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Abstract— There are many kinds of deformable objects in our
living life. Some of them such as human tissues, human organs,
and food exhibit rheological behaviors when they are subject
to external force. In surgery simulation and food engineering,
we need to simulate or control such behaviors. In this paper,
four-element model associated with finite element (FE) method
was employed to model rheological deformation. This model can
reach a good approximation of rheological force response when
the object experience a standard strain input. An identification
approach for estimating physical parameters of rheological
deformation was presented based on 2D FE simulation and
nonlinear optimization. This identification method aimed at
minimizing the difference of force response between the simu-
lation and experiment by using nonlinear least square method.
Finally, experiments and identification results were given and
both modeling and identification method were validated by
comparing the results of simulation and experiments.

I. INTRODUCTION

Along with the development of biomedical engineering,

humanoid robot, and automation, people have to deal with

more and more deformable objects. For example, robotic

hands with soft finger surface to achieve more dexterous

and stable grasp [1], surgical simulation by using soft tissue

model [2], and shape control of soft object for food engi-

neering [3], [4]. There are two important issues are involved

for simulating deformable objects. The first one is modeling.

An appropriate physical model has to be used to describe

the deformation property, and then an appropriate modeling

method must be chosen to compromise the requirement

of accuracy and computation cost. The second issue is

identification of physical parameters. For any physical model

we used, there must be some unknown parameters which

have to be available before simulating any real objects.

Unfortunately, both modeling and parameter identification

for rheological deformation are not well developed until now.

A. Related Works on Modeling

1) Physical Model: The well-known physical model for

describing rheological deformation is three-element model

[5], [6], [7], [8] which consists of two dampers and one

spring. This is a linear model with minimal elements or

physical parameters involved. Because the linear property,

it is easy to extrapolate the constitutive law of stress and

strain from one dimension to multi-dimensions. By using

this physical model, we can obtain a good approximation of

deformation, but the force approximation is not good enough.

An explanation for the reason will be given in Section II.

In addition, a few nonlinear physical models [9], [10] were

proposed in recent years. These models can produce a good

force curve fitting. But the application of these models was

limited in only one dimensional deformation and it is difficult

to extend to multi-dimensional cases.

2) Modeling Method: The modeling method of de-

formable objects has been studied intensively since late

80’s and many methods had already been proposed, such

as: the mass-spring-damper method (MSD) [11], the finite

difference method (FDM) [12], the boundary element method

(BEM) [13], and the finite element method (FEM) [14]. The

computation cost and force accuracy increase in this order.

Our previous work has developed an FE dynamic model for

simulating rheological deformation based on three-element

model[15].

B. Related Works on Parameter Identification

In recent years, some methods had already been proposed

to estimate physical parameters of deformable objects. Most

of them focus on elastic or viscoelastic deformation. One

popular method is to iterate simulation with updated physical

parameters. Material property is then obtained by minimizing

the difference between displacements observed from images

and calculated by simulations [16], [17]. However, they did

not consider the force response during the optimization. So

far, only few works can be found for parameters identification

of rheological deformation and most of them employed MSD

model [5], [6], [7], [18]. But none of them took inner

deformation into account. In addition, our previous work [19]

presented an approach to identify the physical parameters of

rheological deformation based on 2D FE dynamic equations

with three-element model.

In Section II, the four-element model is employed to model

rheological deformation associated with FE method. In Sec-

tion III, an identification method for estimating physical

parameters is presented. Section IV gives some experiment

and identification results. Section V shows a few conclusions

and suggests future works.

II. MODELING

A. Analysis of Physical Model

Depending on the deformation behavior, soft objects can

be roughly divided into three categories: viscoelastic, plastic,

and rheological objects. Suppose that an object has a natural

shape, as shown in Fig. 1(a). Applying external force, the
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(a) Original shape (b) Deformed shape

(c) Viscoelastic (d) Plastic (e) Rheological

Fig. 1. Deformation classification of soft object

object deformed as shown in Fig. 1(b). After removing the

force, viscoelastic objects totally turn back to the original

shape, as shown in Fig. 1(c). Plastic objects maintain all the

deformation and there is no recovered deformation, as shown

in Fig. 1(d). However, rheological objects partially maintain

the deformation but not all, as shown in Fig. 1(e).

From the description of rheological deformation, we know

that rheological deformation has both elastic and viscous

properties. The most simple and popular physical model

for describing rheological deformation is the three-element

model, as shown in Fig. 2(a), which is a serial connection of

a Voigt model and a viscous element. As mentioned above,

we can not obtain a good force approximation by using this

model [19]. The constitutive law of stress and strain for this

physical model can be compactly express as

σ̇ + aσ = bε̈ + cε̇, (1)

where σ denotes the stress vector, ε denotes the strain vector,

a, b, and c is three coefficients which are consist of three

physical parameters E , c1 and c2. A typical force response

of rheological deformation can be found in Fig. 2(b). The

deformation procedure was divided into three phases. In

the push phase (0 – tp), the object was pushed with a

constant velocity. In the keep phase, the deformation was

kept for a time period (tp – tp + tk). After time tp + tk, the

external constraint was released and the deformation was

recovered. In the keep phase, by substituting ε̇ = 0 and

ε̈ = 0 into (1) and solving it, we have σ = σ(tp)e
−a(t−tp)

.

Apparently, it is difficult to use this stress expression to

approximate the force response in the keep phase as shown

in Fig. 2(b). Because in this stress expression, there only

include one exponential function and [10] suggests that we

need at least two exponential functions to obtain a good

approximation of force relaxation in the keep phase. For
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Fig. 2. (a) The three-element model. (b) Typical force response of
rheological deformation

solving this problem, we introduce a four-element model

by adding another spring element to three-element model

to describe rheological deformation.

B. Four-element FE Model

By performing different connection between four ele-

ments, we can obtain several configurations of four-element

model, as shown in Fig. 3. The last two models were called

four-element Maxwell model [20] and Burgers fluid model

[21] respectively. Fortunately, these four physical models

have same constitutive law of stress and strain as below

σ̈ + A1σ̇ + A0σ = B1ε̈ + B0ε̇ , (2)

where A0, A1, B0, and B1 are four coefficients which are

decided by four physical parameters E1, E2, c1 and c2.

The relationship between these coefficients and physical

parameters can be found in Table I. From (2) we know

that there includes second order time derivative of stress.

So in the keep phase, if we substitute ε̇ = 0 and ε̈ = 0 into

(2) and solve it, we can yeild a stress expression with two

exponential functions. It means this model can obtain a better

force approximation than the three-element model.

Then, by using FE method, the stress-strain relationship

can be converted into a relationship between a set of forces

applied to nodal points and a set of displacements of the

points. Let uN be a set of displacements of nodal points.

Let Jλ and Jµ be connection matrices, which can be ge-

ometrically determined by coordinate components of nodal

points. Furthermore, we define four pseudo Lamé’s constants

as follows:

E1 c1

c2

E2

E1 c1

c2

E2

(a) (b)

E1 c1

c2E2

(c)

E1

c1

c2E2

(d)

Fig. 3. Different configurations of four-element model

TABLE I

RELATIONSHIP BETWEEN COEFFICIENTS AND PARAMETERS

Model A0 A1 B0 B1

(a)
E1E2
c1c2

(E1+E2)c1+E1c2
c1c2

E1E2
c1

E1 +E2

(b)
E1E2
c1c2

(E1+E2)c1+E1c2
c1c2

E1E2
c1c2

(c1 + c2) E2

(c)
E1E2
c1c2

c1E2+c2E1
c1c2

E1E2
c1c2

(c1 + c2) E1 +E2

(d)
E1E2
c1c2

(E1+E2)c2+E2c1
c1c2

E1E2
c1

E2
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Bλ
0 =

B0γ

(1 + γ)(1−2γ)
, B

µ
0 =

B0

2(1 + γ)
,

Bλ
1 =

B1γ

(1 + γ)(1−2γ)
, B

µ
1 =

B1

2(1 + γ)
,

(3)

where γ is Poisson’s ratio. For the sake of simplicity, we

define two scalars m and n determined by A0 and A1 as

below:

m =
A1 +

√

A2
1 −4A0

2
, n =

A1 −

√

A2
1 −4A0

2
.

Then, a set of rheological forces applied to nodal points can

be denoted by (4). A similar derivation can be found in [22].

rheological force = Jλ (ωλ
1 −ωλ

2 )+ Jµ(ω
µ
1 −ω

µ
2 ), (4)

where

ωλ
1 =

1

m−n

∫ t

0
e−n(t−t′)[Bλ

0 u̇N(t
′)+ Bλ

1 üN(t
′)]dt ′,

ω
µ
1 =

1

m−n

∫ t

0
e−n(t−t′)[B

µ
0 u̇N(t

′)+ B
µ
1 üN(t

′)]dt ′,

ωλ
2 =

1

m−n

∫ t

0
e−m(t−t′)[Bλ

0 u̇N(t
′)+ Bλ

1 üN(t
′)]dt ′,

ω
µ
2 =

1

m−n

∫ t

0
e−m(t−t′)[B

µ
0 u̇N(t

′)+ B
µ
1 üN(t

′)]dt ′.

(5)

Let M be an inertia matrix and f be a set of external

forces applied to nodal points. Let us describe a set of

geometric constraints imposed on the nodal points by ATuN =
b. The number of columns of matrix A is equal to the

number of geometric constraints. An elaborate definition of

the constraint matrix can be found in [19]. Let λ be a set of

constraint forces corresponding to the geometric constraints.

A set of dynamic equations of nodal points is then given by

−Jλ (ωλ
1 −ωλ

2 )−Jµ(ω
µ
1 −ω

µ
2 )+ f + Aλ −MüN = 0.

Applying the constraint stabilization method (CSM) [23]

to the constraints specified by constant angular velocity

ω , system dynamic equations in 2D/3D case can be then

formulated as follows:

u̇N = vN,

Mv̇N −Aλ = −Jλ (ωλ
1 −ωλ

2 )−Jµ(ω
µ
1 −ω

µ
2 )+ f,

−ATv̇N = AT(2ωvN + ω2uN),

−
Bλ

1

m−n
v̇N + ω̇λ

1 = −nωλ
1 +

Bλ
0

m−n
vN,

−
B

µ
1

m−n
v̇N + ω̇

µ
1 = −nω

µ
1 +

B
µ
0

m−n
vN,

−
Bλ

1

m−n
v̇N + ω̇λ

2 = −mωλ
2 +

Bλ
0

m−n
vN,

−
B

µ
1

m−n
v̇N + ω̇

µ
2 = −mω

µ
2 +

B
µ
0

m−n
vN.

(6)

By using numerical solver such as the Euler method or the

Runge-Kutta method to solve above differential equations,

we can finally sketch uN, vN, ωλ
1 , ω

µ
1 , ωλ

2 , and ω
µ
2 .

III. PARAMETER IDENTIFICATION

In this section, we shall introduce an approach to identify

physical parameters of rheological deformation based on FE

simulation and nonlinear optimization. First of all, let us

see how these physical parameters and mesh distribution

will effect deformation behavior and force response during

simulation.

A. Simulation Analysis

Now, let us apply the dynamic model of rheological

deformation to a rectangular object with width=80mm,

height=80mm, and thickness=12.5mm. We suppose this is

a 2D deformation and the object surface was divided into 32

triangles with 25 nodal points. A four-element model (here

we choose model (b) in Fig. 3) is attached on each triangle.

The bottom surface of object is fixed on the ground. From

time 0s to 20s, the top surface of object is pushed down

with a constant velocity of 0.5mm/s. Then, the deformation

is kept constant from time 20s to 60s. If we suppose the

deformation is isotropic and homogeneous, the deformation

and force response are decided by 5 physical parameters:

E1, E2, c1, c2, and γ . However, the contributions of these

parameters are different to the consequential deformation and

force response.

1) Contribution of Poisson’s Ratio: Let us consider simu-

lations with different Poisson’s ratios: γ = 0.25, γ = 0.35, and

γ = 0.45. Other four parameters are unchanged with values of

E1 = 5×102, E2 = 1.2×103, c1 = 2×104, and c2 = 8×103.

The deformation and force response are shown in Fig. 4.

From Fig. 4 we know that the Poisson’s ratio γ effects both

deformation and force response.

2) Contribution of Elastic Modulus: Let us compare sim-

ulation results with different elastic moduli. Fig. 5(a) and

(b) show the deformation behavior and force response with

different E1 and (c) and (d) correspond to E2. From Fig. 5 we

know that elastic moduli only contribute to force response,

they do not effect the deformed shape (during keep phase)

at all.

3) Contribution of Viscous Modulus: Now, let us perform

the same comparison with different viscous moduli, as shown

in Fig. 6. Here we only give the force response with

variational c1 and c2 because the deformation behaviors are

same with Fig. 5(a) and (c). Fig. 6 indicates that the viscous

moduli also only effect force response.
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Fig. 4. Simulation results with different Poisson’s ratio γ .
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Fig. 5. Simulation results with different elastic moduli E1 and E2.
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Fig. 6. Simulation results with different viscous moduli c1 and c2.

In addition, mesh distribution also effects simulation re-

sults. A rule of thumb is that the finer the mesh is distributed,

the higher the accuracy of simulation results will be. Fig. 7

shows how the mesh distributions effect simulation results.

According to Fig. 7, we know that the discrepancy of

both deformation and force response between different mesh

distributions is not significant if the mesh distribution is finer

than 4×4 in this simple deformation.

B. Optimization Process for Identification

We have totally five physical parameters in 2D/3D defor-

mation: E1, E2, c1, c2, and γ . However, from the simulation

analysis presented in last subsection we know that only

Poisson’s ratio γ effects deformed shapes, the other four

parameters only contribute to force response. This means

we can separately identify the Poisson’s ratio by minimizing

the difference of deformation between simulation and ex-

periment. For a commercial clay which will be used in our

experiment, [19] had already given a value of γ = 0.332 and

worked well for approximating the deformation behavior. So,

in this paper, we focus on the other four physical parameters

and we assume Poisson’s ratio γ = 0.35.

Fig. 8 shows the optimization process of parameter identi-

fication. We assign the initial estimation of physical parame-

ters to the 2D dynamic model, and repeat the FE simulation
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Fig. 7. Simulation results with different mesh distributions.

with updated physical parameters until the difference be-

tween the force data measured in experiment and calculated

by FE simulation is minimized. The objective function of

this problem can be described as follows:

F(x) =
1

2

m

∑
i=1

[

f sim(x,ti)− f exp(ti)
]2

, (7)

where x is the physical parameters, t1 through tm are times

to be sampled, f sim(x,ti) is the calculated force output by

simulation when the physical parameters are x and sampling

time is ti, and f exp(ti) is the measured force data at sampling

time ti.

Then, a ‘nonlinear least squares’ method with ‘large-scale:

trust-region reflective Newton’ algorithm is employed to

minimize the objective function. This nonlinear optimization

method is widely used in data fitting problems.

IV. EXPERIMENT RESULTS

A. Pushing Experiment

The commercial clay made of flour, water, and salt was

employed to work as a rheological object through our exper-

iments. The object of size about 80mm × 80mm × 12.5mm

was pushed by a motorized stage with a displacement about

9.6mm and a constant velocity of 0.5mm/s (tp=19.21s).

Before releasing, the displacement was kept about 47.88

seconds (tk). Some markers were drawn on the surface of

the clay by using a resist pen filled with lacquer ink. The

initial and deformed shapes recorded by a camera are shown

in Fig. 9(a), (b), and (c). By using a simple image processing,

we can obtain a 2D FE mesh of these shapes as shown in

Fig. 9(d), (e), and (f). The force data recorded by a tactile

sensor can be found in Fig. 2(b).

Force data

Experiment

Simulation

Initial 
parameters

If Solution
Yes

Parameters 

Update

Error

No

Force

Fig. 8. Optimization process for parameter identification.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Deformation behaviors in experiment. (a), (b), (c): Images taken
by camera. (d), (e), (f): Description of images by using 2D mesh. (a), (d):
Initial shape. (b), (e): Deformed shape in the end of keep phase. (c), (f):
Final shape after releasing.

TABLE II

INITIAL VALUE AND IDENTIFIED VALUE OF PHYSICAL PARAMETERS

Parameters Initial Value x0 Identified Value x∗

E1 (Pa) 3×104 5.8388×104

E2 (Pa) 5×103 1.2353×105

c1 (Pa·s) 2×105 2.1091×107

c2 (Pa·s) 6×105 8.3402×105

B. Identification Results

During the optimization process, we choose to use the

physical model (b) shown in Fig. 3 with a 4×4 mesh distri-

bution. After 74 iterations and 375 times FE simulations,

the optimization analysis terminated because the relative

function value changing is less than 1×10−6. The objective

function finally converged to a value of 1.9261N. The initial

value and identified value of physical parameters are shown

in Table II. By performing some simple calculations, one can

obtain these parameters for other physical models (shown in

Fig. 3(a), (c), and (d)) based on Table I.

Furthermore, let us compare the deformation behavior and

force response between the simulation results and experiment

results, as shown in Fig. 10. We can see from Fig. 10 that

we can obtain good approximation for both deformation

behavior and force response.
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Fig. 10. Deformation comparison and force approximation for the first
experiment.
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Fig. 11. Deformation comparison and force approximation for the second
experiment.

In order to validate our identification results, we conduct

another experiment with the same material. This time we

pushed the object slower and kept the deformation longer

than the first experiment, here tp=190.72s and tk=182.37s.

Then, we use the physical parameters given in Table II

to simulate this deformation behavior and force response.

A comparison between simulation results and experiment

results are shown in Fig. 11.

As we mentioned in Section III, the mesh distributions

effect force response. Now let us check the influence of mesh

distributions in both experiments. Here we only give the

comparison of force response in Fig. 12. The deformation

comparison is similar with Fig. 7(a). According to Fig.

12, we believe that in this simple deformation behavior,

4×4 mesh distribution is accurate enough to describe both

deformation and force.

The deformed shapes showed in Fig. 10(a) and Fig. 11(a)

are in the end of keep phase. Now let us consider the final

shape after releasing the external constraints. Deformation

comparison of final shape for both experiments are shown
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experiments.
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in Fig. 13. This figure means that we could not obtain

a good approximation for final shape. It is because that

the deformation behavior after releasing external constraint

depends not only on Poisson’s ratios γ , but also on other

four physical parameters. However, during our optimization

process, we did not take the final shape into account. Another

reason probably is because the four-element model we used

in this paper still linear model and the 2D dynamic model

used to simulate rheological deformation is based on this

physical model. This can explain why the discrepancy of

final shape in the second experiment(as shown in Fig. 13(b))

is smaller than the first experiment (as shown in Fig. 13(a)). It

is because that the slower the object is pushed and the longer

the deformation is kept, the smaller the dynamic influence

will be.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced four-element model associated

with FE method to model rheological deformation. 2D/3D

FE dynamic equations were presented. According to the

simulation analysis, we found out that only Poisson’s ratio

γ effects the deformed shape when the object is subjected

to a displacement constraint. Other four physical parameters

E1, E2, c1, and c2 only effect force response during push

and keep phase. Then, an approach was proposed to identify

these four physical parameters based on FE simulation and

nonlinear optimization. The FE simulation was repeated with

updated physical parameters until the difference between the

force data measured in experiment and calculated by FE

simulation was minimized. This identification method needs

less measured data compare with our last method [19]. We

only need to measure force response on a surface, an area

or even one point and displacements of some nodal points.

Finally, experiments and identification results were given and

the comparisons of deformation and force response between

simulations and experiments validated both our model and

identification method.

In our future works, the Poisson’s ratio γ and defor-

mation information will be taken into account during the

optimization process to yield a multi-objective optimization

problem. Nonlinear behavior will be explored to obtain a

more accurate rheological model. In addition, both FE model

and identification method will be extended and applied to

non-uniform rheological deformation.
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