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Abstract— This paper presents a new hierarchical segmen-
tation of the observed driving behavioral data based on the
multiple levels of abstraction of the underlying dynamics. By
synthesizing the ideas of a feature vector definition revealing the
dynamical characteristics and an unsupervised clustering tech-
nique, the hierarchical segmentation is achieved. The identified
mode can be regarded as a kind of symbol in the abstract model
of the behavior. Second, the grammatical inference technique
is introduced to develop the context-dependent grammar of the
behavior, i.e., the symbolic dynamics of the human behavior.
In addition, the behavior prediction based on the obtained
symbolic model is performed.

I. INTRODUCTION

Recently, Many ideas have been exploited for the driver

modeling from viewpoint of the control technology and the

information processing to realize the safety and human-

friendly cars [1][2][3][4].

In the driving behavior, it is often found that the driver

appropriately switches between simple control laws instead

of adopting the complex nonlinear control law. This idea can

be verified by executing a ‘segmentation’ of the observed

driving data according to the classification of the dynamical

characteristics underlying the behavioral data [7][8][9]. This

strategy also can be regarded as one of the solutions for the

‘symbolic grounding’ problem by assigning each obtained

mode to each symbol. Furthermore, the transition between

modes can be regarded as a kind of driver’s decision-making

in the complex driving task [9]. Thus, the introduction of

the segmentation leads to higher level understanding of the

driving behavior wherein the motion control and decision

making aspects are synthesized.

Another important characteristics in the human behavior

is described by its hierarchical structure, i.e., many behaviors

can be understood by a hierarchical modeling characterized

by the different level of abstraction of dynamics. From this

viewpoint, it is quite natural to introduce the ‘hierarchical

segmentation’ in the analysis of the human behavior. As

a consequence, a hierarchical symbolization of the human

behavior can be realized based only on the observed behav-

ioral data (without any prior knowledge). The hierarchical

symbolization is expected to play an essential role in the

design of intelligent human support system thanks to its high

describability and understandability of the complex behavior.
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Based on these considerations, first of all, we propose

a new hierarchical segmentation of the observed driving

behavioral data based on the multiple levels of abstraction

of the underlying dynamics. In order to realize this idea,

a PieceWise AutoRegressive eXogenious (PWARX) model

is implemented. The PWARX model is often used as the

identification model of the hybrid dynamical systems [5][6]

wherein each ARX model represents the corresponding dy-

namics of each mode. In our problem setting, the number

of modes (the number of symbols) is supposed to be con-

trollable to obtain the hierarchical structure although it is

assumed to be fixed in the standard framework of the hy-

brid system identification. By synthesizing the definition of

the feature vector revealing the dynamical characteristics[5]

and an unsupervised clustering technique, the hierarchical

segmentation is achieved. The usefulness of the hierarchical

segmentation is demonstrated by applying to the driving

behavioral data on the expressway. Second, the grammatical

inference technique[11] is introduced to develop the context-

dependent grammar of the behavior, i.e., the symbolic dy-

namics of the human behavior. The vector quantized envi-

ronmental information and the identified mode obtained by

the clustering are regarded as the environment symbol and

the mode symbol, respectively. Then, the production rules

to express the relation between the environment and mode

symbols are identified. Finally, the behavior prediction based

on the obtained symbolic model is performed and discussed.

II. HIERARCHICAL SEGMENTATION

In this section, we discuss how to define the ‘mode’ in

the driving behavioral data and how to obtain the hierarchical

structure. First of all, the driver input and output are defined.

A. Definition of input and output
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Fig. 1. Definition of input signals.

Throughout this paper, we focus on the driving behavior

on the expressway which consists of ‘following the leading

vehicle’, ‘lane changing’, ‘overtaking’, and so on. The driver

input, i.e., the sensory information of the driver is defined as

follows (Fig.1):

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5516



• Range from the leading car: u1

• Range rate between the leading and examinee’s cars: u2

• Lateral displacement from the leading car: u3

• Yaw angle of examinee’s car: u4

• Index for approaching (KdB): u5

• Amount of time duration that the examinee looks at the

left side mirror in the latest 10 [sec] (TL): u6

• Amount of time duration that the examinee looks at the

right side mirror in the latest 10 [sec] (TR): u7

KdB is an index which represents the logarithm of the time

derivative of the area of the back of the leading car projected

on the driver’s retina [10]. The KdB can be expressed by

using u1 and u2 as follows:

KdB =

{

−10 × log(| − 2 × u2

u3

1

× 1

5×10−8 |) : u2 > 0

10 × log(| − 2 × u2

u3

1

× 1

5×10−8 |) : u2 < 0

(1)

The large KdB implies that the driver is facing dangerous

situation. Also, the driver output is defined as follows:

• Steering angle: y1

• Pedal operation: y2

These input and output variables are chosen so that the

resulting model can express the behavioral characteristics

underlying the observed data. Furthermore, these variables

can be observed in the real driving situation by using existing

sensors.

B. PWARX model as mathematical representation of multi-

mode driving behavior

In this subsection, the PWARX model is implemented as

a mathematical model of the driving behavior. The PWARX

model consists of the several ARX sub-models, i.e., modes,

and can express a complex input-output relationship with any

approximation level by appropriately controlling the number

of modes. We consider the following first order PWARX

model which has s modes:

y(k) = f(r(k)) + ǫ(k)

f(r(k)) =



















θ1r(k) if r(k) ∈ R1

θ2r(k) if r(k) ∈ R2

...

θsr(k) if r(k) ∈ Rs

(2)

where y(k) and r(k) are defined as follows:

y(k) = (y1(k) y2(k))T (3)

r(k) = (u1(k − 1) u2(k − 1) · · · u7(k − 1)

y1(k − 1) y2(k − 1))T (4)

The subscript k denotes the sampling index (k = 1, 2 . . . , n).

Furthermore, θi (i = 1, · · · , s) is a (2 × 9) unknown matrix

to be identified from the data, and is supposed to have a

form:

θi =

(

θT
i,1

θT
i,2

)

(5)

In the PWARX model, not only parameters θi but also

the partitions of the subspaces R1, · · · ,Rs are unknown.

Therefore, it is not straightforward to assign each observation

(y(k), r(k)) at sampling instant k to the corresponding

mode. To resolve this problem, a clustering based technique

is developed in [5] under the definition of interesting feature

vector which represents the local dynamical characteristics

underlying (y(k), r(k)). In the next subsection, this feature

vector is introduced.

C. Definition of feature vector

1) Assume that the set of sample data {(y(j), r(j))},

(j = 1, 2 . . . , n) is given. For each sample data

(y(j), r(j)), collect the neighboring c data in the

(y, r) space, generate the local data set LDj , and

calculate the feature vector ξj (Fig.2). Note that the

index j indicates the order not in the time space but

in the data space. The feature vector ξj consists of

the local parameters ((θLD
j,1 )T , (θLD

j,2 )T )T in the local

ARX model for the LDj and the mean value mj of

the data r in the LDj . (θLD
j,l )T (l = 1, 2) and mj are

calculated as follows:

θLD
j,l = (ΦT

j Φj)
−1ΦT

j yLDj ,l (6)

mj =
1

c

∑

r∈LDj

r (7)

where yLDj ,l (c × 1; l = 1, 2) is the output samples

in the LDj , and Φj is given by

Φj = (r1 r2 · · · rc)
T (r ∈ LDj). (8)

As the result, ξj = ((θLD
j,1 )T , (θLD

j,2 )T , mT
j )T

2) For each feature vector ξj , the following covariance

matrix Rj is calculated:

Rj =





Vj,1 0 0
0 Vj,2 0
0 0 Qj



 (9)

where

Vj,l =
SSRj,l

c − (9 + 1)
(ΦT

j Φj)
−1 (10)

SSRj,l = yT
LDj ,l(I − Φj(Φ

T
j Φj)

−1ΦT
j )yLDj ,l

(11)

Qj =
∑

r∈LDj

(r − mj)(r − mj)
T (12)

The feature vector ξj represents the combination of the

local dynamics and data. By this definition, the data is

classified based not only on the value of data but also on

the similarity of the underlying dynamics. Furthermore, the

covariance matrix Rj represents the confidence level of the

corresponding feature vector ξj . Rj is used as the weighting

matrix in the calculation of the dissimilarity between feature

vectors in the clustering procedure.

D. Unsupervised hierarchical clustering

The unsupervised hierarchical clustering is applied to the

feature vectors ξj (j = 1, · · · , n). The clustering algorithm

is listed below:
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Fig. 2. Transformation from data space to feature vector space.

1) Regard each feature vector ξj as each cluster Cj , i.e.,

each cluster consists only of one feature vector. Calcu-

late the dissimilarity Dp,q between any two clusters Cp

and Cq by using the following dissimilarity measure:

Dp,q = ‖ ξp − ξq ‖2

R
−1

p,q

= (ξp − ξq)
T R−1

p,q(ξp − ξq) (13)

where

R−1

p,q = R−1

p + R−1

q . (14)

2) Unify two clusters Cx and Cy which shows the

smallest Dx,y . The unified cluster is denoted by Cr.

If all clusters are unified, terminate the algorithm.

Otherwise, go to step 3).

3) Calculate the dissimilarity Dr,t between Cr and Ct

for all t (t 6= r) by using the following dissimilarity

measure:

Dr,t =
nrnt

nr + nt

∑

ξir∈Cr

∑

ξit
∈Ct

‖ ξir
− ξit

‖2

R
−1

ir,it

(15)

where nr and nt are numbers of feature vectors

belonging to clusters Cr and Ct, respectively. Go to

step 2).

After this clustering procedure, the classification of the

feature vector space is achieved together with a dendro-

gram which shows the hierarchical classification for different

number of modes. Since the transformation from the feature

vector (ξ) space to the original observed data (y, r) space

is straightforward, the segmentation of the observed data is

obtained together with the hierarchical structure.

Note that once segmentation of the data is achieved,

the identification of the parameters θi and the partitions

of the subspaces R1, · · · ,Rs in the PWARX model (2) is

straightforward.

III. ANALYSIS OF DRIVING BEHAVIORAL DATA

A. Driving environment

In this paper, the following driving environment on the

expressway was designed on the driving simulator which

provides a stereoscopic immersive vision [9].

• The expressway is endless, and has two lanes, the

cruising lane and the passing lane.

• There are 10 cars on the cruising lane. Five of them

are running ahead of the examinee’s car. The remaining

five cars are running behind the examinee’s car. Their

velocities vary from 70 to 85[km/h]. Once the exam-

inee’s car overtakes the leading car, then the tale-end

car on the cruising lane is moved to the head of the

cars running on the cruising lane. The examinee is not

aware of this change.

• There are 10 cars on the passing lane. Five of them are

running ahead of the examinee’s car. The remaining five

cars are running behind the examinee’s car. Their veloc-

ities vary from 90 to 110[km/h]. Once the examinee’s

car is overtaken by the car on the passing lane, then the

top car on the passing lane is moved to the tale-end of

the cars running on the passing lane. The examinee is

not aware of this change.

• The range between cars is set to be 50 to 300[m], and

there is no collision between cars except the examinee’s

car.

• There is no lane change of the cars except the exami-

nee’s car.

Under this driving environment, five examinees performed

the test driving. Note that the examinees were provided

with the instruction ‘Drive the car according to your usual

driving manner’. Since this instruction is ‘loose’ instruction,

the examinees do not concern much about the environmental

information. As the result, each examinee can drive as his/her

usual manner.

B. Observed behavioral data and clustering results

The unsupervised clustering based on the feature vector

shown in the previous section has been applied to the

observed driving behavioral data. The dendrogram obtained

from the proposed strategy is shown in Fig.3. In Fig.3, the

vertical axis represents the dissimilarity between clusters.

When the two clusters are unified, the corresponding dissim-

ilarity is designated by the horizontal bar. The horizontal axis

represents the data which is rearranged after the clustering

to show the hierarchical structure clearly. From this figure,

we can clearly understand the hierarchical structure in the

driving behavior. As the typical example, the two dashed

horizontal lines are superimposed. The upper line shows the

case that the number of modes (clusters) s, i.e., the number

of the ARX models in (2) is set to be two. On the other

hand, the lower line shows the case that s is set to be five.

In Fig.4, the observed driving (input-output) profiles are

shown. All profiles are normalized before clustering. In the

profile of the lateral displacement, it takes positive value

when the examinee’s vehicle is on the right side of the

leading car. The steering angle takes positive value when the

examinee turns it clockwise. Also, the pedal operation takes

positive value when the accelerator is stepped on, and takes

negative value when the braking pedal is stepped on. Note

that the range, the range rate and the lateral displacement

profiles show discontinuity. Since these variables are defined

by the relative displacement from the leading car, if the

examinee’s car changes the driving lane, these variables

change discontinuously.
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Fig. 3. Dendrogram of clustering (Examinee A).

In addition, the clustering results in the case of two-

mode modeling are indicated by colors in Fig.4. Thus,

the segmentation works well. In order to investigate the

behavioral meaning of each mode, a part of the profile of

the lateral displacement is enlarged in Fig.5. As shown in

Fig.5, the meaning of two modes can be understood as the

‘Following on Cruising Lane + Passing’ (Mode 1: FC+P

mode) and ‘Following on Passing Lane + Returning’ (Mode

2: FP+R mode), respectively. This result implies that the

symbolization of the behavior can be achieved based on the

‘dissimilarity’ of the underlying dynamics.

C. Discussion

In order to analyze the hierarchical structure of the behav-

ior, the clustering results in the case of five-mode modeling

are shown in Fig.6, and the enlarged lateral displacement

is shown in Fig.7. From Fig.7, we can see that the two-

mode model is further decomposed into the local behaviors;

they are ‘Long Range Following on Cruising Lane’ (Mode

1: LRFC mode), ‘Short Range Following on Cruising Lane’

(Mode 2: SRFC mode), ‘Passing’ (Mode 3: P mode), ‘Fol-

lowing on Passing Lane’ (Mode 4: FP mode), and ‘Return-

ing’ (Mode 5: R mode). The switching between these modes

is caused by the driver’s decision making. The hierarchical

relationship between these modes found in the dendrogram

is depicted in Fig.8. Thus, the hierarchical structure of

the driving behavior can be obtained in a quite consistent

manner. One of the significant contributions of this work

is that this hierarchical structure is obtained automatically

based only on the observation (including the definition of

the input and output signals) and data processing. Since this

hierarchy clearly expresses the multiple abstraction level of

the human behavior, the proposed framework is expected to

be a basis for the design of many human centric systems.

IV. DEVELOPMENT OF SYMBOLIC BEHAVIOR MODEL

AND ITS APPLICATION TO BEHAVIOR PREDICTION

In this section, the human behavior is considered as an

entity (linguistic source) capable of generating a specific
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Fig. 4. Observed profiles and segmentation result (Examinee A, 2modes).
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Fig. 5. Enlarged profile of lateral displacement (Examinee A, 2modes).

language (set of symbol strings). The grammar G of the

language is the set of production rules that specifies all the

strings in the language and their relationships. Once the

grammar is found, the grammar itself is a model for the

source of the behavior.

A. Definition of behavioral grammar

First of all, the behavioral grammar G is defined as

follows:

G = {Σm, Σe, S, P} (16)

Σm is a mode alphabet, i.e., the set of mode symbols defined

by the clustering introduced in section III. Therefore, the

number of mode symbols |Σm| = s, i.e., the number of

ARX models. Σe is an environment alphabet, i.e., the set of

5519



0

0.5

1
R

a
n

g
e

−1

0

1

R
a
n

g
eR

a
te

−1

0

1

L
a
te

ra
l

−1

0

1

Y
a
w

−1

0

1

K
d

B

0

0.5

1

T
L

0

0.5

1

T
R

−1

0

1

S
te

er
in

g

200 300 400 500 600 700 800
−1

0

1

P
ed

a
l

Time[sec]

Fig. 6. Observed profiles and segmentation result (Examinee A, 5modes).
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Fig. 7. Enlarged profile of lateral displacement (Examinee A, 5modes).

symbols created by a vector quantization of the environmen-

tal information. The number of environment symbols |Σe|
depends on the quantization. In the proposed framework, Σm

and Σe are regarded as a terminal alphabet and a nonterminal

alphabet in the standard grammar, respectively. S is a special

nonterminal symbol used to start the generation of string.

P is a set of production rules, i.e., the substitution rules

(denoted by a → b) used to generate the strings. The n−type

production rules are defined as substitution rules of the form

mk−n · · ·mk−1Ek → mk−n · · ·mk−1mkδ (17)

where mk−n · · ·mk−1 is a sequence of mode symbols, Ek

is an environment symbol, and δ is a special nonterminal

symbol. δ is used to indicate the conclusion, or not, of a

generated string. The n − type production rule encodes the

2 Mode

5 Mode

Long Range

Following  on

Cruising Lane 

Mode

Short Range

Following  on

Cruising Lane 

Mode 

Passing

Mode

Following on

Passing Lane 

Mode

Returning

Mode

Following on Cruising Lane

+ Passing  Mode

Following on Passing Lane

+ Returning  Mode

Fig. 8. Identified hierarchical structure of driving behavior (Examinee A).

evolution of the mode depending on its n past modes and

on the environment symbol E. Therefore, the n− type pro-

duction rule can be regarded as a symbolic dynamics whose

order is specified by n. Once G is identified, the symbolic

behavior can be computed by executing the production rules.

B. Grammatical inference

Development of the symbolic behavior model can be for-

mulated as the grammatical inference problem [11] under the

suitable definitions of the mode and environment alphabets.

Grammatical inference, in general, is the identification of

a grammar from a set of examples. The main part pf the

grammatical inference is the generation of the production

rules based on the observation, and is realized by the

following procedure (See [11] for detail).

1) A 0−type production rule is assumed for every newly

occurring environment symbol.

2) A new (n + 1) − type production rule is generated

whenever the data conflicts with the previously es-

tablished n − type production rules. The conflicting

n − type production rules are also promoted to (n +
1)− type production rules or are deleted if there is not

sufficient information in the past.

C. Application to symbolic behavior modeling and predic-

tion

1) Definition of environment symbol: First of all, the

environment symbols are defined by the vector quantization

of the the relative position (Xi) and velocity (Vi) of the

six surrounding cars as shown in Fig.9. Since the goal

is to realize the long-term prediction based on the sym-

bolic model, the wider range of cars are considered as the

environment than the definition of the input variables for

the PWARX model. The CSL (Competitive and Selective

1

4

3

5

2

6

Examinee’s CarCruising Lane

Passing Lane

Fig. 9. Definition of environment.

Learning) algorithm was used for the quantization. The

necessary number of symbols depends on the complexity of
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the environment. Here, 10 symbols were defined by trial and

error.

2) Behavior prediction based on production rules: By

applying the Grammatical inference to the two-mode model

and the five-mode model, we have developed the two sym-

bolic behavior models with different definition of the mode

symbol.

The number of identified rules and the average type of

the rule are shown in Table I. In the two-mode model, the

number of identified rules is smaller, but the average type

of the rule is higher compared with the five-mode model.

This implies that these factors depend on the ‘resolution’ of

the symbolic representation. Another interesting inquiry is

that the number of identified rules varies from examinee to

examinee. The examinee who has great number of rules (like

the examinee E) can be considered to have an inconsistent

driving manner.

In addition, the prediction of the behavior based on the

symbolic model was performed. In order to predict the

future behavior, the prediction of the environment symbol

must be considered. In this work, the prediction of the

environment symbol was realized by a simple first-order

prediction of Xis and Vis. Figure 10 shows the success rate

of the prediction for various prediction horizon using the

several models with different number of modes (1 step is

240 [msec]). From Fig.10, the success rate goes down as

the prediction horizon becomes longer. However, even in the

five-mode model, about 70% success rate is achieved for

10step (2.4[sec]) ahead prediction. This long-term prediction

has never been realized in the conventional behavior model

based on the controller model or the information processing

model. Furthermore, the low-mode model shows higher

success rate than the high-mode model. Thus, the proposed

framework can control the prediction accuracy by choosing

the ‘resolution’ of the symbolic representation.

TABLE I

GENERATED PRODUCTION RULES (FIVE EXAMINEES)

two-mode model five-mode model

Number Number Average of Number Average of
Examinee of Data of Rules Rule Type of Rules Rule Type

A 2851 90 27.6 1026 18.4

B 2908 120 22.6 996 17.7

C 2424 273 21.0 962 18.2

D 3008 448 21.0 1251 18.4

E 3063 670 20.6 1640 14.8

V. CONCLUSION

This paper has presented a new hierarchical segmenta-

tion of the observed driving behavioral data based on the

multiple levels of abstraction of the underlying dynamics.

By synthesizing the ideas of the feature vector definition

revealing the dynamical characteristics and the unsupervised

clustering technique, the hierarchical segmentation has been

achieved. The identified mode can be regarded as a kind of
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Fig. 10. Success rate of the prediction for various prediction horizon (all
examinees).

symbol in the abstract model of the behavior. Second, the

grammatical inference technique was introduced to develop

the context-dependent grammar of the behavior, i.e., the

symbolic dynamics of the human behavior. In addition, the

behavior prediction based on the obtained symbolic model

was performed and discussed. The proposed framework

enables us to make a bridge between the signal space and the

symbolic space in the understanding of the human behavior.

The design of the environment symbol with hierarchical

structure and application to anomaly detection are our future

works.
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