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Abstract— A stable non-linear oscillator for autonomous
biped stepping control is designed in a top-down manner by
morphing dynamics of standing regulator. It resolves three
problems which have been in the conventional artificial CPG
approaches, namely, 1) how to unify it with the standing
control, 2) the controller parameter tuning with complicated
networked unit oscillators, and 3) a design of an extra sensory
feedbacks to be superimposed for stabilization. The proposed
control is built upon the stabilizability-maximized COM-ZMP
regulator developed by the author, and only a single parameter
seamlessly connects it to a stable limit cycle without degrading
the stabilization performance. By synchronizing the foot-lifting
with a limit cycle of ZMP, a stable periodic alternate stepping
is achieved. Since it is free from time-driven trajectory, it
is expected to be a fundamental technique to build robust
autonomous biped controllers.

I. INTRODUCTION

Legged robots are expected to work by locomoting ro-

bustly and standing stably in spite of uncertainties about

terrains and unpredicted disturbances in the environment.

It is obvious that detailed referential motion trajectories as

time-driven functions make almost no use for task operations

in realistic situations. A crucial issue is to design a motor

controller as an autonomous system, which is not slaved by

time but by dynamical events. It is a challenging problem

since the legged robots are strongly nonlinear systems with

the structure-varying property[1]; they lack mechanical con-

nection to the environment and locomote by deforming the

supporting region discontinuously.

Two fundamental motions of bipeds are the standing

stabilization and the periodic alternate stepping. Those

motions, which we humans do without any difficulties,

have different characteristics from each other in terms of

dynamics. The standing stabilization means to let the center

of mass (COM) converge to the equilibrium point, so that

it is formulated as a regulator design problem — a linear

regulator in many cases[2][3][4]. On the other hand, the

autonomous periodic alternate stepping is hardly achieved

in the linear control framework; it is required to make

COM converge asymptotically to a stable limit cycle[5].

For this purpose, coupled van der Pol oscillator[6][7][8][9],

Matsuoka oscillator[10][11][12][13][14] and Kuramoto

oscillator[15][16][17], for instance, have been studied.

Many of them are inspired by a biological knowledge about
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the motor control with the central pattern generator (CPG)

[18]. Those previous controllers have the following three

problems.

1) The controller structure differs largely from the stand-

ing regulator, so that it is hard (or even impossible) to

unify them.
2) Tuning policy of a number of controller parameters is

hardly found, since the controller is built from several

mutually-connected unit oscillators in a bottom-up

manner.
3) They are basically nothing more than function genera-

tors; they have adaptabilities to external perturbations,

but do not have stabilization abilities themselves. Extra

sensory feedbacks should be superimposed on their

output signals in order to stabilize the system. It makes

the controller more complicated.

This paper proposes a novel controller designed rather in

a top-down manner to resolve the above shortcomings. Con-

cerning with the standing stabilization issue, the author[19]

has clarified the sufficient condition of COM regulators to

maximize the stabilization performance under the constraints

about reaction forces through manipulation of the zero-

moment point (ZMP)[20]. It is shown that the COM regulator

dynamically morphs into a nonlinear oscillator with a stable

limit cycle by modulating its damping term without degrad-

ing the stabilization performance. Being different from the

conventional artificial CPG approaches, an adaptive oscilla-

tion and stabilization are naturally merged on an identical

controller. As the result, ZMP also converges to a limit

cycle. A stable periodic alternate stepping is achieved by syn-

chronizing foot-lifting with it. Though we take an opposite

standpoint to Morimoto et al.[17] in the sense that they regard

ZMP oscillation as the result of stepping, our conclusion

theoretically supports their method, and moreover, clarifies

the senses of each controller parameter.

II. STABILIZABILITY-MAXIMIZED COM-ZMP

REGULATOR[19]

It is important for the design of robust biped controllers to

understand the biped robot as an open system, which dynam-

ically interacts with the environment[21]. Let us consider a

planar bipedal motion on the lateral plane as shown in Fig. 1.

We assume that the inertial torque about COM is less enough

to be neglected than the moment of linear inertial force about

ZMP, and that the height of COM is constant as z = const.
for simplicity. Also, let us denote the lateral COM position

by x, the referential COM position by ref x and the ZMP

position by xZ , respectively. We get the following linear state
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Fig. 1. An approximate mass-concentrated biped model in lateral plane.
ZMP xZ moves within the supporting region xZmin ≤ xZ ≤ xZmax . The
height of COM is assumed to be constant.

equation in which ZMP is regarded as the input[22]:

d

dt

[

χ
χ̇

]

=

[

0 1
ω2 0

] [

χ
χ̇

]

+

[

0
−ω2

]

χZ (1)

where χ ≡ x − ref x, χZ ≡ xZ − ref x, ω ≡
√

g/z and

g = 9.8[N/kg] is the acceleration due to the gravity. Even in

this simplest dynamical model, χZ is constrained within the

supporting region [χZmin , χZmax ] as

χZmin ≤ χZ ≤ χZmax (2)

where xZmin ≡ χZmin + ref x and xZmax ≡ χZmax + ref x
are the right and left bounderies of the supporting region

on x-axis. In this model, ZMP plays a role as a ’channel’

through which the robot and the environment exchange

forces.

Let us design the referential ZMP, which works as the

input to the system to stabilize COM around the reference,

with the constraint condition (2) taken into account as

follows:

χ̃Z = (q + 1)

(

χ +
χ̇

ω

)

(3)

χZ =











χZmax (S1 : χ̃Z > χZmax )

χ̃Z (S2 : χZmin ≤ χ̃Z ≤ χZmax )

χZmin (S3 : χ̃Z < χZmin)

(4)

where q is a positive constant. χ̃Z is called the simulated

ZMP[23]. By controlling the actual ZMP to track the above

referential ZMP, we get an autonomous COM dynamics,

which is represented as the following piecewise-affine sys-
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Fig. 2. Curves of the piecewise-affine autonomous system with the

stabilizability-maximized COM-ZMP regulator for ω =

p

g/0.27, ref x =

0, xZmin = −0.07, xZmax = 0.07 and q = 0.5.

tem:

d

dt

[

χ
χ̇

]

=











































[

0 1

ω2 0

][

χ

χ̇

]

+

[

0

−ω2χZmax

]

(S1)

[

0 1

−ω2q ω(q + 1)

][

χ

χ̇

]

(S2)

[

0 1

ω2 0

][

χ

χ̇

]

+

[

0

−ω2χZmin

]

(S3)

. (5)

It is known that the above controller maximizes the set of

initial COM states which can be stabilized (we call it the

stable standing region, hereafter) as long as the state (S2)

includes (χ, χ̇) = (0, 0) i.e. χZmin < 0 < χZmax . In this

sense, the controller is called the stabilizability-maximized

COM-ZMP regulator. Refer to the paper[19] for more details.

Fig. 2 shows the solution curves in the phase space of the

system for χZmin = −0.07[m], χZmax = 0.07[m], z =
0.27[m] and q = 0.5. The dotted area (or, the blue area for

readers with color) in the figure is the stable standing region.

III. LIMIT CYCLE EMERGENCE BY DYNAMICS

MORPHING

For the alternate stepping, a self-excited oscillation should

happen under the constraint condition (2). The stabilizability-

maximized COM-ZMP regulator never yields such charac-

teristics since it is basically a linear feedback controller. It

is required to design a nonlinear feedback controller which

emerges a stable limit cycle besides the property where the

stabilizable region is maximized. Then, let us re-design the

referential ZMP in the state (S2) instead of (3) as

χ̃Z = (q + 1)

(

χ + f(ζ)
χ̇

ω

)

(6)
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Fig. 3. Non-linear damping for a self-excited oscillation which continu-
ously morphs from a linear damper.
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Fig. 4. The existence of a limit cycle in the system (9) is proved based
on Poincaré-Bendixson’s theorem.

where

f(ζ) ≡ 1 − ρ exp

{

1

(q + 1)2
− ζ2

r2

}

, (7)

ζ ≡
√

χ2 +
χ̇2

ω2q
, (8)

r > 0 and ρ ≥ 0 are adjustable controller parameters, whose

roles will be clarified in the following descriptions.

The system in the state (S2) is expressed by the following

differential equation:

χ̈ + ω(q + 1)f(ζ)χ̇ + ω2qχ = 0. (9)

The profile of f(ζ) defined by (7) with respect to ζ forms

as depicted by Fig. 3. When ρ = 0, it becomes identical

with the stabilizability-maximized COM-ZMP regulator. By

increasing ρ gradually, the damping term is nonlinearly

modulated. When ρ > exp

{

− 1

(q + 1)2

}

, the autonomous

system (9) has the following stable ellipsoidal limit cycle:

χ2 +
χ̇2

ω2q
=

{

1

(q + 1)2
+ log ρ

}

r2. (10)

This fact is proved as follows.

Proof. Here, we focus on the case where

ρ > exp

{

− 1

(q + 1)2

}

.

Let us define

r′ ≡
√

1

(q + 1)2
+ log ρ r. (11)

For this r′,

ζ ⋚ r′ ⇐⇒ f(ζ) ⋚ 0. (12)

Let us put the following ellipse E on the phase space as

shown in the left side of Fig. 4:

E: χ2 +
χ̇2

ω2q
= R2 (R > 0), (13)

and consider a point (χ,χ̇)=(R cos θ,ω
√

qR sin θ) on

the ellipse. Concerning with the tangential vector

[− sin θ, ω
√

q cos θ]T of the ellipse E and the gradiant

vector [χ̇, χ̈]T at the point, let us define

D(R, θ) ≡
∣

∣

∣

∣

χ̇ − sin θ
χ̈ ω

√
q cos θ

∣

∣

∣

∣

= −ω2(q + 1)
√

qf(R) sin2 θ.

(14)

We get a fact

D(R, θ) ⋚ 0 ⇐⇒ R ⋚ r′ (15)

where it has equality if and only if θ = 0, π. It means that

[χ, χ̇]T flows into E when R > r′, while [χ, χ̇]T flows out of

E when 0 < R < r′ as illustrated by the right side of Fig. 4.

Then, we can conclude that the system has an ellipsoidal

stable limit cycle which coincides with E from Poincaré-

Bendixson’s theorem.

Q.E.D.

In particular, the solution of (10) becomes a harmonic

oscillation with the amplitude
r

q + 1
and the period

2π

ω
√

q
for ρ = 1. Furthermore, we see

lim
ζ→∞

f(ζ) = 1 (16)

with respect to a set of arbitrary positive q, ρ and r. The

above facts tell that the proposed controller emerges a stable

ellipsoidal limit cycle around the equilibrium point, but keeps

a close property to the stabilizability-maximized COM-ZMP

regulator at a distance from the point. Fig. 5 shows some

phase portraits of the system for χZmin = −0.07[m],

χZmax = 0.07[m], z = 0.27[m], r = 0.05[m] and q = 0.5.

(a), (b) and (c) are for ρ = 0.5, ρ = 0.642 ≃ e
−

1
(q+1)2 and

ρ = 1.0, respectively. When ρ ≃ 0.642, a limit cycle appears.

Moreover, the stable standing region is invariant with respect

to any ρ in these cases.
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Fig. 5. Curves of the autonomous system with non-linear ZMP feedback for ω =

p

g/0.27, ref x = 0, xZmin = −0.07, xZmax = 0.07, q = 0.5 and
r = 0.05. ρ varies from 0.5 to 1.0. When ρ ≃ 0.642, a limit cycle appears. The stable standing region is invariant with respect to any ρ in these cases.
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Fig. 6. Phase-synchronized step is achieved in stable oscillation. ZMP-
phase and accordingly COM-phase tells permission for a foot to be lifted-up.

IV. PHASE-SYNCHRONIZED BIPED STEPPING

The transfer function G(s) from xZ to x is

G(s) =
ω2

−s2 + ω2
. (17)

Hence, we get the following frequency response:

G(iΩ) =
ω2

Ω2 + ω2
(18)

where i is the imaginary unit. It tells that ZMP synchronizes

to COM without the phase lag with the gain G(iω
√

q) =
1

q + 1
when the COM state (χ, χ̇) is moving asymptotically

along the limit cycle. In particular, the amplitude of ZMP

for ρ = 1 is r as long as r < min {|χZmin |, |χZmax |}
is satisfied. Consequently, a stable alternate stepping which

synchronizes with the ZMP oscillation is achieved by the

following method.

First, let us define a complex number pZ as

pZ ≡ χZ − (q + 1)χ̇

ω
√

q
i. (19)

Suppose ZMP is oscillating along x-axis with the amplitude

r, and the inner edge of the left sole is at x = xLin . As

shown in Fig. 6, ZMP lies within the left sole when pZ

satisfies

0 ≤ φL ≤ 2θL (20)

where

φL ≡ ∠
pZ

pLin

(21)

pLin ≡ xLin − i sin θL (22)

θL ≡ cos−1
xLin

r
. (23)

Then, the right-foot lifting height zR with respect to φL is

determined by the following equation, for instance:

zR =
1

2
h

(

1 − cos π
φ̃L

θL

)

(24)

φ̃L ≡ sat {φL, 0, 2θL} (25)

where h is the maximum foot-lifting height and sat {x, x, x}
is the saturation function defined as

sat {x, x, x} ≡











x (x > x)

x (x ≤ x ≤ x)

x (x < x)

. (26)

The left-foot lifting height zL is also determined in a

symmetric way as:

zL =
1

2
h

(

1 − cos π
φ̃R

θR

)

(27)

φ̃R ≡ sat {φR, 0, 2θR} (28)

φR ≡ ∠
pZ

pRin

(29)

pRin ≡ xRin + i sin θR (30)

θR ≡ cos−1
−xRin

r
(31)

where xRin(< 0) is the inner edge of the right sole.

Morimoto et al.[17] empirically showed a possibility to

achieve a stable stepping by modulating the leg motion

phase so as to be entrained with the ZMP oscillation. Our

method theoretically supports the reasons i) why the natural
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Name: mighty

Height: 580 [mm]

Weight: 6.5 [kg]

Number of joints: 20 ( 8 for arms,12 for legs )

Fig. 7. External view and specifications of the simulated robot
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Fig. 8. Loci of COM, ZMP and height of both feet of a phase-synchronized
stepping for q = 0.5, ρ = 1.0 and r = 0.044[m]. The dotted area is the
supporting region.

system frequency is a good choice for the natural frequency

of the phase oscillator, ii) why it is valid to define the

system phase by the argument of ZMP and its rate, and

iii) why such a synchronization of the stepping to ZMP

movement makes the system robust against perturbations. An

advantage of the proposed method to their work is that more

purposely-designed controller enables an explicit adjustment

of the oscillation period and amplitude. Also, note that we

define the system phase by a combination of ZMP and COM

velocity, which is different from Morimoto et al.’s. We think

it better since our definition is available even in cases where

ZMP is stuck at the edge of the supporting region.

V. SIMULATION

Some simulations of stepping motions were conducted on

a dynamics model of a miniature anthropomorphic robot

mighty[24] (Fig. 7). The total robot mass is assumed to

be concentrated at COM in the model, for simplicity. The

width of each sole is 0.078[m]. In the simulations, χZmin =
−0.08[m], χZmax = 0.08[m] and z = 0.27[m].

In the first simulation, q, ρ and r were set for 0.5, 1.0

and 0.044[m], respectively. The loci of COM, ZMP and

foot-height of the result motion for the initial condition

(χ, χ̇)=(0.01, 0.0) are shown in Fig. 8. The dotted area (or the

cyan area for readers with color) is the supporting region. It

is seen that a self-excited oscillation at a period about 1.5[s]

is generated with consistent phase-synchronized supporting-

foot alternations. The amplitude of COM and ZMP were

about 0.029[m] and 0.044[m], respectively. They are the

same with the theoretical values. Fig. 9 shows snapshots of

the motion animation.

In the next simulation, q, ρ and r were set for 2.0, 1.0

and 0.044[m], respectively. The loci of COM, ZMP and

foot-height of the result motion for the initial condition

(χ, χ̇)=(0.01, 0.0) are shown in Fig. 10. The oscillation

period was about 0.74[s] (half of the previous simulation).

The amplitude of COM and ZMP were about 0.017[m]

and 0.044[m], respectively. They also coincided with the

expected values. It is an advantage of the proposed method

over the former limit-cycle approaches that it is easy to adjust

the oscillation period and amplitude independently as these

results show.

In the last simulation, q, ρ and r were set for 0.5, 1.0 and

0.088[m], respectively. The loci of COM, ZMP and foot-

heightfor the initial condition (χ, χ̇)=(0.01, 0.0) are shown

in Fig. 11. Since r exceeds the edge of the supporting region,

ZMP is frequently saturated during the motion, in which the

system becomes uncontrollable. It also made the oscillation

period longer than the theoretical value 1.5[s]. In spite of

that, a stable oscillation with consistent stepping was still

achieved due to the controller’s property with maximized

stable standing region.

VI. CONCLUSION

A novel nonlinear feedback controller for biped robots

was proposed. It morphs the COM dynamics of an opti-

mally tuned standing-stabilization regulator into a stable self-

excited oscillator with a suitable property to the supporting

region constraint. A top-down controller design enabled

explicit adjustments of the oscillation period and amplitude.

This framework seamlessly connects the standing stabi-

lizer and the periodic alternate stepping controller, which

have been separately studied, by a single parameter ρ. It

is expected that transitional motions such as stepping-out

motion will also be possible by modulating ρ dynamically.

The definition of the phase, however, is not trivial in transi-

tional states. Some sensor-fusion techniques to estimate the

phase[9] might be required. It is the future work.

The COM-ZMP model on which the discussion went is

the simplest model to represent biped dynamics, so that

it can conceal differences of body constitutions. Such a

macroscopic idea is thought to be widely applicable. The

author thinks resolved COM rate control[25] is available to

enhance it to the full-body biped robot dynamics.
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