
Decentralized Cooperative Manipulation with a

Swarm of Mobile Robots

Joel M. Esposito

Dept. of Systems Engineering

U.S. Naval Academy, MD, USA

Abstract— In this paper we consider cooperative manipulation
problems where a large group (swarm) of non-articulated mobile
robots is trying to cooperatively control the velocity of some
larger rigid body by exerting forces around its perimeter. We
consider a second-order dynamic model for the object but
use a simplified contact model. We seek solutions that require
minimal information sharing among the swarm members. We
present a velocity control law that is asymptotically stable. In
the case of a constant desired velocity, it is shown that no
coordination is required between the swarm members. For more
complex trajectories we introduce a decentralized feed-forward
component that uses an online consensus estimate of the swarm’s
configuration. The results are illustrated in simulation.

I. INTRODUCTION

Robot swarms1 are large groups of small, relatively unso-

phisticated, robots working in concert to achieve objectives

that are beyond the capability of a single robot. One example

of an application that can benefit from this approach is

non-prehensile cooperative manipulation, where a group of

non-articulated mobile robots attempts to transport a larger

object in the plane, by applying forces to its perimeter. The

advantages of the swarm are: (1) its ability to distribute applied

forces over a large area, achieving an enveloping grasp on large

objects; and (2) the maximum wrench the swarm can exert

increases linearly as the number of swarm members increases.

We are particularly interested in marine applications involving

autonomous tugboats such as towing disabled ships (ex. U.S.S.

Cole), transporting components of large offshore structures

(ex. oil platforms), or positioning littoral protection equipment

(ex. hydrophone arrays). Figure 1 depicts our marine test-bed.

However, most of our work can be extended to ground robots.

Behavior-based approaches to non-articulated cooperative

manipulation yield interesting results but lack performance

guarantees [15], [12], [5], [7]. On the other hand, so called

“caging” approaches such as [17], [20], and [13], design

controllers which force robots to surround the object. Inter-

robot spacing is constrained to be small enough that it is

impossible for the object to “escape” – meaning that one

can prove as the robots move, so must the object. However,

the problem is reduced to a positioning problem; limiting its

applicability to manipulation problems that are not essentially

kinematic, such as marine problems.

1 esposito@usna.edu. Supported by ONR N0001405WRY20391.

Fig. 1. Experimental test bed. A group of 6 unmanned tugboats (0.5 meters
long) and a scale model flat bottomed barge (2 meters long). The tugs have
articulated magnetic attachment devices used to grab the barge.

More applicable to marine problems are methods that

consider the full second order dynamics of the system such

as [16], [18], [14], and [3]. However these approaches all

require some centralized decision making or global knowledge

of all swarm member’s actions. We seek solutions that consider

full second order dynamics, are fully distributed, and provide

performance and stability guarantees such as the flocking

control strategies presented in [10], [19], [4]. Eventually we

hope to extend the work non-trivial contact models.

In this paper we assume a group of agents has already

established contact with an object to be manipulated. Here,

we do not explicitly consider the synthesis of the grasp

(see our previous work [2]) or motion control of the swarm

prior to establishing contact with the object. We describe the

system and communications model in Sect. II. The primary

contribution of this paper is a novel control law that lets

each agent compute an applied force such that the swarm

is able to drive the velocity of the object to some desired

value, with minimal information sharing. In the case of a

constant desired velocity and no drag we show that absolutely

no communication between agents is required (Sect. III). In

the case where the desired velocity varies with time, and

drag forces are present, the controller (Sect. IV) utilizes a

decentralized estimate of the feed forward terms based on

the consensus protocol [9]. Simulation results are provided. In

Sections V and VI we discuss the implications of the control

laws.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5333



II. MODEL

Consider a rigid body (see Fig. 2) with pose p =
[x, y, ψ]T ∈ SE(2) defined relative to a global reference

frame. A body fixed reference frame is attached to the center

of mass. Linear velocity v and angular velocity ω are defined

in the body frame. R(ψ) is a rotation matrix converting body

velocities to global velocities. N agents are attached to the

body at points r1, . . . , rN ∈ R
2, where ri is assumed to be

time invariant in the body frame. Each of the agents can apply

an input force Fi ∈ R
2 written in body frame coordinates. We

assume the agents are rigidly attached to the object and can

therefore apply a force of any magnitude, in any direction (i.e.

the grasp is not friction assisted). The system dynamics are:

ṗ = R(ψ)[v, ω]T (1)

v̇ = −ω × v + Fdrag + M−1
N

∑

i=1

Fi (2)

ω̇ = τdrag + J−1
N

∑

i=1

ri × Fi. (3)

Where the positive scalars M and J are the effective mass

and planar moment of inertia of the object along with the

attached agents. We assume the products of inertia are zero

(i.e. left/right and fore/aft symmetry). Fdrag and τdrag are drag

forces and torques the object experiences. The appropriate

model for these is application dependent (eg. ground-based

vs. marine, low vs. high-speed, etc.)

Note that under these assumptions, in general there must be

at least 2 agents, N > 1, which are not co-located, r1 �= r2,

to ensure small time local controllability. Under the contact

model described here, this is equivalent to requiring a force

closure grasp [8].

For some tasks the agents will need to share information via

some type of ad hoc wireless radio or optical communication

link. The communication network is modeled as a graph

G = (V,E). Each vertex in the graph, i ∈ V , represents

an agent and each edge, eij ∈ E, represents a wireless

communication link between agent i and j. We assume the

set of links in the network (its topology) is static, message

transfer is synchronous, that each edge permits an unlimited

data transfer rate, and that there are no time delays or noise

in transmission. A network G is said to be connected if the

communication graph G is connected (i.e. if for any node pair

i, j there exists an edge path of arbitrary length between them).

Occasionally we discuss the network neighbors of agent i, the

set of all nodes a single hop away, defined as

Ni = {j ∈ V |∃eij}. (4)

III. CONSTANT VELOCITY CONTROLLER

Assume the desired velocity of the object is a constant in

the global frame, vG
d , as well as the desired angular velocity

ωG
d ; and that Fdrag = [0, 0]T , and τdrag = 0. In this section

x
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Fig. 2. Swarm Manipulation Scenario. N agents (dark circles) are attached to
the object (shaded polygon). The fixed position of the ith tug boat is defined
by the vector ri. It may apply a force Fi in any direction.

we show that if each agent works to regulate the velocity at

point ri

vi = v + ω × ri. (5)

to the desired value of vd + ωd × ri the overall motion of

the body converges to the desired velocity. No coordination

between the agents is required.

Proposition 3.1: Assume vG
d and ωd are constants in the

global frame. Note that since the system is planar ωG
d = ωd.

Define error signals ev = RT (ψ)vG
d − v and eω = ωd − ω. If

each agent applies the control law:

Fi ← F̄i = ev + eω × ri, (6)

then ev, eω → 0 as t → ∞.

PROOF: To verify this, define the Lyapunov Function

W =
1

2
eT
v Mev +

1

2
eT
ωJeω. (7)

The derivative is

Ẇ = eT
v Mėv + eT

ωJėω (8)

= eT
v M{−ω × RT vG

d + ω × v − M−1
N

∑

i=1

Fi}

−eT
ωJ{J−1

N
∑

i=1

ri × Fi}.

Substituting the control law F̄i from (6) and noting that

eT
v (eω × ri) = eT

ω (ri × ev),

and

eT
ω (ri × (eω × ri)) = (eT

ωeω)(rT
i ri),

the derivative of W simplifies to

Ẇ = −eT
v Mω × ev −

N
∑

i=1

eT
v ev (9)

−2eT
ω

N
∑

i=1

ri × ev −
N

∑

i=1

(eT
ωeω)(rT

i ri).
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Fig. 3. Physical meaning of the triple scalar product. For agents such as i
on the near side of the midline, defined by ev , the triple scalar product is
righthanded, meaning that they can apply forces that simultaneously decrease
both error signals. While on the far side, eω and ev represent conflicting
goals.

Note that the first term is zero since M is a scalar and

ev and ω are always perpendicular. The second and fourth

terms are clearly non-positive; and only zero where the error

terms vanish. The third term is a triple scalar product whose

magnitude is bounded by
∑

‖eω‖‖ri‖‖ev‖. However, its sign

cannot be determined (see Fig. 3 for a graphical intuition).

Fortunately the last three terms can be collectively bounded

by

Ẇ ≤ −
N

∑

i=1

(‖ev‖ − ‖ri‖‖eω‖)
2. (10)

The only scenario in which Ẇ = 0 would be if all the

following conditions held true for all i = 1, . . . , N : (1)

ri is perpendicular to ev; (2) eT
wri × ev < 0; and (3)

‖ev‖ − ‖ri‖‖eω‖ = 0. Only a single point on a rigid body

satisfies all of these conditions. Since we assume N > 1 and

r1 �= r2, then Ẇ < 0.

Remark 3.2: While the form of (6) is convenient for the

proof, in practice it is much easier to measure the agent’s

velocity rather than the object’s. (6) can be rewritten as

F̄i = vd + ωd × ri − vi. (11)

Remark 3.3: A friction-based contact-model can easily be

accommodated in this scenario, assuming the robots are in

a force closure configuration. Each robot simply computes a

desired force from (6), and checks to see if it is inside the

set of admissible contact forces defined by the friction cone,

Fi. If F̄i ∈ Fi, Fi ← F̄i; else Fi ← [0, 0]T . The stability

proof is not qualitatively altered in anyway; however the rate

of convergence may be slowed since at any given time there

are effectively less than N agents who are applying non-zero

forces in (10).

Figure 4 shows a simulation of the control law, with non-

zero initial velocity. The object is a rectangle, 2(m) × 1(m),
with M = 1(kg). 15 agents are distributed randomly around

the perimeter employing the control law (6). The desired

velocities are vx = 2(m/s), vy = 1(m/s), and ω = 0(rad/s).
The velocities quickly converge to the desired values.
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Fig. 4. Simulation of the constant velocity controller. Actual global frame
velocities are dashed lines. Desired global frame velocities are solid: vx(m/s)
(top, green), vy(m/s) (middle, blue), and ω (rad/s) (bottom, red).

IV. TIME VARYING VELOCITY CONTROLLER

It is more difficult to track time varying velocities, possibly

in the presence of drag forces, in a distributed fashion since

it generally requires using feed forward terms. Allocating the

effects of those terms among the swarm members requires

some coordination.

Assume vG
d and ωd are not constant in the global frame;

and that v̇G
d and ω̇d are also specified. Now the derivatives

contain additional terms

ėv = −ω × RT (ψ)vG
d + RT (ψ)v̇G

d (12)

+ω × v − Fdrag − M−1
N

∑

i=1

Fi

ėω = ω̇d − τdrag − J−1
N

∑

i=1

ri × Fi. (13)

Define a new control law

F̂i = F̄i + F̃ d
i . (14)

Using the Lyapunov Function defined previously, and our

result from the constant velocity case, the derivative now

contains two new terms:

Ẇ ≤ −
N

∑

i=1

(‖ev‖ − ‖ri‖‖eω‖)
2 + (15)

eT
v

{

MRT (ψ)v̇G
d − Fdrag −

N
∑

i=1

F̃ d
i

}

+

eT
ω

{

Jω̇d − τdrag −
N

∑

i=1

ri × F̃ d
i

}

.

Suggesting each agent should compute F̃ d
i such that

labeleq : feedforward

[

∑N

i=1 F̃ d
i

∑N

i=1 ri × F̃ d
i

]

=

[

MRT (ψ)v̇G
d − Fdrag

Jω̇d − τdrag

]

(16)
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which can be re-written in matrix form.

Problem 4.1: Given the desired net feed forward wrench

F d ∈ R
3 compute F̃ d ∈ R

2N such that

BF̃ d = F d (17)

where B = [B1 . . . Bi . . . BN ], and

Bi =





1 0
0 1

−ry
i rx

i



 .

Clearly, under the assumption that there are two or more

agents that are not collocated, B is full rank and a solution

exists. In fact,

F̃ d = B†F d, (18)

is a minimum effort solution, where B† is the pseudo-inverse

B′(BB′)−1. This solution was used in [1] and is analogous

to a redundant manipulator controller.

The issue we consider here is: is it possible to implement

this solution in an entirely distributed fashion; or, if not, what

information much be shared among the agents to implement

the solution. Let B̄ = (BB′) ∈ R
3×3. Thenagent i’s compo-

nent of (18) is

F̃ d
i =

[

1 0 −ry
i

0 1 rx
i

]

B̄−1F d (19)

where

B̄ =





N 0 −my

0 N mx

−my mx mzz



 . (20)

Therefore each agent maintain an estimate of B̄, called B̂i,

based on the following quantities.

• F d the feed-forward wrench computed from (??).

• rx
i and ry

i : its own location in the body frame (assumed

known).

• N : the number of agents in contact with the object

(assumed known).

• my =
∑N

i=1 ry
i and mx =

∑N

i=1 rx
i : The first moments

of the swarm’s configuration (estimated).

• mzz =
∑N

i=1(r
y
i )2 + (rx

i )2: The second moment of the

swarms’s configuration about the rotational axis (esti-

mated).

In order to estimate the values of the moments in a dis-

tributed fashion, we employ the consensus protocol discussed

in [9]. Let m̂i(t) = [m̂x
i , m̂y

i , m̂zz
i ]T be the ith agent’s

estimate of the appropriate moment at time t. Estimates are

updated according to the following dynamics

˙̂mi =
∑

j∈Ni

(m̂j − m̂i) (21)

using initial condition m̂i(0) = [Nrx
i , Nry

i , N(ri
x)2+N(ri

y)2].
In [11] it was shown that, provided the underlying graph is

connected, such protocols are globally exponentially stable;

and that the equilibrium value is a consensus equal to the

mean of the agents’s initial conditions. Therefore m̂i(t) →
[mx,my,mzz] as t → ∞.
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Fig. 5. Simulation of the time varying desired velocity controller. The plot
depicts the: x component of ev (m/s) (middle, green), y component of ev

(bottom, blue), and eω (rad/s) (top, red).
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Fig. 6. Each agents estimate of the swarm’s moments. mx (top, green), my

(middle, blue), and mzz (bottom, red).

Since the dynamics of estimates are decoupled from the

dynamics of the object, to prove the decentralized controller’s

stability it suffices to show that the feed forward term is always

bounded. That is equivalent to ensuring the determinant of B̂

Nm̂zz
i − (m̂x

i )2 − (m̂x
i )2 �= 0. (22)

The only situations in which this happens are when all the

agents are co-located (or there is only a single agent). Our as-

sumption is that the agents are in a force closure configuration,

which precludes this possibility. Therefore the equilibrium

(consensus) value never causes the determinant to be zero.

However the initial condition does violate this condition. One

possible approach, used in the simulation below, is to not

activate the pushing control laws until after the consensus

protocol has gone through at least one iteration.
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Fig. 7. The determinant of each agent’s B̂ matrix. Note they are non-zero
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Fig. 8. A screen shot of the simulation. Green lines represent the agents
forces. The path of the object’s center of mass is a circle.

Figure 5 shows a simulation of the time varying velocity

control law, with non-zero initial velocity. The velocity track-

ing errors quickly converge to zero. The object was a rectangle

2(m) × 1(m) with M = 1(kg). 15 agents are distributed

randomly around the perimeter employing the control law

(14) and (19). The desired velocities are vx = t(m/s),
vy = t(m/s), and ω = 0.1t(rad/s). The communication

network graph is a ring (i.e. the set of edges E contains only

ei(i+1) for all i < N−1 and e1N ). Figure 6 show each agent’s

estimate of the swarm’s configuration (moments m̂x(t), m̂y(t),
m̂zz(t)); while Figure 7 shows that the determinant of BB′

is non-zero for all but the initial estimates, implying that the

distributed system converges to the desired velocity. Figure 8

shows another example scenario. Here, the desired velocity

causes the object to move in a circular pattern. The figure

illustrates the path of the object’s center of mass, and shows

the force vector of each agent.

Remark 4.2: It is more difficult to accommodate a friction-

based contact-model in this scenario because, instead of simply

depending on N (a constant), the controller must estimate

the number of agents who are capable of pushing the object,

subject to friction constraints, at any given instant in time.

This is a topic of ongoing work.

V. DISCUSSION OF INFORMATION REQUIREMENTS

Regarding the constant velocity control law in Sect. III, each

agent needs to know:

• the desired velocities vd and ωd;

• the actual velocity of the object v and ω (alternatively,

its own velocity vi);

• and its own location relative to the center of mass ri.

No knowledge of M , J , the number of agents N , or the

other agent’s actions are required for stable velocity control.

Regarding the rate of convergence, note from (10) that adding

more agents never decreases the convergence rate – and

generally improves it.

The conservative bound in (10) stems from the case depicted

in Figure 3. In this case the error signals ev and eω are

essentially parsimonious requirements for agent i; however,

for agents on the far side of the midline ev and eω represent

competing requirements.

Regarding the time varying velocity control law in Sect. IV,

in addition to the information requirements for the constant

velocity control law, each agent needs knowledge of:

• the object’s mass M and inertia J ;

• the desired accelerations v̇d and ω̇d; and

• the number of agents in contact with the object N .

Finally the rate of convergence of the estimates m̂ is related

to the second smallest Eigenvalue of the graph LaPlacian,

λ2(LG), also known as the algebraic connectivity of the

graph – a measure of how strongly connected the graph

is. The ring topology used in the example has rather weak

connectivity (small λ2(LG)) while a complete graph has

very strong connectivity. In general adding links increases

λ2(LG) improving the convergence rate of m̂. While we only

consider networks with static topology and no network delays,

analogous protocols have been defined for networks where

those assumptions are relaxed [11]. They have been shown to

have similar convergence properties and could be applied to

this problem.

VI. CONCLUSION

In this paper we consider cooperative manipulation prob-

lems where a large group (swarm) of non-articulated mobile

robots is trying to cooperatively control the velocity of some

larger rigid body by exerting forces around its perimeter. We

consider a second order dynamic model for the object but use a

simplified contact model. We present two asymptotically stable

control laws. In the case of a constant desired velocity and no
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drag, it is shown that no coordination is required between the

swarm members and no knowledge of the dynamic parameters

of the object is needed. For more complex trajectories, and

drag forces, we introduce a decentralized feed-forward compo-

nent that requires some knowledge of the object’s parameters

and the swarm’s geometric configuration. An online distributed

consensus protocol is used to estimate swarm’s configuration.

An area of future work is to employ a distributed method to

estimate the number of agents in contact with the object, N ,

online – a census algorithm [6].
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