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Abstract— The planar compass-gait biped has been exten-
sively studied in the dynamic walking community, motivated by
the gravity-based pendular efficiencies of human walking. These
results can be extended to three dimensions using controlled
geometric reduction for open-chain robots, by which stable 3-
D walking gaits are built from known sagittal-plane limit cycles.
We apply this method to the standard and with-torso compass-
gait (hipless) bipeds, showing straight-ahead walking gaits (i.e.,
stable 1-step periodic limit cycles) as well as h-step turning in
full circles (i.e., stable h-periodic limit cycles). These constant-
curvature maneuvers are composed of stable 1-periodic turning
gaits modulo heading change, demonstrating two types of gaits
for directional dynamic walking in three dimensions.

I. INTRODUCTION

The first studies on dynamic bipedal walking in the

robotics community concerned simple serial-chain models

constrained to the sagittal plane (2-D space) to roughly

approximate efficient human locomotion. This began with the

two-link “compass-gait” biped in the pioneering work of [9].

McGeer discovered that this biped has stable “passive” limit

cycles (i.e., uncontrolled walking gaits) down slopes between

about 3◦ and 5◦, the range of angles for which the potential

energy introduced by gravity over each stride is matched by

the energy dissipated at foot-ground impact. The behavior of

these passive gaits with increasing slope angle was studied in

[3], showing period-doubling bifurcations leading to chaos.

Actuated compass-gait models with knees and a torso

were considered in [14], [15], generating stable planar

walking gaits by zeroing hybrid-invariant virtual constraints

(i.e., hybrid zero dynamics). Passive dynamics were directly

exploited in [12], [13], using passivity-based control and

controlled symmetries to map passive limit cycles down

slopes to “pseudo-passive” limit cycles on arbitrary slopes

with expanded basins of attraction. However, because sta-

ble passive limit cycles are rare in three dimensions, this

method was primarily applied to various forms of the planar

compass-gait biped. Such gaits were shown to be time-

scalable for varied walking speeds in [7].

These well-studied passivity results were harnessed to

build pseudo-passive 3-D walking gaits by exploiting inher-

ent robot symmetries in [1], [2]. Ames et al. showed that

controlled geometric reduction can decompose a spatial 3-

D biped’s dynamics into the sagittal plane-of-motion and a

separate lean mode in the frontal/lateral plane. This was

generalized to controlled reduction by stages in [5], [6],
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allowing application to completely 3-D bipeds with both yaw

and lean modes. The resulting sagittal subsystem has the

dynamics of an associated planar biped, from which stable

full-order walking cycles are built about arbitrary headings.

This simplifies the search for full-order limit cycles and

expands the class of 3-D robots that can achieve pseudo-

passive dynamic walking. The above papers demonstrate this

principle for hipped bipeds, showing basic steering capabil-

ities, but offer no characterization of stability over turning

maneuvers. Directional dynamic walking is also achieved for

underactuated bipeds based on hybrid zero dynamics in [10].

These gaits are shown input-to-state stable for sufficiently

small steering motions, but stability over paths with large

total curvature is not considered.

This paper revisits controlled reduction to extend the

planar compass-gait biped (both the standard two-link and

with-torso three-link models) into three dimensions. This

fully-actuated1 “toy” biped captures the fundamental periodic

motion involved in dynamic walking, allowing us to address

the construction and stability of dynamic gaits for both

straight-ahead and curved walking. In particular, we show

that constant-curvature turning induces stable periodic limit

cycles modulo heading change. This provides multiple types

of walking gaits for directed locomotion in three dimensions.

II. CONTROLLED REDUCTION

Classical geometric reduction is an analytical tool for de-

composing a physical system, often modeled by a Lagrangian

function, with symmetries that are invariant under the action

of a Lie group on the configuration space. A few such

forms of reduction are discussed in [8], such as Lie-Poisson,

Euler-Poincaré, and Routh. In classical Routhian reduction, a

Lagrangian L has configuration space Q = G×S (usually an

n-torus), where G = G1×. . .×Gk is composed of symmetry

groups and S ∼= Q\G is the shape space. Symmetries of L
are characterized by cyclic variables qi ∈ Gi, such that

∂L

∂qi
= 0, i ∈ {1, k}. (1)

By dividing out the symmetry group G, the full-order

phase space2 TQ projects onto the reduced-order phase

space TS. Moreover, Equation (1) implies that each cyclic

coordinate’s generalized momentum is constant. When the

dynamics evolve on level-sets of these conserved momentum

quantities, the symmetries allow us to directly relate the

behavior of the full-order system and the reduced system.

1We consider a minimal-DOF hipless extension of this planar biped,
which can only actuate out-of-plane motion with full actuation at the ankle.

2Tangent bundle TQ: space of configurations and their tangent velocities.
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In the context of walking, the divided coordinates cor-

respond to unstable yaw and lean modes. Therefore, [1],

[2] introduce a controlled form of geometric reduction,

functional Routhian reduction, which breaks the symmetry

of group G and provides momentum control of its coordi-

nates. However, symmetry-breaking is imposed in a specific

manner so that the group G of “almost-cyclic” variables can

still be divided. In order to achieve multistage controlled

reduction, [6] identifies extensive symmetries in serial-chain

robot dynamics. This recursively cyclic property is exploited

to show that any serial-chain robot can be controlled as a

lower-dimensional subsystem. This is generalized in [5] by

mapping branched chains to constrained serial chains.

We revisit this concept by presenting k-stage functional

Routhian reduction for n-DOF serial chains, 1 ≤ k < n, later

discussing reduction-based control for open-chain robots. We

begin by describing a robot’s typical Lagrangian dynamics.

Lagrangian Dynamics. A mechanical system with config-

uration space Q is described by elements (q, q̇) of tangent

bundle TQ and the Lagrangian function L : TQ→ R, given

in coordinates by

L(q, q̇) = K(q, q̇) − V (q) = 1
2 q̇
TM(q)q̇ − V (q),

where K(q, q̇) is the kinetic energy, V (q) is the potential

energy, and M(q) is the n × n symmetric, positive-definite

inertia matrix. By the least action principle [8], L satisfies the

n-dimensional controlled Euler-Lagrange (E-L) equations

d

dt

∂L

∂q̇
−
∂L

∂q
= Bu. (6)

This directly gives the dynamics for the controlled robot,

M(q)q̈ + C(q, q̇)q̇ +N(q) = Bu,

where n×n-matrix C(q, q̇) contains the Coriolis/centrifugal

terms, N(q) = ∂
∂q
V (q) is the vector of potential torques,

n× n-matrix B is assumed invertible for full actuation, and

control input u is an n-vector of joint actuator torques.

These equations yield the dynamical control system (f, g):
(

q̇
q̈

)

= f(q, q̇) + g(q)u, (7)

with vector field f and matrix g of control vector fields:

f(q, q̇) =

(

q̇
M(q)−1 (−C(q, q̇)q̇ −N(q))

)

g(q) =

(

0n×n
M(q)−1B

)

.

If the Lagrangian has cyclic variables, as in (1), that are free

from external forces (e.g., no actuation), we can decompose

the dynamics with Routh reduction. However, in order to

control these variables, we must describe a special class of

Lagrangians that instead have “almost-cyclic” variables.

k-Almost-Cyclic Lagrangians. We start with a general n-

dim. configuration space Q = T
k × S, where shape space

S ∼= Q\Tk is constructed by n − k copies of R and circle

S
1, and T

k = S
1 × . . . × S

1 is the group of “almost-

cyclic” variables to be divided in stages of S
1. We denote a

configuration q = (q1, . . . , qn)
T = (qi

T

1 , qn
T

i+1)
T ∈ Q for 1 ≤

i ≤ n, with i-dim. vector qi1 containing coordinates q1, . . . , qi
and (n−i)-dim. vector qni+1 containing qi+1, . . . , qn (clearly,

if i = n then qnn+1 = ∅). In particular, for i = k we have the

vector of almost-cyclic variables qk1 ∈ T
k and the vector of

shape space variables qnk+1 ∈ S. To begin, let inertia matrix

M be defined from a class of recursively cyclic matrices,

giving us the symmetries we need for reduction.

Definition 1: An n× n-matrix M is recursively cyclic if

each lower-right (n−i+1)×(n−i+1) submatrix is cyclic in

q1, . . . , qi for 1 ≤ i ≤ n, i.e., it has the form of (2) with base

case i = n, where Mqn
n
(qnn+1) = mqn

is a scalar constant.

Remark 1: In our case, for 1 ≤ i ≤ n, each mqi
(·) is the

scalar positive-definite self-induced inertia term of coordinate

qi, and Mqi,q
n
i+1

(·) ∈ R
i−1 is the row vector of off-diagonal

inertial coupling terms between qi and coordinates qni+1.
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Moreover, Mqn
i
(·) ∈ R

(n−i+1)×(n−i+1) is the symmetric

positive-definite inertia submatrix of coordinates qni .

A special class of shaped Lagrangians termed almost-

cyclic Lagrangians is defined in [2], allowing one stage

of controlled reduction to a subsystem characterized by

a functional Routhian – the Lagrangian function of the

lower-dim. system. In order to control k divided variables,

each stage of reduction must project from an almost-cyclic

Lagrangian (ACL) to another ACL for the next stage of

reduction, until the final stage reaches the base functional

Routhian. Therefore, we are interested in a generalized ACL.

Definition 2: A Lagrangian Lλk
1

: TT
k × TS → R is

k-almost-cyclic if, in coordinates, it has the form

Lλk
1
(q, q̇) = Kλk

1
(q, q̇) − Vλk

1
(q)

with expanded terms given in (3)-(5) for j = 1 and some

arbitrary functions λi : S
1 → R, i ∈ {1, k}.

Remark 2: The closed-form definition (3a) explicitly

shows all the shaping terms necessary for k stages of

controlled reduction, whereas the last three terms in recursive

definition (3b) impose a single stage of controlled reduction

to (k − 1)-almost-cyclic Lagrangian Lλk
2
.

Given k-almost-cyclic Lagrangian (k-ACL) Lλk
1
, the n-

dimensional fully-actuated E-L equations yield

Mλk
1
(qn2 )q̈ + Cλk

1
(q, q̇)q̇ +Nλk

1
(q) = Bv.

Then, we have the control system on TQ associated with

Lλk
1

as defined in (7): (fλk
1
, gλk

1
) with control input v.

This input can be decomposed into vk1 , the vector con-

taining the first k elements, and vnk+1, the (n − k)-vector

containing elements k+1, . . . , n. Assuming subsystem input

vnk+1 is defined by a time-invariant feedback control law on

TS, we incorporate this into the full-order k-ACL system by

defining the new control system (f̂λk
1
, ĝλk

1
) with input vk1 :

f̂λk
1
(q, q̇) := fλk

1
(q, q̇) + gλk

1
(q)

(

0k×1

vnk+1

)

ĝλk
1
(q) := gλk

1
(q)

(

Ik×k
0(n−k)×k

)

. (8)

Here, vector field f̂λk
1

corresponds to the vnk+1-controlled E-

L equations, which will be relevant later.

Reduced Subsystems. Starting with this k-ACL system,

each reduction stage projects onto a lower-dimensional sys-

tem while conserving a momentum quantity corresponding

to the divided degree-of-freedom. These coordinates can thus

be uniquely reconstructed by the functional momentum maps

Ji : T (Q\T
i−1) → R, i ∈ {1, k}:

Ji(q
n
i , q̇

n
i ) =

∂

∂q̇i
Lλk

i
(qni , q̇

n
i )

= Mqi,q
n
i+1

(qni+1)q̇
n
i+1 +mqi

(qni+1)q̇i

= λi(qi). (9)

Here, Lλk
i

is the k-ACL for i = 1 or a lower-dim. ACL for

i ∈ {2, k}. In classical Routh reduction, each Ji maps to a

constant momentum quantity. However, the energy shaping

terms in Lλk
1

break these conservative maps and force them

equal to desirable functions λi(qi). Hence, we can control

the momenta of the divided coordinates.

Each of these reduced subsystems is characterized by

a generalized functional Routhian. For j ∈ {2, k}, the

Routhian function corresponding to the (j − 1)st stage of

reduction is a (k − j + 1)-ACL on the tangent bundle of

reduced configuration space Q\Tj−1. This is the stage-

(j − 1) functional Routhian Lλk
j

: T (Q\T
j−1) → R,

obtained through a partial Legendre transformation in qj−1

constrained to functional momentum map (9) for i = j − 1:

Lλk
j
(qnj , q̇

n
j ) = Lλk

j−1
(qnj−1, q̇

n
j−1) − λj−1(qj−1)q̇j−1

∣

∣

∣

Jj−1

= Kλk
j
(qnj , q̇

n
j ) − Vλk

j
(qnj ).

We see that for j ∈ {2, k}, Lλk
j

has the form of (3).

The final stage of reduction, stage-k, is a functional

Routhian Lλk
k+1

= Lfct with a traditional Lagrangian struc-

ture. This is similarly obtained from stage-(k−1) functional

Routhian Lλk
k
. It follows that the k-reduced Lagrangian

Lfct : TS → R is given in coordinates by

Lfct(q
n
k+1, q̇

n
k+1) =

1

2
q̇n

T

k+1Mqn
k+1

(qnk+1)q̇
n
k+1 − Vfct(q

n
k+1)

with target potential energy Vfct.

This yields the control system on TS associated with Lfct:

(ffct, gfct) with input vnk+1. From this, we define the vector

field corresponding to the k-reduced, controlled dynamics:

f̂fct(q
n
k+1, q̇

n
k+1) := ffct(q

n
k+1, q̇

n
k+1) + gfct(q

n
k+1)v

n
k+1. (10)

When vk1 = 0 and the functional momentum quantities

abide by (9), there exists a map between solutions of full-

order vector field f̂λk
1

and reduced-order vector field f̂fct.

Theorem 1: Let Lλk
1

be a k-ACL with stage-k functional

Routhian Lfct. Then,
(

qk1 (t), qnk+1(t), q̇
k
1 (t), q̇nk+1(t)

)

is a

solution to vnk+1-controlled vector field f̂λk
1

on [t0, tf ] with

Jj(qj(t0), q̇j(t0)) = λj(qj(t0)), ∀ j ∈ {1, k},

if and only if (qnk+1(t), q̇
n
k+1(t)) is a solution to controlled

vector field f̂fct on [t0, tf ] and (qj(t), q̇j(t)) satisfies

Jj(qj(t), q̇j(t)) = λj(qj(t)), ∀ j ∈ {1, k}, t ∈ [t0, tf ].

Note that (9) can be solved for q̇j to reconstruct each co-

ordinate. We want to apply this form of controlled reduction,

proven in [6], to general robots, but we still need to show

that robots can attain the special k-almost-cyclic form.

Subrobot Theorem. We show in [6] that any serial chain has

a recursively-cyclic inertia matrix, so k-ACL dynamics are

achievable by energy shaping (i.e., reduction-based control).

We further show in [5] that branched-chain robots have these

symmetries through part of the chain. We now revisit these

results for the encompassing class of open kinematic chains.

Definition 3: The irreducible tree structure of an n-DOF

open chain is the minimal m-DOF tree substructure, 1 ≤
m ≤ n, at the end of the chain such that the corresponding

inertia submatrix is not recursively cyclic.
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We model walking on a flat surface by taking domain

DnD ⊂ TQnD to be the set of states with nonnegative swing

foot height. Impact events are triggered when this height is

zero and decreasing, characterized by guard GnD ⊂ DnD

and impact map ∆nD (computed as in [6], [14]). We direct

the reader to [4] for detailed term expressions, and now turn

our attention to the reduction-based controller.

IV. REDUCTION-BASED CONTROL LAW

The control law is designed to recursively break cyclic

symmetries in the special almost-cyclic manner. The inner

loop of the controller shapes our robot’s energy to the 2-

almost-cyclic form, and the nested outer loop plays two roles:

implements passivity-based control on the 2-D-subsystem

to construct known planar flat-ground gaits, and stabilizes

to a surface defined by constraint (9) so that Theorem 1

holds. This builds upon the construction of the single-stage

controller of [2]. We ignore actuator saturation during this

derivation, but simulations will demonstrate robustness.

Lagrangian Shaping. The inner loop shapes LnD into

a 2-ACL for controlled reduction to the biped’s planar

subsystem. Given q = (ψ,ϕ, θT )T , the n-DOF potential VnD

is not cyclic in ϕ, so we impose a “controlled symmetry”

with respect to this coordinate’s rotation group S
1. Therefore,

we will incorporate potential shaping into the inner loop to

replace VnD with Vθ, the planar potential energy.

We begin with the 2-ACL (3a) for j = 1, k = 2:

Lλ2
1
(q, q̇) = 1

2 q̇
TMλ2

1
(qn2 )q̇ −Wλ2

1
(q, q̇n2 ) − Vλ2

1
(q),

where Mλ2
1
, Wλ2

1
, and Vλ2

1
are defined by substituting inertia

matrix MnD for M and target potential Vθ for Vfct in (4)-

(5). It follows directly that the stage-2 functional Routhian

associated with Lλ2
1

is the Lagrangian of the planar biped:

Lθ(θ, θ̇) = 1
2 θ̇
TMθ(θ)θ̇ + Vθ(θ),

yielding reduced control system (fθ, gθ) with input vθ.

Given this target reduction, the feedback control law that

shapes L into Lλ2
1

is (11), where vector v = (vψ, vϕ, v
T
θ )T

contains the auxiliary control inputs to be defined. Finally,

using momentum map functions λ1(ψ) = −α1(ψ − ψ̄) and

λ2(ϕ) = −α2ϕ, for α1, α2 > 0, we establish directional

control to constant angle ψ̄ for the yaw DOF and correction

to vertical for the roll/lean DOF.

Inputting (11) into (fnD, gnD), we have shaped dynamics

Mλ2
1
(ϕ, θ)q̈ + Cλ2

1
(q, q̇)q̇ +Nλ2

1
(q) = BnDv

associated with (fλ2
1
, gλ2

1
) and input v to be defined next.

Passivity-Based Subsystem. Since controlled reduction can

decouple a biped’s sagittal subsystem, we can control it as

a planar walker with well-known passivity-based techniques

in vθ. In particular, we employ slope-changing controlled

symmetries, a method that imposes symmetries upon the

system dynamics with respect to ground orientation. This

will allow our bipeds to walk on flat ground given the

existence of passive walking gaits down shallow slopes [13].

In order to harness known passive gaits, we use a subsys-

tem controller that “rotates” the potential energy [13]:

vθ = B−1
θ

(

∂
∂θ

(Vθ(θ) − Vθ(θ + β)) + vpd
)

,

where β = 0.052 rad is the slope angle yielding the desired

passive limit cycle. Note that the 5-DOF biped uprights its

torso with PD control vpd = (0,−kp(θt + β) − kdθ̇t, 0)T .

This subsystem control law is incorporated into full-order

shaped system (fλ2
1
,gλ2

1
) by defining the new control system

(f̂λ2
1
,ĝλ2

1
) with input v2

1 = (vψ, vϕ)T as in (8). Similarly, f̂θ
is defined as in (10). In order to ensure the decoupling of

f̂θ, we now design v2
1 to enforce constraint (9).

Zero Dynamics. The beneficial implications of Theorem 1

only hold from the set of states satisfying (9), so we must

use control outside of this set to exploit the result. We extend

the approach of [1] in using output linearization to force

trajectories toward these conserved quantity constraints. We

first define output functions measuring the error between

actual and desired velocities according to (9):

hi(q
n
i , q̇

n
i ) = q̇i −

1
mqi

(qn
i+1

) (λi(qi) −Mqi,q
n
i+1

(qni+1)q̇
n
i+1)

for i ∈ {1, 2}. We use a control law that will zero these

output functions in our MIMO nonlinear control system. In

other words, we want to stabilize the “zero dynamics” surface

Z =

{(

q
q̇

)

∈ TQ : hi(q
n
i , q̇

n
i ) = 0, ∀i ∈ {1, 2}

}

.

This law is proportional in nature, parameterized by gains

ξi, and depends on Lie derivatives of hi with respect to vector

fields (f̂λ2
1
, ĝλ2

1
), but we leave the details to [6]. Note that

v2
1

∣

∣

Z
= 0, so this law does not interfere with Theorem 1.

V. RESULTS AND FINAL COMMENTS

We apply control law (11) under saturation to hybrid

control system H C nD, yielding closed-loop hybrid system

H cl
nD. Our two bipeds are given physical and control pa-

rameters (12)-(13). We can use a restricted Poincaré map to

prove the existence of LES straight-ahead gaits with arbitrary

heading, as done in [1] for a spatial 3-D biped. This requires

a lengthy proof involving hybrid invariance of surface Z

along limit cycles, so we instead numerically verify LES with

full-order Poincaré map Pcl as previously discussed [3].

Walking straight-ahead along any heading on flat ground

(we set ψ̄ = 0 without loss of generality), H cl
4D produces a

hybrid periodic orbit O
st
4D. The 1-fixed point x∗st4D is given in

(14), from which we numerically calculate the eigenvalues of

δPcl to be within the unit circle. The same process confirms

LES of O
st
5D with 1-fixed point x∗st5D of (15).

In order to command 360◦-clockwise turning over h
steps, we augment H cl

nD with an event-based controller that

increments desired yaw by ∆ψ̄ = 2π/h per step. Starting

augmented system H
tu(h)

4D from x∗st4D , we observe that hybrid

flows converge to h-periodic O
tu(h)
4D for any h ≥ 13, with 13-

fixed point x
∗tu(13)
4D in (16). Similarly, H

tu(h)
5D yields O

tu(h)
5D

for any h ≥ 14, with 14-fixed point x
∗tu(14)
5D in (17). The

sharpest 360◦ maneuvers are shown in Fig. 2. We find that
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unD := B−1
nD

(

CnD(q, q̇)q̇ +NnD(q) +MnD(q)Mλ2
1
(q)−1

(

−Cλ2
1
(q, q̇)q̇ −Nλ2

1
(q) +BnDv

))

(11)

Physical parameters : Mt = 10 kg, lt = 0.5 m, Mh = 10 kg, m = 5 kg, l = 1 m, Umax
4D = 20 Nm, Umax

5D = 30 Nm (12)

Control parameters : α1 = 4.5, ψ̄ = 0, α2 = 30, ξ1 = 10, ξ2 = 15, kp = 700, kd = 200, β = 0.052 rad (13)

x∗st4D ≈ (0, 0,−0.2704, 0.2704, 0, 0,−1.4896,−1.7986)T (14)

x∗st5D ≈ (0, 0,−0.2657, 0.0047, 0.2657, 0, 0,−1.3165, 0.0596,−1.5339)T (15)

x
∗tu(13)
4D ≈ (−0.0306,−0.0064,−0.2782, 0.2782,−0.0318, 0.0159,−1.5426,−2.1318)T (16)

x
∗tu(14)
5D ≈ (0.3231, 0.0492,−0.2717,−0.0030, 0.2717, 0.2895,−0.0443,−1.3510, 0.0865,−1.8180)T (17)
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Fig. 2. 360◦-CW turning maneuvers of 4-DOF biped over 13 steps (left) and 5-DOF biped over 14 steps (right). The former gait’s phase portrait (center)

shows planar slices of O
tu(13)
4D by plotting angular positions (modulo heading change) against angular velocities. This illustrates the orbit’s periodicity in

phase space, but note that this turning gait also has 1-periodic heading change ∆ψ = 0.4833, step length 0.5493 m, and linear velocity 0.7412 m/s.

these fixed points are not only h-periodic LES by δPhtu(h),

but also 1-periodic LES modulo heading change:

modψ

(

x
∗tu(h)
nD ,∆ψ

)

= Ptu(h)

(

x
∗tu(h)
nD

)

.

In fact, constant-curvature steering with any sufficiently

small ∆ψ̄ appears to induce a 1-step periodic gait, which

has natural leaning into the turn (Fig. 2). Clockwise and

CCW gaits are symmetric within the sagittal plane and

otherwise antisymmetric. These gaits have perturbed sagittal-

plane orbits compared to straight-ahead gaits, due to impact

discontinuities in the conserved quantities while turning. This

ultimately causes period-doubling instability, associated with

oscillating step length/time, as periodic ∆ψ̄ is increased

outside the observed stability range. This behavior resembles

the passive gait bifurcations of the planar compass-gait biped

when increasing slope angle [3], which merits further study.

We have extended passivity-based walking gaits of the

planar compass-gait biped to 3-D, and this could similarly be

applied to other results from the compass-gait literature (e.g.,

time-scaling [7], energy-tracking [12], zero dynamics [14]).

Although this paper only considers hipless models, bipeds

with hips have skew-symmetry between steps inducing 2-

periodic limit cycles for straight and curved walking (mod

∆ψ). We conclude by noting that these two types of gaits

provide a minimal set of “motion primitives” for dynamic

walking paths, which will be the subject of future work.
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