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Abstract— This paper proposes a stable object grasping
method to realize dynamic force/torque equilibrium by using a
triple robotic fingers system with soft and deformable hemi-
spherical fingertips. In the authors’ previous works, “Blind
Grasping” control scheme, which realizes stable object grasping
without use of any external sensing such as vision, force, or
tactile sensing in the case of using a pair of robot fingers,
has been proposed. This control methodology is based on a
unique configuration of human hand, called “Fingers-Thumb
Opposability”. In this paper, a ternary finger in addition to a
pair of fingers is introduced not only to expand a stable region
of grasping, but also to enhance dexterity and versatility of
the multi-fingered robotic hand system. To this end, a “Blind
Grasping” manner is modified in order to install it in the triple
fingers system. First, dynamics of the triple robotic fingers
system and a grasped object with considering rolling constraints
is modeled, and a control input based on the blind grasping
manner is designed. Next, the closed-loop dynamics is derived
and a stability analysis is shown briefly. Finally, its usefulness
is discussed through numerical simulation results.

I. INTRODUCTION

A multi-fingered robotic hand system to perform dexterous
manipulation tasks like human has been one of the most
attractive topics in the field of developing anthropomorphic
robotic devices so far. However, it is still now hard to
realize a human-like robotic hand system in the functional
sense. So far, many works related to the object grasping
have been reported [1–5]. Especially, a model for object
grasping with rolling constraints has been treated in several
works [7–9] since Montana had presented one of the rigid
rolling constraint models [6]. In these previous works, mod-
eling and analysis of object grasping have been investigated
mainly from the kinematic viewpoint. Also object grasping
controllers have mostly been designed based on the inverse
dynamics. Therefore, they need the knowledge of an object
mass center’s location in advance, and the exact information
of contact points’ locations between the grasped object and
each fingertip in realtime. In other words, they need not
treat the problem of stability and convergence for closed-
loop dynamics explicitly under such a strong assumpition
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Fig. 1. Triple robotic fingers system

that all the information about the object mass and exact
contact point positions is available in realtime. On the other
hand, Prattichizzo and Bicchi [10] have treated dynamic
analysis of a general manipulation system. Nevertheless,
nonholonomic rolling constraints have not yet been taken
into consideration explicitly, and it has not mentioned about
control design. In recent years, Arimoto et al. have proposed
one of the dynamic object grasping methods, which need not
use any contact point information or object mass information,
using a pair of soft robotic fingers with considering rolling
constraints [11–13]. Subsequently the authors have improved
it and developed a dynamic object manipulation method,
called “Blind Grasping” based on their works. This control
method is inspired by the unique configuration of human
hand, called “Fingers-Thumb Opposability” [14]. Using this
controller, stable object grasping is realized not only without
use of any external sensing, but also without paying high
computational costs such as calculation of inverse dynamics,
motion planning according to optimization of certain per-
formance indices, or puzzling about illposedness of inverse
kinematics. However, we have assumed that a grasped object
does not spin around the opposition axis arising between
each contact point on the fingertip during movement so far,
because the spinning motion is uncontrollable for a pair of
robotic fingers with opposability. In this paper, we introduce
a ternary finger in addition to a pair of robotic fingers to
take away this strong assupmtion. It is easy to expect that
by introducing a surplus finger, a stable region to satisfy the
condition of force-torque equlibrium to immobilize the object
is larger than the case of a pair of robotic fingers because the
number of wrench vectors is increasing. Moreover, it may
enhance the dexterity and versatility intuitively. However
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in the case of a triple robotic fingers system, especially
like our proposed fingers configuration as shown in Fig. 1,
each center of contact area between fingertips and the object
surfaces makes a triangle, because the ternary finger (now,
it is the index finger) is not at the opposite position from
any other fingers. This geometrical difference is one of the
most remarkable points in the case of a triple robotic fingers
system, and thereby the force-torque equiriblium condition
to immobilize the object is completely different. Therefore
in this paper, we modify the blind grasping control signal
to be applicable for our triple robotic fingers system in the
following way:

usj =− fd
ri + rm + rt

J0
T
j (x0j − xM )−Cj q̇j , (1)

where x0j denotes each center of hemispherical fingertips,
rj the radius of each fingertip, and xM the centroid of the
triangle made by each center of the hemispherical fingertip
as shown in Fig. 2. Apparently, the centroid is given in the
following way:

xM =
1

3
(x0i + x0m + x0t) , (2)

where q̇j denotes each joint angular velocity for each finger,
Cj > 0 each diagonal positive definite matrix, fd the nom-
inal desired grasping force, and J0j each Jacobian matrix
of each center of the hemispherical fingertips with respect
to each joint angular velocity. The subscript of j = i,m, t
stands for the index finger, middle finger, and thumb in all
equations. Now, let us consider an x-y cross section of our
model as shown in Fig. 2. It is well known that in the case
of immobilizing a 2-dimensional rectangular parallelepiped
object, it needs four frictionless fingers [15]. However in
our model, each finger can generate not only a normal
grasping force expressed as fi, fm, ft, but also tangential
rolling constraint forces expressed as λYi , λXm , λXt and
thereby a force/torque equilibrium to immobilize an object
can be established by using these rolling constraint forces
even though only three fingers are utilized. It is one of
the critically different points compared with grasping by a

pair of robotic fingers, and we will show the reason why it
can be realized through modeling and analyzing an overall
dynamics which includes some physical interaction between
each fingertip and a grasped object, and some numerical
simulations in this paper.

II. TRIPLE ROBOTIC FINGERS SYSTEM

Let us consider a triple robotic fingers system as shown
in Fig. 1. This system is composed of a 4 d.o.f. middle
finger and a 5 d.o.f. thumb whose root positions are fixed
in an inertial frame and located oppositely to each other,
and a 4 d.o.f. index finger whose root position forms
an isosceles triangle together with the root positions of
other fingers. In other words, the index finger is not at
the opposite side from any other fingers. Assume that the
grasped object is a rectangular solid, and the shape of each
fingertip is hemispheric and made of some soft material
such as silicon rubber, and thereby each soft fingertip can
make area contact with the object surfaces. In addition,
each fingertip can perform rolling without slipping on the
object surfaces during movements. Note in this paper that
the gravity effect is ignored to have a physical insight into
analyzing physical interaction and stability of the system,
and to indicate explicitly the difference of the force/torque
equilibrium condition between the case of using a pair of
robotic fingers and that of using triple robotic fingers. As
shown in Fig. 1, symbol O denotes the origin of Cartesian
coordinates which commonly regarded as the first, second
on third joint center of the thumb. Symbol Oc.m. denotes the
center of the object mass, and also the origin of object local
coordinates. The position of Oc.m. in Cartesian coordinates
is expressed by x = (x, y, z)T. An instantaneous rotational
axis of the object, which is expressed by the object local
coodinates Oc.m., is ω = (ωx, ωy, ωz)

T and it means that
orientation angular velocities around each axis of Oc.m.

respectively. Also the position of the center of each contact
area in Cartesian coordinates is expressed by xj .

A. Constraints

When each fingertip is rolling on the object surfaces, there
arise nonholonomic rolling constraints during movements.
These constraint models are derived here. The object orien-
tation in Cartesian coordinates is expressed by the rotational
matrix R such that

R =
(
rX rY rZ

) ∈ SO(3), (3)

where rX , rY , rZ ∈ R
3 are mutually orthonormal vectors

on the object frame. It is known that this rotational matrix R
is one of the members of the group SO(3), and it satisfies
the folloing relation

Ṙ = R [ω×] , [ω×] =

(
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

)
, (4)

where ω = (ωx, ωy, ωz)
T is the angular velocity vector for

the instantaneous rotational axis of the object expressed by
the object local coordinates. Obviously, (4) is not integrable
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analytically, and it causes one of the nonholonomic con-
straints with respect to the angular velocities of the object.
On the other hand, the translational velocity of the center of
each contact area on the fingertip vj can be expressed in the
following way:⎡

⎣ vi = (ri −Δri) (−ṙX +Ωi × rX)
vm = (rm −Δrm) (−ṙY +Ωm × rY )
vt = (rt −Δrt) (ṙY −Ωt × rY ) ,

(5)

where Ωj is the orientation angular velocity vector for each
robotic finger at the center of each contact area, and Δrj
is the fingertip’s displacement at the center of each contact
area such that⎡

⎣ Δri = (ri +Di) + rX
T(x− x0i)

Δrm = (rm +Wm) + rY
T(x− x0m)

Δrt = (rt +Wt)− rY
T(x− x0t),

(6)

where Di is the object depth from the object mass center to
the object surface at the index finger’s side, and Wm +Wt

is the object width. Obviously, vj is on the tangential plane
at the center of each contact area which is the object surface
itself in this case. The fingertip’s orientation angular velocity
vectors Ωj can be expressed as a linear homogeneous form
with respect to each joint angular velocity such that

Ωj = JΩj q̇j . (7)

The rolling constraints can be expressed in such a way
that the velocity of the center of each contact area on the
fingertips vj equals to that on the object surface such that

[
(ri −Δri)rY

T (−ṙX +Ωi × rX) = Ẏi

(ri −Δri)rZ
T (−ṙX +Ωi × rX) = Żi

(8)

[
(rm −Δrm)rX

T (−ṙY +Ωm × rY ) = Ẋm

(rm −Δrm)rZ
T (−ṙY +Ωm × rY ) = Żm

(9)

[
(rt −Δrt)rX

T (ṙY −Ωt × rY ) = Ẋt

(rt −Δrt)rZ
T (ṙY −Ωt × rY ) = Żt,

(10)
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where Yi, Zi, Xm, Zm, Xt, Zt are the projected distances
between the object mass center Oc.m. and the center of each
contact area to X , Y and Z axes of the local frame on the
object mass center as shown in Fig. 4. These can be given
as follows:⎡
⎣ Yi=−rY

T(x−x0i), Zi=−rZ
T(x−x0i)

Xm=−rX
T(x−x0m), Zm=−rZ

T(x−x0m)
Xt=−rX

T(x−x0t), Zt=−rZ
T(x−x0t).

(11)

Eventually, from (7)∼(11) we obtain[
(ri −Δri)

(−ωz + rZ
TJΩiq̇i

)
= Ẏi

(ri −Δri)
(
ωy − rY

TJΩiq̇i

)
= Żi

(12)

[
(rm −Δrm)

(
ωz − rZ

TJΩmq̇m

)
= Ẋm

(rm −Δrm)
(−ωx + rX

TJΩmq̇m

)
= Żm

(13)

[
(rt −Δrt)

(−ωz + rZ
TJΩtq̇t

)
= Ẋt

(rt −Δrt)
(
ωx − rX

TJΩtq̇t

)
= Żt,

(14)

These (12)∼(14) express nonholonomic rolling constraints
on the object surfaces, and they are in linear homogeneous
with respect to each velocity vector. Therefore, they can be
rewritten as Pfaffian constraints which are given as:[

Yqiq̇i + Yxiẋ+ Yωiω = 0
Zqiq̇i +Zxiẋ+Zωiω = 0

(15)
[

Xqmq̇m +Xxmẋ+Xωmω = 0
Zqmq̇m +Zxmẋ+Zωmω = 0

(16)
[

Xqtq̇t +Xxtẋ+Xωtω = 0
Zqtq̇t +Zxtẋ+Zωtω = 0,

(17)

where⎡
⎢⎢⎣

Yqi = −(ri −Δri)rZ
TJΩi + rY

TJ0i,
Yxi = −rY

T, Yωi = (Zi, 0, −Di)
T

Zqi = (ri −Δyi)rY
TJΩi + rZ

TJ0i,
Zxi = −rZ

T, Zωi = (−Yi, Di, 0)T

(18)

⎡
⎢⎢⎣

Xqm = (rm −Δrm)rZ
TJΩm + rX

TJ0m,
Xxm = −rX

T, Xωi = (0, − Zm, Wm)T

Zqm = −(rm −Δrm)rX
TJΩm + rZ

TJ0m,
Zxm = −rZ

T, Zωi = (−Wm, Xm, 0)T

(19)

⎡
⎢⎢⎣

Xqt = (rt −Δrt)rX
TJΩt + rZ

TJ0t,
Xxt = −rY

T, Xωt = (0, − Zt, −Wt)
T

Zqt = (rt −Δrt)rX
TJΩt + rZ

TJ0t,
Zxt = −rZ

T, Zωt = (Wt, Xt, 0)T,

(20)
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and J0i, J0m ∈ R
3×4, J0t ∈ R

3×5 are the Jacobian
matrices for each x0j with respect to each joint angle
respectively.

B. Soft Fingertip Model

The lumped-parametrized contact model for the deforma-
tion of the fingertip at the center of each contact area which
has been proposed by Arimoto et al. [11] is used here. This
model considers only the deformation of normal direction,
and doesn’t include that of tangential direction. Namely, we
assume that the deformation of tangential direction doesn’t
occur during manipulation for the sake of simplifying the
model construction. The reproducing force fj(Δrj) at the
center of each contact area can be expressed as follows:

fj = f̄j + ξjΔṙj , f̄j = kΔr2j , (21)

where k stands for a positive constant and ξj is a positive
scalar function regarding Δrj , and these are due to the
fingertip’s material. In addition to this nonlinear spring-
damper model with respect to the normal of each contact
surface, we introduce a damping model with respect to twist
movements between the fingertips and the object surfaces as
the energy dissipation functions in the following way [16]:⎡

⎣ Ti = ηi‖rXT(Rω −Ωi)‖2
Tm = ηm‖rY T(Rω −Ωm)‖2
Tt = ηt‖rY T(Rω −Ωt)‖2,

(22)

where ηj is a positive scalar function with resprect to Δrj
which depend on material characteristics of the fingertips.

C. Overall Dynamics

The total kinetic energy of the overall system is given as:

K =
∑

j=i,m,t

1

2
q̇T
j Hj q̇j +

1

2
ẋTMẋ+

1

2
ωTIω, (23)

where Hj denotes the inertia matrix for each finger, M =
diag(m,m,m) the mass of the object, and I is the inertia
tensor for the object represented by the principal axes of
inertia. On the other hand, the total potential energy for the
overall system is given as follows:

P =
∑

j=i,m,t

Pfj =
∑

j=i,m,t

∫ Δrj

0

f̄j(Δrj)dζ, (24)

where Pfj (Δrj) is the potential energy for each fingertip
caused by the deformation of the fingertip. Eventually, La-
grange’s equation of motion can be obtained by applying the
variational principle in such a way∫ t1

t0

{
δ(K − P ) +

∑
j=i,m,t

uT
j δqj

}
dt =

∫ t1

t0

∑
j=i,m,t

{
ξjΔṙj

∂Δṙj

∂Λ̇
+

∂Tj

∂Λ̇

}
δΛdt

+

∫ t1

t0

(Y T
i ,Z

T
i ,X

T
m,ZT

m,XT
t ,Z

T
t )

TλδΛdt, (25)

where Λ̇ = (q̇T
i , q̇

T
m, q̇T

t , ẋ
T,ωT)T, uj is the input torque

vectors for each finger, and Y i = (Yq
T
i ,Yx

T
i ,Yω

T
i )

T,

Xm = (Xq
T
m,Xx

T
m,Xω

T
m)T, Xt = (Xq

T
t ,Xx

T
t ,Xω

T
t )

T,
and Zj = (Zq

T
j ,Zx

T
j ,Zω

T
j )

T. In addition, λ =

(λT
i ,λ

T
m,λT

t )
T and λi = (λYi , λZi)

T, λm = (λXm , λZm)T,
λt = (λXt , λZt)

T denote Lagrange’s multipliers. Eventually,
we obtain Lagrange’s equation of motion such that
For the triple fingers:

H iq̈i +

{
1

2
Ḣ i + Si

}
q̇i +

∂Ti

∂q̇i

T

− J0
T
i rXfi

+ (Yq
T
i ,Zq

T
i )λi = ui (26)

Hmq̈m +

{
1

2
Ḣm + Sm

}
q̇m +

∂Tm
∂q̇m

T

− J0
T
mrY fm

+ (Xq
T
m,Zq

T
m)λm = um (27)

Htq̈t +

{
1

2
Ḣt + St

}
q̇t +

∂Tt

∂q̇t

T

+ J0
T
t rY ft

+ (Xq
T
t ,Zq

T
t )λt = ut (28)

For the object:

Mẍ+(fi−λXm−λXt)rX+(fm−ft−λYi)rY

−(λZi+λZm+λZt)rZ = 0 (29)

Iω̇ + ω × Iω +
∑

j=i,m,t

∂Tj

∂ω

T

+

(
0
Zi

−Yi

)
fi+

(−Zm

0
Xm

)
fm+

(
Zt

0
−Xt

)
ft

+

(
Zi

0
−Di

)
λYi+

(
0

−Zm

Wm

)
λXm+

(
0

−Zt

−Wt

)
λXt

+

(−Yi

Di

0

)
λZi+

(−Wm

Xm

0

)
λZm+

(
Wt

Xt

0

)
λZt =0, (30)

where Sj and S are skew-symmetric matrices.
Now, taking inner product of the input vector
U = (uT

i ,u
T
m,uT

t ,0
T,0T)T with the output vector

Λ̇ = (q̇T
i , q̇

T
m, q̇T

t , ẋ
T,ωT)T yeilds

Λ̇
T
U =

d

dt
(K + P ) = −

∑
j=i,m,t

(Tj + ξΔṙ2j ) ≤ 0. (31)

This inequality expresses that the input-output pair satisfies
the passivity condition [17].

III. DESIGN OF EXTERNAL SENSOR-LESS GRASPING

CONTROL SIGNAL

Let us design a control signal for stable grasping without
use of external sensing. We have already shown the basic
idea of our controller in (1) and (2) in Section I. In addition
to the control signal, we introduce an adaptive control signal
to compensate the grasping force from the surplus finger as
follows:

ucj = − rjfd
3(ri + rm + rt)

JT
ωj

N̂ j , (32)

where each N̂ j is updated correspoinding to the following
equation such that

d

dt
N̂ j =

rjfd
3(ri + rm + rt)

Γ−1
Nj

Jωj
q̇j , (33)
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and ΓN
−1
j = diag(γ−1

Njx
, γ−1

Njy
, γ−1

Njz
) > 0 is the adaptive

estimation gain for each N̂ j . These compensation control
terms play a important role to realize stable grasping in the
case of this triple fingers system. In the case of frictionless
fingers, it needs seven fingers to satisfy the form-closure to
immobilize a 3-dimensional rectangular solid object. How-
ever, this system has only three fingers. Furthermore, the
grasping force from the ternary finger is normal to the
grasping forces from other fingers. Therefore, in order to
realize force/torque equilibrium to immobilize the object,
each finger should generate rolling constraint forces which
are partially shown in Fig. 2 as λYi , λXm , and λXt . These
rolling constraint forces at the final state cannot be generated
if only using the control signals given as (2), and thereby
these compensation control signals are necessary to generate
the rolling constraint forces at the final state. Eventually, we
design the total control signals to the triple robotic fingers
system according to the principle of linear superposition such
that

uj = usj + ucj . (34)

It is remarkable that the control inputs given as (34) are
composed of only kinematic information, joint angles and
angular velocities of the triple fingers system. Substituting
these control signals into (26)∼(30) yeilds the overall closed-
loop dynamics such that
For the triple fingers:

H iq̈i+

{
1

2
Ḣi+Si+Ci

}
q̇i+

∂Ti

∂q̇i

T

−J0
T
irXΔfi

+(Yq
T
i,Zq

T
i)Δλi−riQΔN i=0 (35)

Hmq̈m+

{
1

2
Ḣm+Sm+Cm

}
q̇m+

∂Tm
∂q̇m

T

−J0
T
mrY Δfm

+(Xq
T
m,Zq

T
m)Δλm− rmQΔNm=0 (36)

Htq̈t+

{
1

2
Ḣt+St+Ct

}
q̇t+

∂Tt

∂q̇t

T

+J0
T
trYΔft

+(Xq
T
t,Zq

T
t)Δλt+rtQΔN t=0 (37)

For the object:

Mẍ+ (Δfi −ΔλXm −ΔλXt)rX

+(Δfm −Δft −ΔλYi )rY

− (ΔλZi +ΔλZm +ΔλZt)rZ = 0 (38)

Iω̇ + ω × Iω +
∑

j=i,m,t

∂Tj

∂ω

T

+

(
Sωx
Sωy

Sωz

)

+

(
0
Zi

−Yi

)
Δfi+

(−Zm

0
Xm

)
Δfm+

(
Zt

0
−Xt

)
Δft

+

(
Zi

0
−Di

)
ΔλYi+

(
0

−Zm

Wm

)
ΔλXm+

(
0

−Zt

−Wt

)
ΔλXt

+

(−Yi

Di

0

)
ΔλZi+

(−Wm

Xm

0

)
ΔλZm+

(
Wt

Xt

0

)
ΔλZt=0, (39)

where

Q =
fd

3(ri + rm + rt)
(40)

ΔNj = JT
ωj
(N̂ j −N j) (41)⎡

⎢⎢⎢⎢⎢⎣

Ni =
ri−Δri

ri
(rY IZ−rZIY )

Nm =
rm−Δrm

rm
(rZMX−rXMZ)

Nt =
rt−Δrt

rt
(rZTX−rXTZ) ,

and⎡
⎢⎢⎢⎢⎣

Δfi=fi−Q·IX, Δfm=fm−Q·MY

Δft=ft−Q·TY , ΔλYi =λYi+Q·IY
ΔλXm =λXm+Q·MX, ΔλXt =λXt+Q·TX

ΔλZi =λZi+Q·IZ, ΔλZm =λZm+Q·MZ

ΔλZt =λZt+Q·TZ,

(42)

⎡
⎣ IX =2Ri−Xm−Xt

IY =2Yi−Rm+Rt

IZ =2Zi−Zm−Zt

,

⎡
⎣ MX=2Xm−Ri−Xt

MY =2Rm−Yi+Rt

MZ=2Zm−Zi−Zt⎡
⎣ TX=2Xt−Ri−Xm

TY =2Rt+Yi+Rm

TZ=2Zt−Zi−Zm

,

⎡
⎣ Ri=ri−Δri+Di

Rm=rm−Δrm+Wm

Rt=rt−Δrt+Wt

(43)

⎡
⎢⎢⎢⎢⎣

Sωx =Q{−(rm−Δrm)MZ+(rt−Δrt)TZ}
Sωy =Q(ri −Δri)IZ
Sωz =Q{−(ri−Δri)(2Yi−Wm+Wt)

+(rm−Δrm)(2Xm−Xt−Di)
−(rt−Δrt)(2Xt−Di−Xm)} .

(44)

Now, taking inner product of Λ̇ = (q̇T
i , q̇

T
m, q̇T

t , ẋ
T,ωT)T

and (35)∼(39) yeilds

d

dt
E = −

∑
j=i,m,t

(q̇T
j Cj q̇j + Tj + ξΔṙ2j ) ≤ 0 (45)

E = K +ΔP + V ≥ 0 (46)

V =
Q

4

(
IY

2+IZ
2+MX

2+MZ
2+TX

2+TZ
2
)

+
∑

j=i,m,t

1

2
N̂

T

j ΓNjN̂j ≥ 0 (47)

ΔP =
∑

j=i,m,t

∫ δrj

0

{
f̄j(Δrdj + ξ)− f̄j(Δrdj )

}
dξ, (48)

where δrj = Δrj − Δrdj and it is positive definite in δrj
as long as 0 ≤ Δrdj + δrj < rj . By choosing adaptive gain
ΓN j adequately, the scalar function V ≥ 0 should have a
minimum value Vmin in a neighborhood of the initial state
Λ(0) and thereby the scalar function E also has the minimum
value Emin in the following way:

Emin = K +ΔP + V − Vmin ≥ 0. (49)

Therefore, from (45) and (49) we obtain the following
relation such that∫ ∞

0

∑
j=i,m,t

(q̇T
j Cj q̇j + Tj + ξΔṙ2j )dt

≤ Emin(0)− Emin(t) ≤ Emin(0). (50)
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This means that each joint angular velcity q̇j(t) is squared
integrable over time t ∈ (0,∞), that is, q̇j(t) ∈ L2(0,∞),
and by considering six rolling constraints expressed by
(12)∼(14), it is possible to see that ẋ ∈ L2(0,∞) and
ω ∈ L2(0,∞). Then the velocity vector Λ̇(t) becomes
uniformly continuous in time t, and finaly we can obtain
that Λ̇ → 0 at t → 0, and also we see Λ̈ → 0 as t → 0 [18].
These imply that

ΔD∞ = (ΔfT, ΔλT, ΔNT)T → 0 as t → ∞, (51)⎡
⎣ Δf = (Δfi, Δfm, Δft)

T

Δλ = (ΔλT
i , ΔλT

m, ΔλT
t )

T

ΔN = (ΔNT
i , ΔNT

m, ΔNT
t )

T.

Equation (51) means that overall external forces which
affect both the fingers and the object converge to zero when
time t → ∞. This system is highly redundant and thereby
it should carefully treat the convergence of overall state
variables. Nevertheless, the convergence could be proven by
introducing the concept of “Stability on a manifold” [18] that
is omitted here. Eventually, the force/torque equilibrium for
the object is satisfied, and the object is thereby immobilized
in the dynamical sense.

IV. NUMERICAL SIMULATION

The parameters used in the simulations are given in Table
I. Figure 5 shows the simulation graphics for realization
of force/torque equilibrium to immobilize the object by the
triple robotic fingers system, and Fig. 6 shows the transient
responses of overall external force values ΔD∞. We see
from Fig. 6 that all componets of ΔD∞ converge to zero. It
means that any external forces for each finger and the object
converge to the equilibrium state eventually. Moreover, Fig.
7 shows the transient responses of overall velocity vector
Λ̇ = (q̇T

j , q̇
T
m, q̇T

t , ẋ
T,ωT)T. We can confirm that from

Fig. 7, overall velocity vector Λ̇ converge to zero at the
final state. From these results, the force/torque equilibrium

Fig. 5. Simulation graphics for the realization of force/torque equilibrium
of the object by the triple robotic fingers system

TABLE I

PARAMETERS FOR NUMERICAL SIMULATIONS

Triple robotic fingers

1st link length lj1 0.05 [m]
2nd link length lj2 0.03 [m]
3rd link length lj3 0.02 [m]
1st link mass center lgj1 0.025 [m]
2nd link mass center lgj2 0.015 [m]
3rd link mass center lgj3 0.010 [m]
1st link mass mj1 0.05 [kg]
2nd link mass mj2 0.03 [kg]
3rd link mass mj3 0.02 [kg]
1st link inertia Ij1 diag(1.04, 1.04, 0.06)×10−5 [kg·m2]
2nd link inertia Ij2 diag(2.25, 2.25, 0.38)×10−6 [kg·m2]
3rd link inertia Ij3 diag(0.67, 0.67, 0.25)×10−6 [kg·m2]
Radius of fingertip rj 0.010 [m]
Stiffness coefficient kj 3.0 × 105 [N/m2]
Damping function ξj 500×(2rjΔrj−Δr2j )π [Ns/m2]
Damping function ηj 0.1×(2rjΔrj−Δr2j )π [Nms]

Object

Mass m 0.05 [kg]
Height h 0.035 [m]
Width Wm + Wt 0.02 [m] (Wm = Wt = 0.01 [m])
Depth Di + d 0.035 [m] (Di = 0.0175 [m])
Ineatia I diag(0.68, 1.02, 0.68)×10−5 [kg·m2]

Desired grasping force and each gain

fd 1.0 [N]
Ci, Cm diag(1.5, 1.5, 1.0, 0.8)×10−3

Ct diag(1.5, 1.5, 1.5, 1.0, 0.8)×10−3

ΓNi
, ΓNm , ΓNm diag(1.0, 1.0, 1.0)×10−4

Initial condition

q̇i, q̇m, q̇t 0 [rad/s]
qi (0.0,−0.91,−0.83,−0.25)T [rad]
qm (0.0, 1.09, 0.95,−0.35)T [rad]
qt (0.0, 0.0, 2.05,−0.95,−0.35)T [rad]
ẋ 0 [m/s]
x (0.005,0.025,0.085) [m]
ω 0 [rad/s]
R I3

N̂ i, N̂m, N̂t 0

to immobilize the object is established in a dynamic manner
by using the proposed control scheme.

V. CONCLUSION

This paper has proposed a stable object grasping method
by modifying the blind grasping control signal in order to
utilize it for the triple robotic fingers system. The control
signal can be constructed only by using measurement data
of finger joint angles and angular velocities, and referring
to fingers’ kinematics. Its effectiveness in realization of
the force/torque equilibrium in object grasping is discussed
theoretically with the convergence analysis and confirmed
through numerical simulations. In this paper, we treated the
specific grasped object that is a rectangular solid. However,
our control scheme can be aplicable to other arbitrary polyhe-
dral objects easily. The modeling and analysis for grasping of
an arbitrary polyhedral object will be treated in another paper
[19]. In the next step of the work, we would consider an
arbitrarily shaped 3-dimensional object which is constructed
by only smooth curved surfaces.
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