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Abstract— We study the problem of localizing a balloon
in the atmosphere of Saturn’s moon Titan by registering
onboard imagery with orbital imagery. This is critical for both
autonomous navigation purposes and acquisition and sampling
of scientifically interesting sites. Because of Titan’s atmospheric
opacity, we require the ability to match combinations of visible,
infrared (IR) and synthetic aperture RADAR (SAR) images.
For both localization and direct use as a multi-modal data
product for science analysis, match results must be sub-pixel
accurate. We demonstrate the feasibility of matching orbital
SAR data to visible and IR imagery and outline a framework
for using this data as a navigation product. We demonstrate a
technique to compensate for local distortions to enable accurate
data registration in spite of differences in sensor return and
imaging geometry. Finally, we show match results using both
terrestrial imagery and the limited amount of available Titan
data acquired by the Cassini orbiter and Huygens probe.

I. INTRODUCTION

While many approaches to image registration exist, the

majority assume similarity in the underlying image intensi-

ties at corresponding pixels, possibly modulo some easily

modeled transformation. See [2], [16] for broad surveys

of such techniques. In cases where registration is required

between sensors capturing different physical phenomena,

the majority of these techniques fail. We adopt a class of

algorithms relying on statistical similarity measures such as

Mutual Information (MI). These methods have been used

successfully by the medical imaging community [9] and, to a

lesser extent, by the remote sensing community [6] to match

images across different sensor modalities. The requirement

is that while the images to be matched may have different

appearances, they must have similar information content. MI

and similar methods have also been used in computer vision

for stereo correlation and image correspondence [7], [16].

We apply them in the context of space exploration.

Our motivating case is a future long-term balloon mission

to Saturn’s moon Titan, a high priority exploration target for

a variety of reasons, including its potential to host prebiotic

or protobiotic chemistry that could reveal steps in the origin

of life [10]. Such a balloon would have a science payload

and would require a significant degree of autonomy due to

communications delays arising from the distances involved.
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For both science return and autonomous navigation pur-

poses, it is necessary to precisely localize the balloon relative

to Titan’s surface. A highly probable scenario, as confirmed

through communications with members of the Mission Study

Team at the Jet Propulsion Laboratory (JPL) responsible for

planning a future Titan mission, is to match imagery acquired

from the balloon to imagery acquired by a spacecraft in

orbit. Because of Titan’s atmospheric opacity, this requires

the ability to match combinations of visible, IR and synthetic

aperture RADAR (SAR) images. For both localization and

direct use as a multi-modal data product for science analysis,

match results must be sub-pixel accurate.

In §II we explain how an image matching approach fits

into a balloon navigation framework. Details of the proposed

match algorithm are then presented in §III. We show match

results on both the limited Titan data available (§IV-A) and

on a more extensive set of terrestrial data (§IV-B). We present

a brief analysis of match sensitivity to errors in scale and

orientation in §IV-C. In §IV-D we show an example of

accounting for non-linear distortions arising from inherent

differences in sensor response and imaging geometry be-

tween SAR and Short Wave Infrared (SWIR) instruments.

II. NAVIGATION FRAMEWORK

Our scenario assumes that a survey of Titan, or at least of

the areas to be explored by a balloon mission, will have been

performed by an orbiter and that the orbital data provides a

global context for low altitude navigation. Presently, there is

limited hyperspectral and SAR coverage of Titan’s surface

by instruments aboard the Cassini spacecraft [11], [3]. This

coverage is increasing and is expected to be extensively

augmented by future orbiter missions.

Because of the large differences in image scale between

an orbiter at hundreds of kilometers above the surface and a

balloon at a few kilometers altitude, it is necessary to match

mosaics from the balloon to single frame orbital images.

Observe that in addition to localizing the balloon, this implies

the ability to generate high-resolution global maps of the

surface that are correctly geo-referenced.

A potential complication is that orbital images are effec-

tively orthographic, while Titan has enough surface relief

that image mosaics acquired from a few kilometers must

account for perspective effects. Ultimately, this requires that

the underlying 3D scene structure be addressed in some

way [15] prior to mosaicking. We assume for the purposes

of this paper that the problem has been solved or that we

are focusing on areas of low surface relief. In either case,

composing a sequence of images into a mosaic with coverage

adequate for orbital matching is straightforward. Fig. 1 shows
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an example using imagery from an experimental JPL airship

over a desert terrain.

Relative image scale between orbital and balloon imagery

is expected to be known from a combination of accurate

navigation solutions for the orbiter and laser or RADAR

altimetry for the balloon. A good inertial measurement unit

(IMU) also provides highly accurate relative attitude for the

balloon, while absolute attitude for the orbiter is known to

high precision [8][1]. Once a global attitude is initialized1,

the primary uncertainty in pose knowledge becomes transla-

tional. The inherently poor translational solution provided by

inertial navigation is further complicated by the presence of

wind in Titan’s atmosphere. Therefore, our focus is primarily

on establishing position from image matching assuming good

knowledge of relative scale and orientation. In §IV-C we

show that the requirements for this scale and orientation

knowledge are mild and easily accommodated.

Depending on mission requirements, image matching may

be carried out aboard the balloon. This requires that context

imagery (i.e. a geo-referenced map) be available. Because

of storage limitations, we envision this map being updated

periodically, as the balloon navigates out of the current

map region into another, from either a spacecraft in orbit

or directly from Earth. The position estimate from the

match algorithm will serve as one component of a filtered

navigation solution.

III. ALGORITHM OVERVIEW

The image data expected to be available from orbit,

primarily SAR and some IR based on the example of the

Cassini spacecraft, will differ substantially in appearance

from mosaicked imagery from a balloon, for which the nom-

inal imaging payload is a visible camera. The implication for

image matching is that traditional intensity-based techniques

are unlikely to succeed. As mentioned in §I, we intend to

use statistical similarity measures to match orbital imagery

to balloon mosaics.

Our scenario differs from typical terrestrial applications of

these techniques in that our images are often low contrast and

consist of unstructured scenes. We show that the proposed

methods remain reliable in these cases and are suitable for

the intended application. We begin with a brief overview

of the technique and mention a few details specific to our

implementation. A thorough summary of the basic approach

can be found in [6].

A. Basics

If I1 and I2 are a pair of image patches, then a measure

of similarity between them is the degree to which their joint

probability distribution P1,2 can be written as a product of

the marginal distributions, P1 ⊗ P2. Here, we approximate

the probability distributions by the intensity histograms of

the image patches. If the image patches are completely

uncorrelated, then we expect

P1,2 = P1 ⊗ P2 (1)

1e.g. by an explicit search over attitude using the methods presented here

It follows that any distance measure f in the space of

probability distributions provides a similarity measure S

between image patches via

S(I1, I2) = f(P1,2, P1 ⊗ P2) (2)

where similarity increases with S. The general class of such

probability distances, called f−divergences, includes several

common candidates, some of which we list in Table I. In

all cases, M and N are probability distributions. In our

application, they represent P1,2 and P1⊗P2 as in Eqs. 1 and

2. In the last row of Table I, KL / MI refers to Kullback-

Leibler divergence or Mutual Information. We found that in

Name Expression

Kolmogorov f(M, N) = 1
2

∫
|N − M |

χ2 f(M, N) = 1
2

∫
(N−M)2

M

Toussaint f(M, N) =
∫

M − 2NM

N+M

KL/MI f(M, N) =
∫

M log(M

N
)

TABLE I

LIST OF CANDIDATES SIMILARITY MEASURES FOR COMPARING

PROBABILITY DISTRIBUTIONS M AND N .

practice that there was little to distinguish the four measures

listed in Table I in terms of match success. We use MI for

the results presented in the following, since the latter has

a clear information theoretic interpretation as the difference

between the Shannon entropy of M and the cross entropy of

M and N via∫
M log(

M

N
) = −

∫
M log(N) +

∫
M log(M) (3)

= H(M, N) − H(M) (4)

where H is Shannon entropy[12].

B. Implementation Details

We now list some implementation specific details. The

overall match mechanism is similar to stereo correlation.

A small template T (representing the balloon mosaic) is

localized in a large map M (representing an orbital image) by

moving the template over the map and computing a similarity

measure as in Eqn. 2. In effect, the location (x, y) of the

template in the map is given by

(x, y) = arg max
(x,y)

S(T, M(x,y)) (5)

where M(x,y) represents a portion of M centered at (x, y)
of dimensions equal to T . Unlike stereo correlation, there

is limited scope for information re-use along the lines of

running sum optimizations. This is due to the need to

compute a joint histogram at each trial position, a process

for which information cannot be re-used in a simple fashion

following a one pixel shift of the template. We compensate

in part for the implied computational burden by adopting

a coarse to fine strategy. A search over the full map is

accomplished only at the coarsest level of refinement. Each

subsequent refinement assumes at most a one pixel error
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Fig. 1. Several frames of a sequence taken from an experimental airship are shown on the left. A mosaic generated from these images is shown on the
right. Observe that the road appears perfectly straight in the mosaic.

in match location. After the integer match is found at full

image resolution, a subpixel match is computed following

the example of stereo correlation. We use the values of S in

Eqn. 2 in the 3 × 3 neighborhood around the maximum to

estimate a quadratic surface. The location of the maximum

of that surface represents the subpixel best match of T in

M .

Prior to matching, imagery is prefiltered to remove noise.

This is critical for SAR imagery in particular. We experi-

mented with Gaussian convolution but found slightly more

robust match response by using bilateral filtering[14]. The

latter accomplishes a degree of noise suppression without

smearing fine structures.

Probability distributions are approximated by intensity

histograms smoothed by a Gaussian filter. Results can be-

come erratic without this smoothing as the theory underlying

this approach assumes some degree of regularity in the

probability distributions. The number of bins in the histogram

(i.e. the effective bit depth to which the image is reduced) is

based on template size and a global analysis of intensity

distributions at full bit depth. In practice, we found that

5 or 6 bits (32 or 64 intensity bins) always sufficed for

our examples with fewer bins being required as template

sizes were reduced. This becomes especially relevant since

we adopt a coarse to fine approach for matching. At the

coarsest level, where we assume no prior information on

match location, the smallest bit depth feasible is used to

reduce computational burden. In flight operations, it may be

necessary to learn these minimum bit depths for a particular

terrain type by iteratively reducing from a nominal value.

C. Match Refinement

In some cases, the nature of the sensor data returned

will vary between instruments, and there may be inherent

differences in the image formation process. For example,

SAR imagery directly measures topography, while intensity

imagery measures albedo and illumination. This leads to

local image-relative distortions even when a gross match

between map and template is accurate. In an effort to further

refine the match result for navigation while simultaneously

providing improved data co-registration for better mapping

and science analysis, we find it necessary to correct these

local distortions. We do not rely on direct reconstruction of

underlying scene structure (e.g. via Structure from Motion),

since surface relief alone will not account for all cross-modal

image variation. Instead, we focus directly on the imagery

as follows:

• Compute an initial match as described, using the full

match template T .

• Find salient features pi in either T or matched region

of M depending on image type (say T for notational

simplicity).

• Using small search regions Ti centered at pi and the

initial match, refine the location of each Ti in M to qi

using the chosen similarity measure (e.g. MI)

• Perform outlier rejection:

–Prune correspondences with low similarity score

–Perform robust detection of remaining outliers via

thresholding of mapping errors within a RANSAC[4]

framework

• Compute Delaunay triangulations based on pi and qi.

• Warp convex hull of triangulated region in T to match

triangulated region in M using cubic warp in interiors

of triangles [5].

Note that the refinement step depends on the initial match

derived from the large support region provided by T . Since

the process is driven by statistics in the support region rather

than pixel to pixel intensity matches, a large degree of local

distortion can be accommodated depending on the template

size. Salient features can be as simple as Harris corners

provided the imagery is suitable, but alternatives include

maxima of local KL divergence (more useful for SAR) or

even a uniform gridding of the image. The local refinement

of each Ti is accomplished in the same manner as the

gross match, using Eqn. 5. Note that in addition to filtering

correspondences on simple match score, we use RANSAC

as a robust statistical outlier rejection technique [4].

IV. RESULTS

Our results focus primarily on terrestrial examples since

those are the most readily available. However, we have

acquired some of the limited relevant data from Titan.

Note that the lack of ground truth for these datasets

makes validation somewhat subjective and that our primary
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evaluation tool consists of comparison to hand-registered

data. Similar techniques used in terrestrial remote sensing

[6] have relied on man-made structures and high contrast

regions with distinctive features for match validation. Our

problem requires more challenging test cases with the atten-

dant difficulty in validating match accuracy. Nevertheless,

for a proof-of-concept application of information theoretic

matching techniques to Titan and Titan-like scenarios, we

believe that our results are convincing.

A. Titan

The sole existing example that matches our application

scenario perfectly is a comparison between a SAR image (2.8

cm Ku-band) taken from Cassini and a mosaic created from

imagery (660-1000 nm) acquired by the Descent Imager-

Spectral Radiometer (DISR) system aboard the Huygens

probe as it landed on Titan. In Fig. 2, we show a hand match

done by the U.S. Geological survey [13] and our result.

While no ground truth exists, the automatic match is identical

to the hand registration in localizing the mosaic in the SAR

image. Since this example matches mosaicked imagery in

Fig. 2. DISR mosaic matched to and overlayed on Cassini SAR image.
Automatic registration produces results identical (to the pixel level) to hand
expert hand registration by USGS.

atmosphere to orbital data, the result is compelling for our

intended application. Furthermore, it establishes that imagery

acquired through Titan’s narrow spectral visibility window

can be matched to orbital imagery, a fact not obvious without

this example.

We have also successfully matched near IR imagery from

the Cassini Imaging Science Subsystem (ISS) and IR im-

agery from the Visible and Infrared Mapping Spectrometer

(VIMS) to SAR. The latter is a hyperspectral instrument from

which an image consisting of 3 IR bands was matched to

SAR. These results also match registrations done by hand

Fig. 3. VIMS IR image (left), Cassini SAR (center), match overlay results
(right). Automatic registration produces results identical to expert hand
registration.

[13]. The VIMS example is shown in Fig. 3. Note that

a smaller template is used for the automatic registration

method and that while the automatic match did not color

balance the overlay, the result is identical to the pixel level.

B. Terrestrial

Terrestrial multi-modal data is available in much greater

abundance. We show in Fig. 4 an example from Death Valley,

CA of 4 sensors imaging the same region. The appearance

change between instruments is substantial and cannot be

compensated for using direct manipulation of the intensity

images. Thus, this type of terrestrial data is a good candidate

to test image matching in the absence of appropriate Titan

data. Our experiments used SPOT (500-730 nm) imagery

of Death Valley, CA and ASTER (SWIR, 1600-1700 nm)

imagery of Rancho Cima, TX at a pixel resolution of 1500

x 1500 as map images. The coarse to fine match started

with up to an 8X reduction in image dimensions with a

50 x 50 minimum size restriction on the template. Various

instruments were used to derive templates. A few match

results are shown in Fig. 5. Ground truth was not available,

so the estimates of match accuracy are subjective. A full

list of successful trials, using multiple locations in each map

image is listed in Table II.

Map Template

SPOT Landsat TM, band 3 (630-690 nm)*

SPOT SEASAT, L-band SAR (23.5 cm)

SPOT SIR-C, C-band SAR (5.8 cm)

ASTER Landsat TM, band 5 (1550-1750 nm)*

ASTER TIMS, band 3 (9-9.4µm)

ASTER SIR-C, C-band SAR (5.8 cm)

ASTER AirSAR, C-band SAR (5.8 cm)

TABLE II

TEST CASES USED FOR AUTOMATIC MATCHING. TEN DIFFERENT

TEMPLATES WERE USED FOR EACH CASE LISTED.

There were no failure cases, provided a template size of

500 x 500 (or 11% of the map size by area) was used.
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Fig. 4. Identical location in Death Valley acquired by four different instruments with wide variation in appearance between images.

Fig. 5. Automatic registration of (1A) SPOT image to (1B) LANDSAT, (1C) SEASAT and (1D) SIR-C and of (2A) ASTER to (2B) TIMS, (2C) SIR-C
and (2D) AirSAR. Matching succeeds in spite of wide appearance change.

In most cases, provided some image texture existed in the

template region, the minimal template size could reliably

be reduced to 200 x 200 (or 1.8% of the map size). For

navigation purposes, we assume a good prior on position

from the previous localized frame and the onboard state

estimator. As a result, we anticipate that the effective map

size that must be searched will be greatly reduced and that

11% is already pessimistic for a template to map ratio. This is

significant in terms of computational complexity. Even with

an unoptimized implementation of the match algorithm, we

find that for the ASTER vs. SIR-C case and a template size

of 400 x 240 that reducing the native map size to span 3 times

the template size (Template was 35% of reduced map in area)

reduces runtime by a factor of 18 from 9 sec. to 0.5 sec on a

standard 2 GHz laptop. Note that in the two starred cases in

Table II there is spectral overlap. However, in the SPOT vs.

Landsat case, there was still significant appearance change,

while in the ASTER vs. Landsat case, there was significant

difference in contrast. Both cases failed with SAD correlation

in regions where Mutual Information succeeded. An example

of the former can be seen in (1B) of Fig. 5

C. Orientation and Scale

We tested the sensitivity of our match algorithm to errors

in orientation and scale. All tests were conducted using the

terrestrial data shown in Table II with 500 x 500 templates

in regions of relatively high texture. Ground truth was taken

as the match result with no input error. In each case, the full

1500 x 1500 ASTER or SPOT map was searched for a match,

and success was defined as accuracy to within one pixel of

ground truth. We tested orientation sensitivity by rotating the

template in-plane in steps of 1 degree. We found that in all

cases, matches were successful with rotations of less than 5

degrees. We tested scale sensitivity by scaling the template in

steps of 1% of image dimensions. Again we found that within

bounds of 5% image scale error, matches were successful.

This is well within expected scale and orientation uncertainty

[8],[1].
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Fig. 6. Closeup of ASTER vs. AirSAR result. Landmarks are indicated by dots, and image correspondences by arrows. The initial match is correct on
global scale but shows significant local mismatch. Match results improve dramatically after non-linear warping.

D. Local Distortion

Consider (2D) in Fig. 5. This is an example of two differ-

ent sensing modalities for which the resulting imagery cannot

be directly related by a linear transformation. Furthermore,

the ASTER image is from a nadir viewpoint, while the

AirSAR image is a sidelooking airborne RADAR, further

complicating the local match. In (A) of Fig. 6, we see a

closeup of the ASTER image with several obvious landmarks

highlighted with black dots. In (B), the same landmarks

are indicated with dots, while the correspondence from the

match result is indicated with arrows. The two agree in the

lower portion of the image, but there is significant error

visible in the upper portion. This illustrates that while a

large template produces an overall match driven by statistical

similarity, local errors persist. Provided we can compensate

at the local level, this is clearly a strength rather than a

weakness. We apply the method described in §III-C to adjust

the image. The Delaunay triangulation of the ASTER image

is shown in (C) with image contrast artificially enhanced to

make the triangulation more visible. Finally, (D) shows the

warped result in the convex hull of the triangulated network.

Observe that visible landmarks (dots) now match the image

correspondence (arrows) throughout.

V. CONCLUSIONS

We propose a solution for localization of a balloon in

Titan’s atmosphere using multi-modal image registration

between mosaicked balloon imagery and orbital imagery. We

have shown that the basic approach works using both terres-

trial data and the only directly relevant data available from

Titan. Our analysis shows that an assumption of translation

uncertainty alone suffices, given the expected fidelity of scale

and orientation information. Finally, we have shown that in

spite of differences in data return and imaging characteristics

between widely disparate sensors, we can perform a local

refinement. This serves as both an aid to localization and

as a product in itself with applications to high-resolution

mapping and scientific analysis.
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