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Abstract— One of the key competencies required in modern
robots is finding objects in complex environments. For the last
decade, significant progress in computer vision and machine
learning literatures has increased the recognition performance
of well localized objects. However, the performance of these
techniques is still far from human performance, especially in
cluttered environments. We believe that the performance gap
between robots and humans is due in part to humans’ use of an
attention system. According to cognitive psychology, the human
visual system uses two stages of visual processing to interpret
visual input. The first stage is a pre-attentive process perceiving
scenes fast and coarsely to select potentially interesting regions.
The second stage is a more complex process analyzing the
regions hypothesized in the previous stage. These two stages
play an important role in enabling efficient use of the limited
cognitive resources available. Inspired by this biological fact,
we propose a visual attentional object categorization approach
for robots that enables object recognition in real environments
under a critical time limitation. We quantitatively evaluate
the performance for recognition of objects in highly cluttered
scenes without significant loss of detection rates across several
experimental settings.

I. INTRODUCTION

In computer vision, the object recognition area has experi-

enced significant progress over the last decade. But most of

the object recognition systems still require uncluttered scenes

or enough resolution of images. It is still hard to recognize

objects in extreme situations, such as highly cluttered scenes

or too small objects in images. In this paper, we propose an

object recognition approach that can handle some of these

situations efficiently and robustly.

As a first step to understand scenes in a complex world, we

need a mechanism to hypothesize important regions. Treis-

man [1] proposed a theory for object recognition composed

of two stages inspired by human visual search strategies.

According to the theory, when humans do visual search, in

the first stage they select highly salient regions by integrating

multiple features, such as shapes, colors, lines, and curves.

In the second stage they carefully identify objects within the

salient regions. Unfortunately, within the vision community

these two stages have been developed separately, and there

have been few attempts to combine them.

A. Visual Attention

Itti and Koch [2] proposed a model of saliency-based

visual attention based on Treisman’s feature-integration the-

(a) Bottle

(b) Can

(c) Mug

(d) Paper cup

Fig. 1: Example images from four target object classes ob-

tained from the LabelMe dataset [5]. The labels are depicted

on the images. Each object is in a complex environment and

the size of each object is very small.

ory [1]. The bottom-up visual attention model automatically

identifies highly salient regions based on color, intensity, and

orientation stimuli. Recently, Hou and Zhang [3] proposed a

Spectral Residual (SR) approach for fast saliency detection.

In this approach, salient regions are selected from spectral

residual, which is the difference between the log spectrum

and the smoothed log spectrum of an image. Since the

approach relies on the Fourier Transform and the Inverse

Fourier Transform, it can detect salient regions efficiently,

and demonstrates better detection performance than the Itti’s

model. Wang and Li [4] enhanced the SR approach by using

a two-stage approach, but this approach is still limited to the

bottom-up saliency detection.

B. Object Categorization

Recent work in cognitive science [6] and neuroscience [7]

suggest that if salient regions are determined by attention,

more detailed visual information of the regions is processed

through eye movements, so-called “saccades”. The fovea
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Fig. 5: Visual memory is composed of local stumps (image

patch on the left) and spatial masks (on the right). Only five

features are depicted per target object classes. (from top to

bottom) bottle, can, mug, and paper cup.

saliency map, SI , SRG, and SBY , and we get a bottom-up

saliency map Sbu:

Sbu =
1

3
(N (SI) + N (SRG) + N (SBY )) (11)

To obtain pop-out image regions that are more likely to

contain the objects we seek, the bottom-up saliency Sbu is

combined with an object likelihood model L:

S = Sbu ⊗ L (12)

where ⊗ is the element-wise multiplication. The reason

why we use the object likelihood is that the position of

objects has some spatial constraints. For instance, mug –

one of our target object classes – is likely to be placed in

the middle of images because it is usually located on the

table or next to a sink. Of course, this likelihood can be

adjusted with respect to robots’ viewpoint (tilt), although we

leave this enhancement to future work. The generation of

an object likelihood model is explained in Fig. 3. Fig. 4

shows the object likelihood models used in this paper. Note

that although each likelihood is slightly different, the overall

shapes are very close because these objects share similar

possible locations, such as tables and desks.

A simple way to obtain pop-out images from the saliency

map S is through thresholding. Threshold values were de-

termined experimentally. In addition, we also explored the

empirical number of pop-out images through experiments.

The experiments will be discussed further in section IV-A.

III. THE SECOND STAGE: OBJECT CATEGORIZATION

WITH BOOSTING

Once pop-out images are obtained from a saliency map,

our approach then executes a recognition algorithm on these

images. For this, we use a gentle-boost classifier with local

stumps and their spatial masks [14].

A. Training data and target object classes

For tuning of the boosting classifier there is a need to have

a training set. Data with four different object classes were

selected. The images used contain objects that are frequently

encountered in our daily lives. The objects were partly

selected to be difficult to detect with standard descriptor

based methods. Finally, it was desirable to have data that can

be obtained from the LabelMe dataset [5]. Fig. 1 represents

some selected images among the dataset of the four target

object classes: bottle, can, mug, and paper cup. Note that the

objects are in highly cluttered scenes and the proportion of

each object in the images is relatively small. In some images

it is even hard for a human to find the target objects. During

the training phase, local patches and their spatial information

are saved into visual memory which will be used during the

detection phase (Fig. 5).

B. Boosting on pop-out images

The usual way to detect objects with a boosting classifier

is through sliding of different sized windows across an

image. Such a brute-force strategy is not very efficient. Since

in real scenes there are many uniform regions, applying

boosting only to highly salient regions, which are probable

regions having target objects, is a better strategy, and it is

computationally efficient. The overall procedure including

the first stage is systematically represented in Fig. 2. In

section IV-B, we show that our approach scanning only pop-

out images can significantly save computing time.

IV. EXPERIMENTS AND EVALUATIONS

In this section we document the performance of our

approach. In section IV-A, we compare the detection rates of

SR, SRC, and SRC+LH (SRC with object likelihood), and

we show that our SRC+LH method has better performance.

Similarly, we quantify the performance of boosting with and

without visual attention by comparing both the recognition

result and the computation times in section IV-B.

As we mentioned in section III-A, we gathered a dataset

by searching for the four target objects in the LabelMe [5]

dataset.

A. Evaluating Saliency Detection

Initially ith pop-out images POi are acquired by thresh-

olding of the ith saliency map Si by (13):

POi =

{

1 if Si > τpu

0 otherwise
(13)

Similarly, the ith positive region Pi can be determined by

referring to the label data (14), and the ith negative region

Ni is simply the positive region’s complement (15):

Pi =

{

1 if it is labeled area

0 otherwise
(14)

Ni = Pi (15)

The ith true positive region TPi and the ith false positive

region FPi are obtained by (16) and (17):

TPi = POi ∩ Pi (16)

FPi = POi ∩ Ni (17)

Finally, the total true positive rate TPR and the total false

positive rate FPR over a set of a target object class are

calculated as follows:

TPR =

K
∑

i=1

TPi

Pi

(18)
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(c) Mug
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Fig. 6: ROC curves of SR, SRC, and SRC+LH by varying the threshold, τpu, from 0 to 1. The values of τpu are depicted

on SRC+LH curves. SRC+LH outperforms the other two methods. This ROC curves shows that best threshold value τpu is

between 0.1 and 0.3.
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(c) Mug
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Fig. 7: ROC curves of SRC+LH by varying the number of pop-out image regions, τn, from 1 to 5. Note that 3 and 5 are

nearly the same and 1 shows good performance as well. This implies that the first pop-out image is highly likely to contain

target objects, and fourth or fifth pop-out images are less likely to have the target objects.
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Fig. 8: Precision-recall graphs for the four tests. The brute force search strategy (Whole) represents very low precision

because of many more false positives. Our approaches (SRC+LH where τpu = 0.1, 0.2, and 0.3) show much better precision

without significant loss of recall.

FPR =
K

∑

i=1

FPi

Ni

(19)

where K is the number of images of the target object’s

dataset.

With these criteria, the ROC curves of the four target

object classes are obtained by varying τpu from 0 to 1 as

shown in Fig. 6. According to the ROC curves the SRC+LH

method is superior to the SR or SRC applied on their own.

The threshold value τpu shows the best performance around

0.2, but varies slightly depending on target objects.

In addition to varying τpu, we also investigated the effect

of the number of pop-out images, τn. The ROC curves

of SRC+LH with respect to the τn are depicted in Fig. 7

by varying τn from 1 to 5. Following winner-take-all and

inhibition of return [2], we selected pop-out images in

order of peak values. In Fig. 7 the detection rates generally

converge when τn = 3. Considering that the detection rates

in τn = 1 are high enough, we can guess that the first pop-

out image is highly likely to have the target object.

B. Evaluating Object Categorization with and without Visual

Attention

In this section, for verifying the advantages of using visual

attention, we present an experiment with boosting applied

to the original images and pop-out images generated by

our visual attention model. Since the size of each image

varies, we first resize every image to 1024 × 768 pixels, and

for scale invariance we build up pyramidal images across
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Fig. 10: Average execution times of each strategy. Our SRC+LH strategies outperform the whole detection strategy in

computing times. The error bars represent the standard deviation of execution times.

TABLE I: F1-measure for objects detected. Our SRC+LH

strategies show higher scores than the whole detection strat-

egy.

Bottle Can Mug Paper cup

Whole 0.3556 0.3404 0.1507 0.4348
SRC+LH 0.1 0.4828 0.6400 0.3014 0.5806
SRC+LH 0.2 0.4000 0.6087 0.4255 0.6087

SRC+LH 0.3 0.4444 0.4762 0.4118 0.6000

five scales in which the scale step is 0.7. Fig. 9 shows

representative boosting results of bottle, can, mug, and paper

cup.

To count the detection across five scales of an image, we

merge the detection regions into one image. We compare

results through merging of regions. In the image, when there

are more than two areas in a merged region, a comparison

is performed. If the merged area is the label area which

contains the target object region, it is regarded as a true

positive, and if the merged area has less than 50% overlap

with the target region, it is regarded as a false positive. In the

false positive case, if the merged area is composed of two

or more areas across scales, we count the maximum number

of false positive areas for each scale. By following these

criteria, we plot precision-recall graphs in Fig. 8. According

to the plots, the precision increases as τpu increases, while

the recall varies significantly less. The F1-measure for the

detection results is shown in Table I. These results show that

our visual attention model SRC+LH performs better than the

complete detection strategy.

The advantages from visual attention are not only in terms

of fewer false positives, but also in terms of computational

benefit. The application of a saliency detector reduces the

need for search which in turn reduces complexity. Fig. 10

shows the execution times for our approach. In SRC+LH

strategies, the computation times of saliency detection with

object likelihood are included in the average execution times,

but since our attentional model is efficient enough, the

additional cost is negligible. As τpu increases, the size and

the number of pop-out images decrease, hence the execution

times decrease significantly.

V. CONCLUSIONS AND DISCUSSIONS

Inspired by the two-stage framework from cognitive psy-

chology, we proposed an object class recognition approach

using bottom-up visual priming, top-down object likelihood,

and a boosting object classifier. Our SRC+LH approach

detects more accurate pop-out images than the original SR

approach. We also showed that a gentle boosting classifier

with visual attention promises better precision as well as

more efficient computations. We believe that our combined

approach will be an alternative to previous descriptor-based

recognition schemes to detect objects in extreme situations.

We anticipate that our approach will be useful in robotic

applications, especially, in the service robotics area which

requires robust object categorization in highly cluttered en-

vironments under some time constraints. Here our approach

can provide an efficient and accurate object class recognition

solution. When our approach is applied in robotic applica-

tions, we expect that the recently proposed spatio-temporal

saliency detection [25] will help robots perceive an additional

saliency channel, motion saliency, which has been ignored

for a long time even though it is very important in human

perception [26], [27], [28].

Although we tried to minimize false positives by only

focusing on pop-out regions, we think that there is more

room to enhance the recognition rates. As Torralba et al. [15]

indicated, the global scene based context will play an im-

portant role as a top-down guidance for adjusting the object

likelihood. With the place context we should also consider

the camera tilt information of robots in order to obtain a

more accurate saliency map. In addition, if we use additional

prior knowledge of target objects, such as maps and objects’

positions in them obtained from SLAM (Simultaneous Lo-

calization And Mapping) which is a major robotics area, we

could expect more robust recognition through probabilistic

inference.

Last but not least, even though we do not currently

adopt the joint boosting proposed by Torralba et al. [14],

if we try to share local stumps across object classes, we

could anticipate not only better recognition performance, but

also attain a solution for scalable issue as object’s classes

increase.
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