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Abstract— Robot systems are increasing in complexity. Trying
to diagnose a robot that is non-functional or exhibiting sub-
optimal performance can be a major challenge. A framework
for plug-n-play addition of diagnostics to modules in an object
oriented software framework is presented. The methods for
modeling of system modules, their transition to a Bayesian model
and final implementation are described. The methodology is
exemplified for a mobile manipulation system and experimental
results are presented.
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I. INTRODUCTION

For anything but a trivial application there are numerous
hardware and software modules involved in the implementa-
tion of a system. As complexity grows, so does the difficulty
of understanding the system and its behavior. A tedious aspect
of robotics is that it can be time consuming to work with a real
system due to the challenges of real-world experiments. Often
a “relatively” simple problem can be very hard to diagnose as
the over-all behavior of the system interacts with the defective
device/module in a non-trivial way. Consequently diagnostics
of a system is an open challenge.

In other fields there have been significant progress on
design of methods for diagnostics [1], [2]. As an example all
printers today have mature methods for error recovery and
diagnostics [3], and the same is true for modern cars [4],
hydraulic forging presses [5], gas turbines [6] and electronic
systems [7]. For some reason relatively little work has been
performed on transition of these methods to robotics.

Bayesian network models provide the basic mechanism for
doing statistical diagnostics. The Bayesian network model
creation is non-trivial and might involve long discussions
with domain experts and technicians, and extensive research
of the system under consideration. It involves a qualitative
modeling part during which we elicit the structure of the
Bayesian network. In the quantitative modeling part we elicit
the statistical information, including conditional probability
distributions and utilities [8].

In this paper a systematic methodology for modeling of
errors in a robot system is described. Earlier work is presented
in Section II and the overall design aspects are presented in
Section III. The framework is exemplified for a system to
make the effort concrete. The baseline system is presented
in Section III-A and the qualitative design of diagnostics
models is discussed in Section III-B. The augmentation of
the system to have diagnostics capabilities is presented in
Section IV. Example performance is presented in Section V
and a summary is available in Section VI.
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II. RELATED WORK

The area of diagnostics and use of expert systems dates
back more than 50 years and tremendous progress has been
achieved. There are now basically four different paradigms
that are used for this task. They are rule based, case based,
decision tree based, and model based expert systems each of
which have their advantages and disadvantages. Of these, the
model based expert system deals with probabilistic networks
that are compact, intuitive representations of causal relations
among the entities of the problem domain [8].

The other three models, though they have their advantages,
are less suitable for modeling complex, dynamic systems like
robots. The rule based system [9] would result in a large
collection of rules that could become exponentially difficult
to maintain, while the case based system [10] is based on
experiences and are focused on known errors. The decision
tree based diagnostics [11] involves traversing through various
tests until a fault is reached and hence provides limited
flexibility.

Bayesian networks have emerged as the modeling technique
of choice in various applications of diagnostics. Skaanning
et al [12] discusses a real world application of Bayesian
networks for printer systems. It provides valuable insights into
developing a model for diagnosis and acquiring knowledge.
They use a custom built system for troubleshooting printer
systems. In Przytula [13] a procedure for efficient creation of
Bayesian networks has been designed, which has been applied
in diesel locomotives, satellite communication systems and
satellite testing equipment [14].

The most wide spread application of Bayesian inference
technique is the Microsoft Office Assistant [15] developed
in the Decision Theory and Adaptive Systems Group at
Microsoft Research. In the office assistant, observations are
entered continuously into the model and the the user needs
are inferred. In our approach to diagnostics we employ a
similar technique of updating the network continuously with
new observations to capture the system error state.

Various tools like Hugin [16], [17] and MSBNx [18] are
available for generation of Bayesian network. In our imple-
mentation we use GeNle [19] for modeling purposes and
SMILE [20] for construction of a customized troubleshooter.
These tools accelerate the building of Bayesian networks and
creation of troubleshooters that could be customized for the
application using API’s provided in various languages like
C++, Java and C#.

III. SYSTEM DESIGN

In this section we discuss the intelligent system that is
used in the diagnostic model design. In section III-A, we
give an overview of the system under study and the method
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Fig. 1. Mobile manipulator

for collection of information relevant to the construction of a
diagnostics model. In section III-B we go into the details of
the construction of a diagnostic model for the system studied.

In sub-section III-B.1 we discuss how the system modeling
can be broken down into several phases and modules to enable
an organized step by step modeling of the diagnostic system.
In sub-section III-B.2 we describe the object oriented approach
to developing the network that further reduces the complexity
of building the network. Finally in sub-section III-B.3 we
describe a distributed approach for diagnostics in an intelligent
system, that would reduce the burden of information collection
and processing for a central diagnostic network.

A. Intelligent System definition and study

The intelligent system under consideration for diagnostics
is a mobile manipulation system. The hardware platform is
composed of a KUKA light weight arm mounted on a Segway
RMP200 base as seen in Fig. 1. The end effecter is a Schunk
PG-70 2-finger parallel gripper. A Unibrain Fire-I firewire
camera is mounted on the end effecter for visual servoing. The
platform is equipped with a SICK LMS291 for localization
and navigation. The software system is implemented using
Microsoft Robotics Studio 1.5 [21]. The services that are
implemented using MRS 1.5 can be used to represent anything
from hardware components such as sensors and actuators to
software components like UI, storage services and aggregation
of sensors.

We took a subset of this system which consisted of the
services belonging to the navigation module of the system
and built a model of the diagnostic system for this sub-system
seen in Fig. 2. The initial implementation of the system was
made available to this project. The system is described in [22].
The system presented here is an augmentation to the originally
implemented robot system.

The NewSick service represents the SICK Laser Range
Finder and it distributes Laser scan information to those
services that have subscribed to it for the laser scan packets.
The Obstacle Avoider receives these messages and determines
the direction and speed of travel. The RBPFLocalizer receives
the laser scan packets and SegwayForeAftYaw encoder in-
formation and determines the current position and direction
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Fig. 2. Navigation system

of the robot in the map. The WaveFrontPathPlanner uses
the localization information to plan a path to the goal. The
EmergencyStop service allows the user to issue a soft Stop
signal to the robot. The DifferentialDriveArbiter service uses
the inputs of the WaveFrontPathPlanner, ObstacleAvoider and
the EmergencyStop services for the low-level turn and speed
control reference. The SegwayDrive service maintains the
drive states and implements the low level drive control for
the platform.

The behaviour of each module changes over the life cycle of
a process. A sample life cycle for the Segway Base service is
shown in Fig. 3. The information for the model construction is
elicited from the life cycle modeling of these services and the
various documentations of the hardware used by the system.
It is important that we include all the information relevant
to the diagnostics of the system. The granularity of the model
developed is set to a level at which a user of the diagnostic tool
would be able to access and troubleshoot the system involving
both physical modification of the hardware of the system and
modifying states of the software services of the system. These
involve normal troubleshooting steps like changing the parts
of the system (e.g. SICK LRF), checking the power in a device
(on / off / battery charge required) and modifying the serial
port number in the state of services.

B. Diagnostic Model Design

1) System Breakdown: We adopt a high level view of the
life cycle of all these services and modeling each phase using
a Bayesian network. This high level view is shown in the
Fig. 4 and is composed of four phases. The navigation module
life cycle starts with the initialize phase during which a new
instance of each of the Service classes is created. The services
are tied to the network and assigned a URI. If partner services
have been specified for the services they are started or found.
Then the start () method of the services is activated.

The second phase is runtime during which the services run
within a context known as the Decentralized Software Services
(DSS) node. They can provide services and get notification
from other services they are subscribed to and call methods of
their partners to perform specific functions. When the system
has completed its task it can go to the shutdown phase during
which the service states are reset and the services are dropped.
If anything goes wrong in any of these phases, the system
moves to the Safe state during which the error in the system
is identified and trouble-shooting is done to identify the cause
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Fig. 4. Life cycle of services

of an error. In the safe state, the other functions of the system
are brought to a stop (for example issuing an Emergency soft
stop to the Segway).

Each of these phases of the navigation system runs smoothly
depending on each of the component services initialization,
runtime and shutdown phases.

2) Object Oriented Bayesian Networks: Each of these sub-
systems might share several common features. For example,
for all these sub-systems / services, the partnering of services
is a common feature for initialization of the service. This intro-
duces another way for simplifying the design of the diagnostic
model of the system. These identical fragments of networks
also share common conditional probabilities. When each of
these services is modeled, the common causal networks are
identified and place holder nodes (input /output nodes) are
used to represent these features. The modeling of the sub-
network is performed independent of the parent network. Thus
only the input/ output nodes which are connected to the parent
node remain the same. The rest of the hidden attributes of the
network can be modified as required by the diagnostic model

developer.

These sub-networks can be called classes and their instances
are used within the bigger networks. These networks are made
up of input nodes, output nodes and several encapsulated
nodes. The encapsulated attributes are representative of the
object oriented paradigm. By abstracting away these nodes/
attributes we obtain the Object Oriented Bayesian Network
(OOBN) which gives a simplified view of the diagnostic
model. It also avoids repetitiveness and thus makes use of
the principle of re-usability of networks. When the OOBN is
used for querying, the OOBN can be transformed to a complex
Bayesian Network by merging each input/output attribute with
the place holder nodes in the parent network. Thus the OOBN
is expanded into a standard Bayesian network for inference
purposes [23].

3) Distributed Model for Diagnostics: Another important
component for diagnostics is the Center for Diagnostics. This
module loads and maintains the diagnostic network and the
states of diagnostics. It also receives information regarding the
state of various services. This information is used to update
the diagnostic network and perform inferences and trouble
shooting. A fully centralized approach to diagnostics, however,
would increase the complexity of the system.

So to reduce the complexity of the Diagnostics center we
came up with a distributed model of diagnostics. We pre-
process information regarding the state of the services and
collect the information in a separate state of each service called
the diagnostic state. This info can then be directly plugged
into the diagnostic manager via a notification system. Thus
diagnostics becomes more distributed, thereby reducing the
load on the central diagnostics module.

IV. IMPLEMENTATION
A. Model Construction

The tool used for modeling the network is GeNle [24],
developed at the Decision Systems laboratory in the University
of Pittsburg. It provides a windows based interface, that allows
creation of Bayesian networks in a click and drop interface.
GeNle is the graphical user interface for SMILE [25], a
fully platform independent C++ library implementing decision
theoretic models such as the Bayesian networks. It allows
editing, creating, saving and loading graphical models, and
using them for probabilistic reasoning and decision making
under uncertainty. We make use of the SMILE.NET wrapper
classes for diagnostic programming purposes.

The first step in creating a Bayesian network for the system
is to identify the variables in the network and elicit the
structure of the network. An initial set of variables were iden-
tified based on the life cycle modeling of the services. Then
we identified and verified the causal links in the model. By
maintaining this causal perspective, we correctly represented
the dependence and independence relations.

The Fig. 5 shows a modular perspective of the system
initialization phase. The link between each of these modules
and the ErrorMode represent a causal link which affects
the ErrorMode of the system which in turn determines the
initialization success / failure of the system.
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Fig. 6. Segway Services Initialize Network

Now the complexity of designing an initialization phase
of the diagnostic model is broken down to the complexity
of designing a Initialization diagnostic network for each of
the services. The Fig. 6 shows the network modeling of the
Segway service initialization network. The Fig. 7 shows the
network modeling of the NewSick (Sick laser range finder)
service initialization.

Some of these network nodes are set as observation nodes
and some are set as target nodes. Observation nodes refer to
possible tests, error messages and symptoms. Target nodes
refer to possible faults or defective components. One of the
states is selected as the target state. Each of the target states of
the target nodes are ranked according to the likelihood of their
failure. Faults can be tested for in this order. The observation
nodes are also ranked and this information is essential for
trouble shooting. Trouble shooting is done using this ranking.
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B. Object Oriented Model Development

As can be seen in Fig. 6 and Fig. 7 the network, there are
some nodes that are repetitive. These are the abstractions of the
sub-network instances and they act like place holders and are
the input nodes or output nodes of sub-networks that make up
this object oriented Bayesian network. For example consider
the place holder node “Partnering failed”. During runtime,
the parent network is first loaded. Then when inference is
performed on the network, the Partnering failed network
instance is added to the parent network with the output node
set as “Partnering failed”. The conditional probability values
are also assigned at run time as they are assumed to follow a
generic probability distribution. Fig. 8 shows the instantiation
of the Partnering failed network for Segway drive service. We
make use of SMILE.NET api’s to perform this expansion of
the network.

C. Quantitative Modeling

The quantitative modeling of a network refers to deter-
mining the parameters or the numbers of the networks. This
involves estimating the conditional probability values. This
step is also called the probability elicitation step. This involves
meeting with experts or using statistics gathered over time
to figure out the probability values. But for experimental
purposes, the probability values have been assigned manually
and systematically to avoid any serious diversions from the
expected normal behavior of the system. Also for now the
cost of troubleshooting has not been included as a diagnosis
parameter of the system. In other words all the troubleshooting
steps are assumed to have a uniform cost.

D. Diagnostic Manager Service

The center for diagnostics of the navigation system is
the diagnostic manager service. The navigation system under
consideration has a service oriented architecture. For the
diagnostics to be performed in such a system, we create a
service called the diagnostic manager service. The purpose of
this service is to receive diagnostics and error information from
the various services that make up the system via a notification
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system. The diagnostic state/module of each service maintains
specific pre-processed information pertaining to error and
status tracking for these services.

The diagnostic manager service selectively subscribes to
the diagnostic state of the various services. This information
is used to update the diagnostic network and state of the
service and inferences are performed with this network. If an
error symptom is detected the system goes to trouble shooting
mode and the cause of these errors are diagnosed through
systematic troubleshooting steps identified using the network.
The Fig. 9 shows the high level architecture of the system
with the integrated diagnostic manager service.

During the system initialization phase, the diagnostic man-
ager service cannot get status information from the services
that are being initialized. So access system information on

whether a service has been initialized successfully or not, the
diagnostic manager service subscribes to the console output
service that shows status information on service initialization.
Once the component services of the system have been initial-
ized successfully, the diagnostic manager service selectively
subscribes to the diagnostic state/module of these services.
Notifications are sent to the diagnostic manager when the state
of services changes.

While initializing the diagnostic manager service, the di-
agnostic networks of the various phases of the services of
the system are loaded using the SMILE.NET API’s. For
diagnostic purposes, all the place holder input/output nodes are
extended by instances of the sub networks and the conditional
probability values are assigned to these nodes. All this is done
using the SMILE.NET interface library.

E. Performing diagnostics

During the initialization phase of the system, if there are
errors identified in the system, they are entered as evidence
into the network. After entering evidence, the probability
values are propagated and the network is updated. The subset
of the target nodes that may have caused these observable
errors are chosen as the possible faults in the system. This
subset is retrieved from the causal tree of the network by
identifying the dependent nodes.

These target faults are then pursued by the system and
relevant tests are requested one by one in the ranked order
of importance and the network is updated each time to reflect
the result of the tests. In this way, the fault in the system which
caused an initialization error is determined and troubleshooting
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is performed. For further details on the SMILE diagnostic
network troubleshooting, please see the documentation on
SMILE [25].

V. EXAMPLE PERFORMANCES

To demonstrate the trouble shooting of the possible naviga-
tion system errors, we create a manifest that consists of only
those services belonging to the navigation system. We then
load the manifest in the dss host to start the navigation system
of the mobile manipulator. The diagnostic service is the first
module to be initialized. This module initially subscribes to
the console output service to detect service initialization errors
and then it selectively subscribes to those services that were
successfully initialized.

The navigation system was loaded in a PC not connected to
the segway or the laser range finder. This results in two errors
and they are discussed in section V-A and section V-B. These
are initialization errors that can be seen as messages from the
console output service as seen in Fig. 10.

A. Error: Segway Base Initialization Failed -2345

When the system detects a “segway base initialization
error”, it enters the evidence in the network and updates the
probability distribution in the causal tree. This error could be
caused by three possible faults as observed in the Fig. 6. Once
the system is updated with the new error observation, we see
that only two of these faults, “Segway native wrapper init
failed” and “Load dll failed”, have a probability higher than
0.5. The fault that caused this error can be identified by setting
these two possible faults as pursued faults and troubleshooting
the system. The required evidences are ranked and have to be
set by either the diagnostic user or the system. By performing
this troubleshooting, the correct fault can be identified and
resolved.

B. Error:Opening COM?2 Failed

The second error is “COM2 failed error” and this error is
identified as the newsick service initialization error as this
error is caused by the newsick service initialization state.
Fig. 12 shows the possible faults for this error once the system
is updated with the new error evidence. The set of trouble
shooting steps that the user has to perform are ordered by
their ranking. As can be seen the “Open Serial Port failed”
fault has the highest probability. During each troubleshooting
step, the user’s evidence is set and the diagnostic network is
updated to reflect this.

1.Error Name:segwaybase_Service_Init_failed

Possible Faults in order of probability :

Node Name Faultld Probability of the Fault
Segway_Native_Wrapper_Init_failed True 0.69863784227249115
Load_dIl_failed True 0.57229812718184114
Troubleshoot :

Node Name Node Info Set Evidence
.dll_avai\ability 0.48409460192385367 | O Available O NotAvailable

Segway_connected 0.0052462878262021792
Segway_switched_on |0.004381507 7256867171

Troubleshoot

Fig. 11. Segway base Service Init Failed Diagnostics

2.Error Name:newsick_Service Init_failed

Possible Faults in order of probability :

Node Name Fault Id Probability of the Fault
OpensSerialPort_failed True 0.96644513743484239
WriteSerialPort_failed True 0.90366450886880645

Creating_serialport_failed True 0.89867039884916489

Port_not_found True 0.79601320768989958
Troubleshoot :

Node Name Node Info Set Evidence
SickLRF_not_switched_on 0.087085991154823045 True O False
COM_Port_open 0.02230634649395552
SickLRF_not_connected 0.013437371927841103

Port_not_opened 0.0032811657215687669

Buffer_is_null 0.0021321069244930927

COM_Portnarme_for_Sick_LRF |0.0018609006522567776
0.00073797183415622231
0.00068357594432421015

Writing_timed_out
COM_Port_access_denied

 Troubleshoot |

Fig. 12. NewsSick Service Init Failed Diagnostics

VI. SUMMARY

Diagnostics is an important aspect of operation for industrial
robots to maintain operation over time. Controls built into the
robots would enable diagnostic capability in robots. In this
paper we presented a plug and play mode of diagnostics in
which we create a service (the diagnostic manager) that acts as
the center for diagnostics and diagnostic modules that could be
plugged into the various robot services to collect information
regarding the status of the robot, process these and send back
the data in the required format to the diagnostic manager.
Diagnostics is therefore distributed across the services. A way
to model the errors in the robot system is discussed and some
sample implementations are presented. We have discussed an
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organized and systematic way of error modeling of complex
robot systems.

We plan to enhance this work by implementing error
modeling for the other phases of the life cycle and thus
develop a complete modeling of the system. There are obvious
opportunities for improvement in the area of quantitative
modeling where we could assign more reliable probabilistic
distributions to the variables by running several experiments
on the robot and talking to experts working with the robot
everyday. A more elaborate model for probability elicitation
could thus be developed. This work would then result in a
comprehensive model for intelligent robot diagnostics.
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