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Abstract— In this paper, we propose a co-learning particle
filter approach for vehicle tracking, which is very important for
intelligent vehicle. The proposal distribution of the particle filter
is a combination of an extra support vector machine (SVM)
detector and the motion prior. Previous works focusing on how
to online update the detector or the observation likelihood using
the tracking results. These approaches belong to “self-learning”
fashion and easily tend to drift. The major difference between
the proposed approach and previous works is that the SVM
detector and the likelihood function can be mutually updated in
a co-learning manner. By adopting the co-learning technology,
the unlabelled samples which are generated during tracking are
utilized to progressively modify the SVM detector and update
the observation likelihood; therefore the resulting tracker is
more robust and effectively avoids the drift problem. Finally,
the performance of the proposed approach is evaluated using
extensive real visual tracking examples.

I. INTRODUCTION

As a class of important mobile robots, the intelligent
vehicles have been received more and more interests since
they can be used to reduce the number of traffic accidents
and increase the driver comfort. Among many functionalities
an intelligent vehicle must perform, vehicle detection and
tracking play important roles[21][2]. In fact, the intelligent
vehicle must be able to detect and track preceding vehicles
on its path in order to perform autonomous driving. Different
classes of sensors, such as camera, radar, and acoustic, have
been considered for sensing in this application. Due to the in-
creasingly powerful computers and the less-expensive high-
performance video cameras that have become available in
the past few years, the use of computer vision technology as
a sensor in driver-assistance systems become more common
and has led to increased performance. Vision sensors can
provide rich information about the vehicle’s surroundings
and also have the advantage over active sensors of not
causing intervenience interference.

As to the tracking algorithm, earlier results were based
on the famous Kalman filtering, which can obtain optimal
solution in the case of linear dynamics and Gaussian noise.
Unfortunately, very few practical visual tracking problems
belong to this case. For nonlinear or non-Gaussian prob-
lems, it is impossible to evaluate the probability distribution
analytically and many algorithms have been proposed to
approximate them. The particle filter, also known as se-
quential Monte Carlo[7], or Condensation[11], is the most
popular approach which recursively constructs the posterior
probability distribution function of the state space using
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Monte Carlo integration. Currently, the particle filter has
been extensively used in the field of location[20], fault
detection[8] and SLAM[3][19] for robots.

To enhance the visual tracking ability of particle filter,
[17] incorporated Adaboost detector into the framework of
particle filter. This approach is very promising since it merges
the advantages of detector and tracker. However, it only
employs fixed Adaboost detector to construct the proposal
distribution. Such models are trained using only appearance
data available before tracking begins, which in practice limits
the range of appearances that are modelled, and ignores the
large volume of information that becomes available during
tracking. To solve this problem, [1] and [9] developed on-
line boosting classifier that selects features to discriminate
the object from the background. These “classification-based
tracking” approaches are so promising that many scholars
combined them with the popular particle filter. For example,
[23] embedded the feature selection procedure into the
particle filter with the aid of existed “background” particles.
[14] proposed a cascaded particle filter with discriminative
observers of different lifespan. However, we notice that the
model is updated in a totally self-learning manner. That is
to say, the classifier which is trained (or updated) in the
previous frame is used in current frame to evaluate possible
regions. Then we select the so-called “positive” or “negative”
samples for updating the classifier. Note that the “positive”
or “negative” samples are not manually labelled but labelled
by the previously trained classifier (This is an important
difference between tracking and detection problems). Since
tracking may introduce error, the labels may be noisy.
Therefore these supervised approaches usually tend to “drift”
since the error may be accumulated during the learning and
tracking process. In fact, in many tracking problems, the
labelled samples are given by an extra detector which only
works in the first frame and therefore the number of labelled
samples is very small, while the unlabelled samples, which
can be selected from any frame, is enormous and easy to
get. If we wish to update the classifier online, we should not
ignore the unlabelled samples. This motivates us to use the
popular semi-supervised learning approach[26].

Semi-supervised learning has received a lot of attentions
over the past few years. The main motivation is that labelled
samples are difficult to obtain, whereas unlabelled ones are
easy. The task of semi-supervised learning algorithms is to
utilize labelled samples in conjunction with their relationship
to unlabelled data to design a classifier. Currently, different
algorithms have been proposed for semi-supervised learning
such as EM algorithm, co-training, tri-training, etc. For
more details on semi-supervised learning, please see [26].
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Semi-supervised learning also finds extensive applications in
robotics and automation fields, such as shadow detection[12]
and visual guidance of mobile robots[15].

Though the semi-supervised learning achieves great suc-
cesses, its application in tracking domain is still very rare.
Recently, [22] utilized the co-training support vector machine
(SVM) approach to design a semi-supervised tracker. In
[10], a semi-supervised online boosting approach is used
for tracking, which is a straightforward extension of the
supervised online boosting approach[9]. [25] used co-training
approach to update generative and discriminative model and
incorporated this updating approach into the framework of
particle filter. Both the works in [22] and [25] update the
observation likelihood functions in a co-training manner.

In this paper, we propose a co-learning approach for
vehicle tracking. We use an SVM detector and the motion
prior to construct the proposal distribution of the particle
filter. Differently from [22] and [25], at each instant, we
use the current tracking result to update the detector, and
use the current detection result to update the observation
likelihood. Though in [22] and [25], the term “co-training”
is used, in this paper, we prefer to use the term “co-learning”
to describe our algorithm. The reason is that the original co-
training approach is proposed for updating of two classifiers,
while in this paper, only the SVM detector is in the form of
classifier, and the observation likelihood is not in the form of
classifier. To the best of the authors’ knowledge, such a co-
learning approach has not been proposed and the proposed
approach can effectively avoid the drift phenomenon in
adaptive tracking.

The remainder of this paper is organized as follows. In
Section II, a brief introduction about particle filter is given.
In Section III we describe the proposed co-learning particle
filter. Section IV gives some experimental results. Finally,
some conclusions are presented in Section V.

II. BRIEF REVIEW FOR PARTICLE FILTER

The task of tracking is to use the available measure-
ment information to estimate the hidden state variables.
Given the available observations z1:k−1 = z1,z2, · · · ,zk−1
up to time instant k − 1, the prediction stage utilizes
the probabilistic system transition model p(xk|xk−1) to
predict the posterior at time instant k asp(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. At time instant k, the ob-
servation zk is available, the state can be updated using
Bayes′s rule p(xk|z1:k) =

p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) , where p(zk|xk)

is described by the observation equation. To solve this
problem, the particle filter approaches are proposed [7]. The
kernel of particle filter is to recursively approximate the
posterior distribution using a finite set of weighted samples.
Each sample xi

k represents one hypothetical state of the
object, with a corresponding discrete sampling probability
ω i

k, which satisfies ∑N
i=1 ω i

k = 1. The posterior p(xk|z1:k)
then can be approximated as p(xk|z1:k)≈∑N

i=1 ω i
kδ (xk−xi

k),
where δ (·) is Dirac function. Then the estimation of the
state xk can be obtained as x̂k = Ep[xk|z1:k] ≈ ∑N

i=1 ω i
kxi

k.
The candidate samples {xi

k}i=1,2,···,N are drawn from an

importance distribution q(xk|x1:k−1,z1:k) and the weight of

the samples are ω i
k = ω i

k−1
p(zk|xi

k)p(xi
k|x

i
k−1)

q(xk|x1:k−1,z1:k)
. The samples are

re-sampled to generate an unweighed particle set according
to their importance weights to avoid degeneracy. In the case
of the bootstrap filter[7], q(xk|x1:k−1,z1:k) = p(xk|xk−1) and
the weights become the observation likelihood p(zk|xk).

III. PROPOSED PARTICLE FILTER

The proposed tracking approach uses a composite proposal
distribution which can be represented as

q(xk|xk−1,zk) = αqsvm(xk|xk−1,zk)+(1−α)p(xk|xk−1) (1)

where qsvm, which is dependent on the SVM detector, is
a Gaussian distribution which will be discussed later. The
parameter α can be set dynamically without affecting the
convergence of the particle filter. When α = 0, the pro-
posed algorithm reduces to the conventional particle filter.
By increasing α we place more importance on the SVM
detections. In general cases, α can be set as 0.5.

The form of Eq.(1) is a little similar with the proposal
distribution proposed in [17], except that in [17], an Ad-
aboost detector used, while in this paper we use SVM
detector. However, we point out that there exists an important
difference between the work in [17] and ours. The novelty
of our work is that the SVM detector and observation
likelihood can be updated in a co-learning fashion, while in
[17], both the Adaboost detector and likelihood function are
fixed. Though recently there emerges a lot of approaches to
online update the Adaboost detector during tracking period,
most of them belong to the “self-learning” category, and
to the best of our knowledge, there has no existing work
in which the detector and the observation likelihood are
mutually online learned. In the following we will introduce
the implementations of SVM detector, observation likelihood
and the co-learning approach.

A. SVM Detector

SVM is a popular machine learning algorithm for data
classification due to its strong theoretical foundation and
good generalization performance. Taking the sign of a linear
discriminant function f (s) = w ·Φ(s)+ b learning from the
training data {si,yi}

M
i=1, where yi takes values in the set

{−1,+1}, and M is the number of samples. SVM classifiers
minimize the following objective function in feature space:

min
w,b,ξi

1
2
‖w‖2 +C

M

∑
i=1

ξi (2)

subject to the constraints:

yi(w ·Φ(s)+b)≥ 1−ξi, ξi ≥ 0, i ∈ 1, ...,M (3)

where ξi is the slack variable, C is the tradeoff parameter
between allowed error in the samples and the margin. By
taking the Lagrangian of (2) and setting it to zero, we can
express the original problem as the dual form

min
0≤α≤C

W =
1
2

M

∑
i, j=1

αiQi jα j−
M

∑
i=1

αi +b
M

∑
i=1

αi (4)
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where Qi j = yiy jΦ(si)Φ(s j). The solution of dual parameters
reduce to the Karush-Kuhn-Tucker (KKT) conditions:

gi =
∂W
∂αi

=
M

∑
i, j=1

Qi jα j + yib−1







> 0 αi = 0
= 0 0 < αi < C
< 0 αi = C

(5)

h =
∂W
∂b

=
M

∑
i=1

yiαi = 0 (6)

Those samples with gi = 0 are usually called support vectors,
samples with gi < 0 are called error vectors, the rest are
called reserve vectors and exceed the margin (gi > 0).

Given the recent success of Histogram of Oriented Gra-
dient (HOG) feature in object detection [6], we adopt it in
our classifier design. As shown in Fig.1(a), to incorporate
spatial information into HOG, we use a 2× 2 cell array
to form the block. For each cell, the 9-bin histogram of
the gradient magnitude at each orientation is computed. The
concatenation of the HOG for 4 cells within one block forms
a 36-dimensional vector, as shown in Fig.1(c). More details
can be found in [6].

Fig. 1. HOG representation: (a) A block with 4 cells; (b) The gradient
map; (c) The HOG of a block.

B. Observation Likelihood

Currently there are many observation likelihoods have
been developed for detection and tracking. In this paper, to
show the ability of co-learning, we use the most conventional
feature: RGB histogram, since it achieves robustness against
non-rigidity, rotation and partial occlusion[18][16]. It should
be noted that any other appearance features can be easily
incorporated into this framework. In our experiments, the
histograms are typically calculated in the RGB space using
8×8×8 = 512 bins.

The color-similarity measure is based on the similarity
between the color histogram of a reference region and that
of the image region in frame k represented by a sample xi

k.
To estimate the proper weight for this sample during the
measurement update step, we need the observation model
pc(zk|xk = xi

k). This model can be obtained by the following
equation

pc(zk|xk = xi
k) ∝ exp{−λcD2(q∗,qk(xi

k))} (7)

where λc = 20 in our experiments and q∗ and qk(xi
k) are

the fixed reference color histogram and the color histogram
extracted from the region defined by xi

k, respectively. The

distance measure D(·, ·) is derived from the Bhattacharyya
similarity coefficient and is defined as

D(q∗,qk(xi
k)) = {1−

512

∑
n=1

√

q∗(n)qk(n;xi
k)}

1/2 (8)

More details can be found in [18] and [16]. Note that in
[18] the reference histogram q∗ is fixed while in [16] q∗
can be updated using the tracking results. As we analyze in
above, the updating approach proposed in [16] belongs to
the fashion of “self-learning” and therefore easily tends to
drift. In the following subsection the co-learning technology
will be proposed to solve this problem.

C. Co-Learning Particle Filter

The original motivation to develop co-training came from
the fact that labelled data is scarce, whereas unlabelled data
is usually plenty and cheap to obtain. In conventional co-
training algorithms[4][12], two classifiers are trained using
two different feature sets on the initial labelled data. Then
each classifier is deployed on the unlabelled data, and at
each round, it chooses the example which it can label most
confidently from each class, and adds it to the pool of
labelled examples. This is carried out iteratively until a fixed
number of rounds, or until all the originally unlabelled data is
labelled. The main drawback of the original co-training[4] is
the assumption of conditional independence, which requires
the two feature sets be statistically independent. In most real
world cases, this assumption is not likely to hold. Recently
[13] demonstrated that even two closely related classifiers
could be co-trained effectively.

The idea behind co-training is the following. If the two
classifiers are trained using conditionally independent feature
sets, when one classifier labels an example, it is seen as
a random training example by the other classifier. In this
case, the other classifier benefits from this added example.
In this way, different views of the target concept may help
achieve better combined classification accuracy, even though
individual classifier accuracy may be much weaker.

In this paper, we slightly modify the co-training approach
to the so-called “co-learning” approach since we update
SVM detector and the reference color histogram template
mutually. Before discussing the implementation of the co-
learning, we should separately introduce how to update the
SVM detector and the reference color histogram template.

First, we consider the online updating of SVM detector.
Currently there have many online SVM approaches[5][24].
The online SVM classifier need to train incrementally on
new data. In this paper, we use α− ISV M proposed in [24]
to update the SVM detector. This algorithm fully utilizes
the properties of support vector set, and accumulates the
distribution knowledge of the sample space through the
adjustable parameters. Note that in this updating the so-called
new data is not the detection results produced by the SVM
detector itself, but extracted from the tracking results. For
notational simplicity, we denote the SVM detector at instant
k as Ck.
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Then we discuss the updating of the reference template.
We denote the reference template at instant k as Sk. We can
set the initial S0 = q∗ and use

Sk = γSk−1 +(1− γ)Nk (9)

to online update the reference template. In (9), γ is the
updating parameter which can be set by designer. If γ is
set to 1 then the reference template will keep fixed and
therefore γ can be used to control the updating speed. Nk
is the innovative information obtained at current instant k.
In some popular updating approach such as [16], Nk is the
RGB histogram extracted from the current tracking box. This
is a “self-learning” approach and easily tends to drift. In our
approach, Nk is extracted from the detection results which
is given by the SVM detector Ck−1. If there are more than
one detection results, we choose the most confident one to
use.

It should be noted that co-learning is just a learning
approach, but not a classification approach. Therefore how
to integrate the two classifiers is another problem. In [22]
and [25], some heuristical integration approaches are used
for tracking. In this paper, we use one detector and one
RGB template for co-learning, where detector is used to
construct the proposal distribution and RGB template is used
to evaluate the likelihood of particles. Obviously the detector
and the RGB template play different roles and work in
different states; therefore no extra fusion approach is needed.

Finally, the co-learning module is integrated into the
framework of particle filter and forms the co-learning particle
filter, which is summarized in Algorithm 1. At each time
instant, we maintain a set of weighted particle, an SVM
detector, and a reference color histogram template. All of
them will be updated during the tracking period.

IV. EXPERIMENTAL RESULTS

The developed algorithm has been tested in a number
of different situations. In this section, we will give the
descriptions of the data collection and experimental results.

A. Data Collection

In the experiments, we use CCD camera to collect data on
practical roads. The camera is mounted on two independent
platforms (see Fig.2). The left in Fig.2 is THMR-V, which
is the intelligent vehicle developed by our laboratory. The
right one in Fig.2 is developed for Shijiazhuang Railway
Institute. The collected images are in 320× 240 resolution.
We collected a lot of data under different weather conditions
and different scenarios. In the following we will give some
experimental results.

B. Results

To verify the effectiveness of the proposed approach, we
compare it with other three algorithms, of which implemen-
tations are detailed as follows:

(1)“PF”: This approach is a conventional implementation
of particle filter. That is to say, we set the parameter α in (1)
to be zero and therefore no detector is incorporated into the

Algorithm 1 Co-learning Particle Filter
Tracking Algorithm

Given: {x(n)
k−1,ω

(n)
k−1}

N
n=1, SVM classifier Ck−1, RGB Tem-

plate Sk−1

Output: {x(n)
k ,ω(n)

k }N
n=1, SVM classifier Ck, RGB Template

Sk
————————–
Object Tracking
Re-sampling:

– Resample {x(n)
k−1,ω

(n)
k−1}

N
n=1 to get {x̄(n)

k−1,1/N}N
n=1

Prediction:
– For n = 1,2, · · · ,N, draw predicted particles x(n)

k
from the proposal distribution

αqsvm(xk|xk−1 = x̄n
k−1,zk)+(1−α)p(xk|xk−1 = x̄n

k−1) (10)

Calculate the weights:
– For n = 1,2, · · · ,N, calculate the weights of the

predicted particles

ω(n)
k ∝ exp{−λcD2(Sk−1,qk(xi

k))} (11)

Get the expected results: x̂k = ∑N
n=1 ω(n)

k x(n)
k

Online Updating
Use the detection results of SVM detector to extract the
RGB feature and use it to update Sk−1 to Sk
Use the tracking results of x̂k to extract the HoG feature
and use it to update Ck−1 to Ck

Fig. 2. Data collection platform. Both images were captured in Tsinghua
University campus.

tracker. In addition, the reference histogram is never updated.
This approach is little similar to the approach in [18].

(2)“PF-U”: This approach is the same as PF except that
the reference histogram is updated using the current tracking
results. The update parameter γ in (9) is set as 0.9, and
the innovative term Nk in (9) is extracted from the tracking
results. This approach is little similar to the approach in [16].

(3)“SVM-PF”: This approach is the same as the proposed
approach except that the SVM detector and the reference
histogram are never updated. This approach is little similar
to the approach in [17].

Finally, for a fair comparison, in our proposed approach,
the updating parameter γ is also set to 0.9.

For all of the experiments, the state of the particle filter is
defined as xk = [xk,yk,sk], where xk,yk indicate the location
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of the object, sk the scale. The dynamics of the objects
are assumed to be a random walking model, which can be
represented as xk = xk−1 + vk, where vk is a multivariate
zero-mean Gaussian random variable. Its variances are set
by [σx,σy,σs] = [5,5,0.1]. For each particle filter, we assign
100 samples.

For the design of initial SVM detector, we collected
450 positive samples including different vehicles and 800
negative samples for training. The obtained SVM detector
has 306 support vectors. For SVM-PF, this SVM detector
will be used during the whole tracking period, while in
our approach, this SVM detector can be updated during the
tracking period.

In the first scenario, we try to track a oncoming car which
faces to us. The car is first detected at a long distance, during
the tracking period, the scale of it will become larger and
larger. Due to the small scale in the initial frame, there
has very few features can be extracted from it. Therefore,
the conventional tracker easily loses it. In Figs.3-4 we give
some representative examples. It is obvious that PF which
uses fixed reference histogram rapidly loses the target. PF-
U, which is equipped with updating ability, performs a little
better but still not satisfactory since it only locks a small part
of the target at Frame 47. SVM-PF is also not satisfactory
since it uses fixed detector and reference histogram. Our
approach, of which results are shown in the right columns,
shows excellent performances during the tracking period.
This is not difficult to understand since the detector and the
reference histogram are updated each other. Though only a
few features can be extracted from the initial frames, the co-
learning approach can make the tracker robust to the change
of the scale.

Then we will show the robustness to the influences pro-
duced by shadows. In scenario 2, a preceding car which is
passing the region under a bridge is tracked. The bridge
brings large shadows and strongly changes the color his-
togram of the car. From Figs.5-6 we can see that all perfor-
mances of PF, PF-U and SVM-PF are strongly influenced
by the shadows of the bridge, while our approach is more
robust. After the car having passed the region under bridge,
PF makes a little recover since the color histogram of the
car comes back. However, since PF-U updates the reference
histogram using the tracking results, the reference histogram
is wrongly updated and therefore PF-U performs worse (see
the second column of Fig.6). This is an obvious disadvantage
of the “self-learning”.

In Figs.7-8 we give another scenario which also admits
large shadow and observe similar results. More extensive
experimental results are omitted due to the space.

Another key point should be indicated is that the selection
of parameter γ in PF-U is very important. If γ is too
small, the updating speed will be fast and the reference
histogram easily tends to drift. After our extensive tests,
the value γ = 0.9 is relatively suitable for our applications.
This represents a moderate updating. On the other hand,
our approach is not so sensitive to the parameter γ , since
the updating is determined by the detection results, but not

the tracker itself. In fact, we make some other tests such as
γ = 0.8,0.7,0.6 and 0.5 and observe similar tracking results.
Therefore the proposed co-learning approach is rather robust
to the updating parameter.

V. CONCLUSIONS

In this paper, we propose a co-learning particle filter. The
major novelty is that the SVM detector and the likelihood
function can be mutually updated in a co-learning manner.
By adopting the co-learning technology, the unlabelled sam-
ples are utilized to progressively modify the SVM detector
and update the reference color histogram template; therefore
the resulting tracker effectively avoids the drift problem.
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