baseline phase measures the

sensors’ reaction to a reference gas, a sampling phase brings

in an unknown gas and exposes the sensors until a steady

state is achieved, and a recovery phase flushes the unknown

gas from the array. Although the three phase technique is

adequate for a static sensory array, the applicability is limited

for cases where the sensor is mounted on a mobile platform

and the surrounding air flow is turbulent. Recent work has

demonstrated the feasibility of classifying offline different
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substances using the data collected from gas sensors as the

robot is continuously moving in a predefined path [4]. A nec-

essary step to achieve a platform for realistic environmental

inspection, that includes both exploration and classification,

is to consider an online classification algorithm and to couple

the output of such an algorithm to the movement of the robot

in order to optimize the exploration strategy. Moreover it is

also necessary to evaluate the robustness to the system with

respect to variations of the environment in which the system

is deployed.

A. Related Work

Related work in mobile robot olfaction has primarily

considered only the amplitude of the gas sensor response in

order to control the robot movement, often for odor source

localization [5]. In the context of classification however, the

sensor array contains gas sensors of partially overlapping

selectivities. Consequently, it is the pattern of response

which characterizes the gas source and not necessarily the

amplitude of each individual sensor. Also, the difficulty for

an odour detection robot to navigate and classify substances

is enhanced by a number of challenges with respect to the

sensing technology and the configuration of the environment.

Firstly, both the gas sensor and the anemometer share the

common feature of taking point measurements. Therefore,

unlike range sensors, only interaction at the surface of the

sensor can be measured and in the case of tin dioxide

sensors, surface area is approximately 1 cm2 [6]. Thus the

mobile robot serves an important role to bring the sensor

system to the region or area of interest in order to obtain

measurement. Secondly, there is a delay in the response of

the gas sensor and consequently the measurement value does

not necessarily correspond to the concentration occurring at

a physical location. Thirdly, in non-controlled environments,

gas diffusion is generally dominated by turbulence. Already,

in indoor environments, the resulting distribution of gas is

chaotic and characterized with intermittent patches [7]. This

distribution is further complicated in outdoor environments

exposed to wind gusts and deflections from nearby buildings.

B. Approach

The key to successful exploration given the above chal-

lenges is to be able to balance efficient movement of the

robot and the collection of significant data. This is a multi-

step process requiring methods for 1) online detection of

the presence of a gas, which may indicate the presence of

a plume 2) identification of gas character which includes an

indication of the quality of the classification 3) moving of
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the robot to the next best location for sampling 4) stopping

the exploration once classification is satisfactory.

In this paper we investigate the ingredients required for

each of these steps. The main contribution is an extension

of the classification algorithm to work in an online setting.

This allows the path planning algorithm to take decision

based on the output of the classification module in order to

try to increase the classification performance and to shorten

the exploration time in case a reliable classification has

been obtained in an early phase of the exploration. Another

contribution is a preliminary evaluation of the robustness

of the system to varying environmental conditions. This

evaluation has been performed by collecting training samples

indoor and then deploying the robot outdoor.

We begin this paper with a description of the robot and

sensor system in Section II. In Section II-A the classification

algorithm is described. In Section II-B, the path planning

strategies are explained. Finally, in Section III and IV the

experimental results are presented and the system is validated

in both outdoor and indoor environments.

II. THE EXPLORATION SYSTEM

The robot that is used in the experiments is an iRobot

ATRV-JR that is particularly suited for rough terrains, see

Figure 1. The software used to interface with the sensors

and the actuators is the Player Robot Device Interface [8].

Player provides an easy way to communicate with the

underlaying hardware, and provides high level algorithms

to address robotic tasks such as localization and navigation.

In particular, in our experiments the amcl driver is used

for localization and the wavefront and vfh drivers are used

respectively for path planning and obstacle avoidance. The

robot is equipped with a SICK LMS200 laser range scanner

that is used by the amcl and vfh drivers.

The software architecture we use in our exploration system

is shown in Figure 2. In addition to the laser scanner, two

other sensor modalities are included: an electronic nose and

an anemometer. The electronic nose is an array of five gas

sensors. Table I shows the models of the sensors and their

target gases. The e-nose is mounted on the robot at a height

of 0.01 m. It is close to the ground because the analytes

we consider, namely ethanol, acetone and isopropyl, are

heavier than air and therefore propagate at ground level.

The anemometer is a Young 81000 Ultrasonic Anemometer

that gives as output a 3D vector that expresses direction and

intensity of the airflow. This anemometer has a range from

0.02 m/s up to 40 m/s with a resolution of 0.01 m/s. The

classification and path planning algorithms that are at the

core of this work are described in the next two subsections.

A. Classification Algorithm

The classification algorithm is articulated into five phases,

namely baseline subtraction, signal segmentation, feature ex-

traction, data normalization and classification. The baseline

is the value that a gas sensor gives as output when it is

exposed to clean air. This value depends on temperature,

humidity and short term drift. The baseline is subtracted from

Fig. 1. The mobile robot used to build the exploration system.

Model Gases Detected Quantity

Figaro TGS 2600 Hydrogen, Carbon Monoxide 2

Figaro TGS 2602 Ammonia, Hydrogen Sulfide, VOC
(volatile organic compound)

1

Figaro TGS 2611 Methane 1

Figaro TGS 2620 Organic Solvents 1

TABLE I

GAS SENSORS USED IN THE ELECTRONIC NOSE.

the output value of the sensors in order to limit the effect

of these factors. After performing this first transformation

the signal is smoothed using an average filter in order

to suppress the noise due to sampling and quantization.

The smoothed signal is then segmented into three different

phases, namely baseline, rise and decay according to the

value of the first derivative. The segmentation procedure can

be easily explained using a finite state machine as shown

in Figure 3. In this figure the first derivative is denoted as

ds/dt and the threshold for the rise and decay are THR R

and THR D respectively. Two different thresholds are needed

since the rise and decay phase are best described using a

first-order model and the time constant for the rising phase

is smaller [9]. A response to a patch is considered to be a rise

in the sensors’ signal followed by a decay. An example of

the sensors’ output collected during a part of an experiment

is shown in Figure 4 and illustrates the different phases of

the signal response.

The isolated response is then passed to the feature extrac-

tion module that calculates the Discrete Wavelet Transform

(DWT) of the signal. The DWT is a multilevel decomposition

technique that gives a description of the signal in the time-

scale domain and is suited for the analysis of highly dynamic

signals since it is able to capture abrupt changes in the

signal. Then the feature vector is normalized in order to

reduce the sample to sample variation using the Dimension

Auto-Scaling (DAS) approach. This normalization method

transforms every feature in order to give it zero mean and

unitary standard deviation over the all training set. Finally,

the normalized sample is classified using a Relevance Vector

Machine (RVM) [10]. The advantage of using the RVM

rather than the more popular Support Vector Machine (SVM)

is the possibility to obtain an estimation of the posterior

probability of a sample belonging to a certain class. This

feature gives us the possibility of introducing a rejection class
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Fig. 2. Software architecture of the exploration system.

Fig. 3. Finite State Machine that illustrates the segmentation algorithm.

for all the samples for which a definitive membership can not

be determined. The output label from the classifier can be

expressed as:

Lx =







argmax
k

P (Ck|x) if P (Ck|x) ≥ Γ

rejected if P (Ck|x) < Γ
(1)

where Lx is the output label of the classifier for input vector

x and P (Ck|x) is the posterior probability of class k for

input vector x. Γ is the rejection threshold. A more detailed

description of the classification algorithm can be found in [4].

To use the classification algorithm online we output both

the signal phase obtained from the segmentation and the

estimation of the posterior probabilities. It is important to

notice that the only part of the algorithm that executes for

every sample is the segmentation that is computationally

inexpensive. All the other parts are executed only when a

complete response to a patch is detected and therefore the

execution time of the complete classification algorithm is not

a crucial issue.

B. Path Planning Algorithm

Three different path planning strategies have been consid-

ered in this work. The simplest one consists in following

a predefined spiral trajectory and going back to the initial

position when the whole trajectory has been performed. In

this strategy all the goal points are generated at the beginning

of the experiment and the path is therefore independent from

the sensor readings collected during the exploration. The

spiral has been chosen as the basic movement since it can

be seen as a systematic strategy that starts by exploring the

boundaries of the area of interest and continues inwards,

gradually covering all the region to be inspected. The second

strategy, that is displayed in the block diagram in Figure 5,

Fig. 4. Example signal collected during a part of an experimental run.

takes into account the output of the classification algorithm

in order to determine the next action. In particular the robot

is able to stop when a rising signal is detected, wait for a

decay in the sensor response and perform classification. Once

the classification is done, if the posterior probability of the

selected class is greater than a preselected threshold, that in

our case is set to THR = 0.95, the robot goes back to the

initial position. If the threshold is not surpassed the robot

continues to follow the spiral trajectory.

The last path planning strategy considers also the airflow

measured by the anemometer in addition to the output of

the classification module. As illustrated in Figure 6, when

the first classification has been performed and the posterior

probability threshold is not met a casting behaviour similar

to the one described in [11] is performed. Casting is a

biologically inspired behaviour which consists of either a zig-

zag or spiralling motion each time increasing the explored

area. To perform casting, the robot needs to stop in order to

collect wind measurements so that the movement of the robot

does not interfere with the anemometer readings. The robot

stops for 10 s to measure the wind direction. An estimation

of the variance of the direction of the airflow is made, and in

cases of high wind variance the spiral trajectory is resumed

since the assumption is made that a directional plume is

not present. If, on the other hand, the variance of the wind

direction is low, the robot plans a path perpendicular to the

average wind direction in an attempt to reenter the plume.

To estimate the variance of the wind direction we use a

measure where the sum of the modula of each wind vector

is compared to the modulus of the resulting sum vector in

the following:

ω =
‖V1 + . . . + VN‖

‖V1‖ + . . . + ‖VN‖
(2)

where V1 . . . VN are the wind readings from the anemome-

ter. ω varies from 0 (when the wind vectors cancel each

other) to 1 (when the wind vectors are all parallel). The

threshold on ω for deciding whether to perform casting, is

at THR W = 0.5.
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Fig. 5. Path planning strategy in which the robot stops when the
classification algorithm detects a rising signal and navigates to a docking
station when a classification with a high confidence is obtained. Initially the
robot follows a spiral path.

Fig. 6. Path planning strategy in which the robot performs casting moves
in order to try to reenter a plume and perform another classification attempt.
Initially the robot follows a spiral path.

III. EXPERIMENTAL ANALYSIS

The experiments presented in this work evaluate the

benefits that the exploration system obtains from an online

classification algorithm. First, we assess if stopping when a

signal is detected brings some benefit to the classification

performance. Then we evaluate the robustness of the system

with respect to environmental condition in which the training

samples are collected and the system is deployed. Lastly,

we analyze if the casting behaviour, a technique often used

for odour based navigation, can be used to optimize the

exploration time when classification is the primary task.

In order to address these issues two different experiment

locations have been set up, one indoor and one outdoor. In

both the locations the path of the robot was covering an

area of roughly 16 m2. The indoor location was a room

with a single opening, the door, and a ventilation system.

The ventilation was regulated by a central system, activated

at unpredictable intervals, and could not be changed. The

outdoor environment was a courtyard between two buildings

with uneven grass surface, see Figure 7. There has been no

effort in trying to control environmental variables such as

airflow or temperature in either of the two environments. The

odour source is a cup that has been placed in the middle of

the experimental area and contains one of three substances,

ethanol, acetone or isopropyl.

IV. RESULTS

Table II summarizes all the exploration trials indicating

both the location and the adopted path planning strategy.

A lower number of trials have been carried out in the

outdoor environment due to weather conditions. To collect

the training data for the classification algorithm the spiral

path planning strategy was used. In this strategy a number

of transients were collected without stopping the robot when

a rise phase was detected. In the 18 runs approximately

160 transients were collected. The remaining path planning

Fig. 7. Picture taken during an outdoor experiment.

Location Path Planning Number of Number of

Strategy Explorations Successes

Classroom Spiral 18 training

Classroom Docking on success 36 34

Classroom Casting 36 34

Courtyard Docking on success 9 8

Courtyard Casting 7 6

TABLE II

NUMBER OF EXPLORATIONS PERFORMED WITH THE DIFFERENT PATH

PLANNING STRATEGIES.

strategies stopped the robot when a rising phase was detected.

In these 88 (36+36+9+7) runs also approximately 160 tran-

sients were collected giving equally sized data sets when

stopping the robot on detection of gas vs. non stopping. No-

tice that performing a predefined trajectory without docking

on success facilitates the collection of more transients. Thus

fewer experimental runs are needed for collecting the same

amount of responses.

To examine if in fact stopping the robot when a signal is

detected improves the classification performance we perform

a leave one out cross validation. The results of the classifi-

cation for a range of different rejection threshold are shown

in Figure 8. We can observe how the transients collected by

stopping the robot obtain a slightly better classification rate

and, more evidently, a lower rejection rate. This means that

in general it will be possible to classify more transients with

a high confidence degree if the robot is stopped while the

response is being collected. This is a desirable property since

it means that, in average, a lower number of classification

attempts would be needed in order to achieve a result with

a high degree of confidence. It is most likely that the

higher classification performance when stopping the robot

is achieved since the robot is remaining in the plume for a

longer period of time. This is however difficult to confirm

since there is no ground truth about the dynamics of the

plume.

The overall performance of the classification algorithm is

summarized in the fourth column of Table II. In all these

cases the rejection threshold has been set to 0.95. When

the robot performs a classification with a posterior prob-

ability greater or equal than the threshold, the exploration
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Fig. 8. Performance of the classification algorithm with a varying rejection
threshold. The dashed line represents data collected without stopping the
robot, while the solid line represents data collected stopping the robot every
time a sensor response was detected.

is concluded and the robot goes back to docking position.

A success is considered when the final classification output

corresponds to the true substance placed in the environment.

Although the training set has been collected without stopping

the robot it is still applicable when performing experiments

stopping the robot when rise phase is detected. Furthermore

the training data has been collected in an indoor environment

and used also in the outdoor experiment. The number of ex-

plorations in which the gas was correctly classified was high

and only in few cases the robot misclassified between the

acetone, ethanol and isopropyl. This is an important feature

since in a real application the environmental conditions of

the location where the system will be deployed will be most

probably different from the ones where the system has been

trained.

In addition to the evaluation of the classification per-

formace another issue to consider is the time needed to

complete an exploration depending on the adopted path plan-

ning. Table III shows average exploration time and standard

deviation for the experiments performed in the classroom

and outdoor. We can see that concluding the experiment

when a high degree of confidence is achieved shortens

the exploration time. This result is expected as the use of

online classification allows the possibility to interrupt the

complete spiral. A generalized quantification of the decrease

in the exploration time is difficult to obtain since a rigorous

experimental validation is needed where the position of the

source, the starting point of the robot, the spatial properties

of the inspected area and many other parameters are varied

systematically. Nonetheless a reasonable estimate can be

seen in the experimental validation presented here where the

exploration time is shortened by half.

Figure 9 - 11 show three example runs executed using

respectively the spiral, the docking on success and the casting

path planning strategies. Locations where classifications are

made are indicated with dots, and in Figure 10 and 11 the

posterior probabilities are also indicated. Note that when

the posterior probability exceeds the threshold of 0.95 the

Fig. 9. Example of experiment in which the path planning strategy was a
predefined spiral trajectory. The line is the trajectory followed by the robot,
the dots are the locations in which responses have been detected.

robot returns to the docking station. In Figure 9 no posterior

probabilities are indicated since the data collected with these

runs have been used to train the system. With respect of

docking on success vs. casting strategies, we can notice that

casting gives us slightly better results.

In order to gain deeper insight into the relationsip between

the wind measurements and the resulting casting behaviour,

we performed an experiment in which the robot was moving

with a sweeping trajectory and stopping every 0.8 m for

10 s to measure the airflow in the indoor environment. An

airflow map is created which overlays the spatial information

from the range sensors onto a gridmap representing the

interpolated measurements from the anemometer. Figure 12

shows the resulting airflow map. As we can notice the

wind does not have a well defined direction, an assumption

under which the casting strategy has been developed, and

therefore this strategy of moving the robot is limited. We

can also observe how the two casting steps performed in

the experiment displayed in Figure 11 are almost perpen-

dicular. The values from the wind vectors measured are

given in Table IV. This is again a problem with the point

measurement of the anemometer and shows that in turbulent

environments there can be large differences in the direction

and intensity of the wind. Although the casting gave a

marginal improvement in these experiments, the examination

of the windflow suggests that a random movement could

achieve the same performance.

Exploration Number of Average Standard

Methodology Explorations Exploration Time Deviation

Indoor

Spiral 18 1041 s 23 s

Docking on success 36 578 s 168 s

Casting 36 471 s 179 s

Outdoor

Docking on success 9 431 s 319 s

Casting 7 426 s 280 s

TABLE III

AVERAGE AND STANDARD DEVIATION OF THE EXPLORATION TIME

DEPENDING ON THE ADOPTED PATH PLANNING STRATEGY.

3315



Fig. 10. Example of experiment in which the path planning strategy was
stop and dock. The line is the trajectory followed by the robot, the dots are
the locations in which classification attempts have taken place. Next to the
dots the posterior probability of the selected class have been displayed.

Fig. 11. Example of experiment in which the path planning strategy was
casting. The line is the trajectory followed by the robot, the dots are the
locations in which classification attempts have taken place. Next to the dots
the posterior probability of the selected class have been displayed.

Coordinate Average Standard Deviation

Measurement Point 1

X -3.73 cm/s 2.35 cm/s

Y 0.02 cm/s 3.44 cm/s

Measurement Point 2

X 0.47 cm/s 0.03 cm/s

Y -2.96 cm/s 0.00 cm/s

TABLE IV

AVERAGE AND STANDARD DEVIATION OF THE WIND VECTOR

MEASURED DURING THE TWO CASTING STEPS IN FIGURE 11.

V. CONCLUSION

Odour classification is a crucial capability for a mobile

robot that has to explore an area and discover hazardous

gases. If the classification is performed online the benefit

is two-fold. First, it gives the possibility of stopping the

robot when a signal is detected improving the classifica-

tion performance. Second, by interrupting the exploration

when a sufficient degree of confidence in the classification

is achieved, the exploration time can be significantly re-

duced.Another important contribution is the analysis of the

system behaviour when it is deployed in an area that has

different properties from the one in which the system has

been trained. In particular the system has been trained indoor

Fig. 12. Laser scan map of the classroom with overlayed arrows indicating
the average wind directions. The arrows are coloured according to their
relative strength ranging from blue (weak) to red (strong).

and deployed outdoor with satisfactory results. Moreover a

preliminary analysis has been carried out on the possibility of

exploiting the airflow information in an environment where

no artificial airflow has been induced. As future work we

intend to consider further experimentations. Furthermore,

the system will be extended to a scenario in which more

than one substance is present at the same time. Also, more

complex strategy for exploiting the wind information will be

considered.
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