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Abstract— The Waseda Flutist Robot is able to play the flute
at the level of an intermediate human player. This ability opens
a wide field of possibilities to research human-robot musical
interaction. This research is focused on enabling the flutist robot
to interact more naturally with musical partners in the context
of a Jazz band. For this purpose a Musical-Based Interaction
System (MbIS) has been proposed to enable the robot to process
both visual and aural cues coming throughout the interaction
with musicians. In a previous publication, we have concentrated
on the implementation of visual communication techniques. We
created an interaction interface that enabled the robot to detect
instrument gestures of partner musicians during a musical per-
formance. Two computer vision approaches were implemented
to create a two-skill-level interface for visual human-robot
interaction in a musical context. In this paper we focus on the
aural perception system of the robot. The method introduced
here enables the robot to, a suitable environment provided,
detect the tempo and harmony of a partner musician’s play,
with a specific focus on improvisation. We achieve this by
examining the rhythmical and harmonic characteristics of the
recorded sound. We apply the same approach to amplitude and
frequency spectrum, thus, in the former case tracking amplitude
transients. In the latter case, as we focus on communication
with monophonic woodwind instruments, we follow the most
prominent peak in the frequency spectrum. We specifically use
a similar technique for the audio analysis as we did for our
previous research on motion tracking. From the experimental
results, we have shown that after implementing our algorithm
the robot is able to correctly recognize a number of rhythms
and harmonies. It is able to engage in a simple form of stimuli

and reaction play with a human musician.

I. INTRODUCTION

The research on the Waseda Flutist Robot; since 1990, has

been carried out as an approach to understand the human

motor control from an engineering point of view as well as

introducing novel ways of musical teaching [1]. In particular,

we have been focused on improving the mechanical design

of the lungs, vocal cord, mouth, etc. as well as the implemen-

tation of advanced control strategies [2]. Moreover, some of

the perceptual capabilities have been implemented such as

automatic melody recognition [3], human face tracking [4],

etc. As a result of our research, the latest version of the flutist

robot, the Waseda Flutist Robot No.4 Refined IV (WF-4RIV)
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is able of playing the flute nearly similar to the performance

of an intermediate flutist.

With the mechanical capabilities of the robot having

reached a satisfactory level we have in the past two years

concentrated on developing an interface that allows for the

interaction of the flutist robot with human musicians. We

present the results of various experiments we performed to

confirm the functionality of our method. Besides analyz-

ing the technical performance of our algorithms, we also

scrutinize the resulting sound output and try to determine

how well our robot dynamically changes musical parameters

while interacting with a human player. As we will see in the

experimental results section, the physical constraints of the

robot play an important role here. Although they are first

of all a limitation of the capabilities of the robot, they on

the other hand make the interaction experience feeling more

natural, human-like for the user.

We observed that in general the two principal ways of

a human musicians to interact with each other during a

performance are communication through the acoustic and

visual channel. Although aural exchange of information

seems predominant in a musical band setup there is also a

large amount of communication taking place through visual

interaction. Authors in previous publications ([5], [6]) have

examined methods to visually track the movements of the

instrument of a musician performing together with the robot.

We based this research on the scenario of improvisation in

a Jazz band. During solo play, in most cases, one player

at a time takes the lead and the other players provide

accompaniment. Upon finishing a solo, through movements

with his instrument one player directs the lead to the next

person. Experiments to evaluate the functionality of our

tracking methods were performed, allowing us to scrutinize

the quality of the interaction. Two different levels of in-

teraction were proposed, one to suit the requirements of a

beginner musician and one for an advanced inter-actor. The

first level used so called virtual faders and buttons as human

interface devices for controlling the robot‘s performance. In

the second level a particle filter-based tracking algorithm was

used to allow the robot to recognize changes in instrument

orientation.

II. MUSICAL INTERACTION SYSTEM

The robot is equipped with sensors that allow it to ac-

quire information about its environment. As the robot is a

humanoid we emulate two of the human’s most important

perceptual organs: the eyes and the ears. We integrated two

miniature video cameras in the head mechanism of the robot.
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Fig. 1. On the left hand side the Musical-Based Interaction System (MbIS)
is shown. The MbIS basically processes the information from the robot in
the form of audio and video data. It processes this information employing
the user‘s preferred interaction module. After mapping the result of the
analysis to MIDI performance data, this information is transferred to the
robot control module.

Two microphones are attached to the sides of the head for

stereo-acoustic perception.

For this purpose, we proposed the Musical-Based Inter-

action System (MbIS) to allow for two levels of interaction

(Figure 1). The purpose of the two level design is to make

the system usable for people with different skill levels.

Considering a situation of two human musicians intending to

play together, the more advanced person would always have

to adjust his way of interaction to the less advanced person.

Even in case of having the same skill level two players

need to get used to the way they interact and musically

communicate with each other. We want to introduce the same

kind of behavior for our humanoid robot. A person who

has no experience in playing together with the robot will

need more time to adjust to the particularities of this type

of human-machine interaction. For that reason we designed

the beginner level interaction system that provides easy-to-

learn controllers having a strong resemblance to established

studio equipment. Considering an advanced level player we

want the robot to offer a way of interaction that satisfies

more refined ways of creative expression. The advanced

level interaction system thus allows for free control of the

performance parameters.

Regarding the acoustic interaction we reduce the level of

complexity by only using rhythmic ways of communication.

The robot analyzes the timing of a tone sequence and

reproduces this timing in its own performance. As the human

player in this mode of interaction can concentrate on the

rhythmic part of his play, without caring too much about

the harmonic content, only the skill level of a beginner is

required.

The advanced level of interaction requires more experience

in working interactively with the robot, but also allows for

more subtle control of the musical performance. In this mode

we allow the user to additionally select a harmony for playing

with the flutist robot. In other words, besides analyzing the

musical content for rhythmic information, we also examine

the tonal part of the sequence played by the human musician.

The pattern being played by the robot as an answer contains

the adapted rhythm and melody.

III. AURAL ANALYSIS INTERFACE DESCRIPTION

Various work has been done related to the field of aural

human-robot interaction. Many of these developments in-

volve speech recognition in order to be able to issue spoken

commands to a robot [7]. Musical interaction with a robot

that involves actual feedback to and from the robot has

been studied, but not as extensively. [8] and [9] describe

aural beat tracking systems, that enables their humanoid

robots to perform dance-like motions synchronized to audio

input. There is a number of robotic instruments (e.g. violin

robot [10], piano robot in [11] or guitar robot in [12]),

that are used to perform passively. That means that they

perform a static score that during a performance is not

influenced according to spontaneously developing musical

context. Special interfaces to control the musical expression

of a music robot have been presented in [13] and [14]. The

cited articles present sensor-suits that allow the real-time

alteration of performance parameters of various music robots.

In previous research on the Waseda Flutist robot a system to

enable the robot to teach flute playing to beginner students

has been developed [4]. The implementation of an aural,

musical human-robot interaction and performance system for

a humanoid musician robot has so far very scarcely been

studied.

In this paper, from an algorithmic point-of-view, we con-

centrate on real-time rhythm extraction and the real-time

detection of harmonic structures within audio recordings.

Up to now, extensive research has been done in this field.

Various methods have been proposed to detect transients

in musical data, a requirement for performing rhythmic

analysis. Klapuri [15] uses division into frequency bands and

linear regression to detect the starting point of a rhythmical

feature. Division into high and low-energy peaks in addition

to timing criteria [16] is applied to allow application on poly-

phonic sound data. Rao-Blackwellian Models [17], Online

Onset Detection Models [18] and Brownian Motion Models

[19] are commonly used to extract tempo and structural

information.

A popular approach for harmonic analysis (phonic tran-

scription) is the so called Blackboard Method. Originally

not designed for audio analysis is has been applied in this

area by various researchers ([20], [21], [22], [23], [24], [25],

[26]). The method is somewhat similar to the algorithm

described here as it also uses a ‘knowledge source‘ (which

in our case consists of a library of possible melody patterns)

to reinforce recognition. Multiple model based techniques

have been proposed using approaches ranging from spectral

template matching ([27], [28]) to sequential Monte Carlo

methods ([29], [30], [31]).
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The idea of using histograms for characterizing audio ma-

terial has been used mainly in the context of efforts to archive

large amounts of musical data ([32], [33], [34]). Based on

this previous research we try to exploit the technique as a

simple method to characterize and match smaller pieces of

harmonic and rhythmic information.

We chose our algorithmic approach among other options

due to its practicability. Our interaction system consists of

several modules containing not only an aural interface but

also computer vision and a cognitive center. To keep all parts

maintainable and the whole structure efficiently usable, we

decided to use techniques that not necessarily represent the

state-of-the-art of the respective area but integrate well with

whole system. In that sense we chose the method presented

here not as a separate approach in aural analysis but rather

in the context of the whole interaction system as a whole.

A. Rhythm Tracking (Beginner Level Interaction)

In this section we will describe the rhythm identification

algorithm‘s principle of operation. Our purpose is to extract

real-time,rhythmic information from the recorded sound data.

The analysis result is matched with a library of timing

patterns that are saved as previous knowledge in the robot.

The algorithm determines the best matching pattern and

passes this information on to the mapping module, in order

to generate an output performance by the robot.

The performance of an instrumentalist is recorded and

the data directly streamed to the analysis algorithm. In the

beginner level interaction mode, because we are interested in

the rhythm information contained in the acquired data, we

examine it for timing characteristics. In the sound waveform

separate notes are represented as distinguishable amplitude

peaks. We isolate these peaks by defining a threshold, as it

is shown in Eq. (1).

at =

{

0 if it ≤ m

it if it > m
(1)

at: thresholded sound wave value

m: threshold level

it: input sound wave

The duration of one tone impulse naturally is longer than

a certain minimum time. In order to prevent very short noise

peaks from falsely triggering the threshold we smoothen the

sound wave with a running average calculation (Eq. (2)). This

computation acts, from a signal processing point of view,

similar to a low-pass filter ([35]):

pr = α ∗ pp + (1 − α) ∗ pc (2)

pr: average for the resulting pixel

pp: pixel at the same position in the previous

difference image

pc: same pixel in the current image

α: averaging factor

The rhythm patterns have a certain length. To identify the

most recently played pattern we do not need to analyze all

of the previous sound input. We rather use a window that

always contains only the most up-to-date part of the recorded

music information. This window continuously slides forward

as new data is acquired. The size of the window is the

length of the longest rhythm pattern in the robot‘s pattern

library. Regardless which pattern is currently played by the

interacting musician, it will always completely fit inside the

window.

Each positive edge of the threshold sound wave in the

time window represents a rhythmic pulse. To characterize the

timing of this sequence of pulses as a whole we calculate

the time differences between adjacent pulses. Utilizing this

information we can construct a histogram, with one bin

representing one certain time difference. Both axis of the

histogram are normalized, with the result that the maximum

and minimum bin of the histogram always relates to maxi-

mum and minimum pulse delta time. This histogram is then

compared to the histograms of the timing patterns in the

library of the robot. The similarity between two histogram

is determined using the Bhattacharyya [36] coefficient (Eq.

(3)).

ρ[pi, q] =

m
∑

u=1

√

pi
uqu (3)

with pi being the histogram of one library pattern, q re-

sembling the sampled rhythm pattern and m expressing the

histogram size. The sum is indexed by u.

To prevent patterns from being falsely detected we apply

a threshold to the similarity coefficient. If the result of the

pattern comparisons falls below this threshold the robot does

not recognize the input as a known rhythm. The result of the

rhythmic analysis is the best match from the rhythm pattern

library.

B. Harmony Tracking (Advanced Level Interaction)

Our approach for the aural processing of the advanced

level interaction aims to create an interface that extends the

amount of freedom a player has in controlling the robot.

At the same time the usage of the system becomes more

demanding for the human player in terms of skill level.

However, it also allows a wider scope of musical expressive-

ness. This advanced level approach, additionally to extracting

timing information, analyzes the harmonic components of

the recorded sound. The method for recovering the rhythmic

context is the same as the one used for the beginner level

interaction. In the following we describe the unique part of

the system, the harmonic component analysis. An overview

of the structure of the system can be seen in Figure 2

Pitch information is recovered from the input data stream

by applying a discrete Fast Fourier Transformation (FFT).

As we sample sound data in windows of 1024 samples we

apply the Hann windowing function (Eq. (4)) to smoothen

spectral leakage.

wi = ai0.5

(

1 − cos

(

2πi

N − 1

))

(4)

wi: resulting amplitude for sample i

ai: input amplitude indexed with i

N : number of samples in the window
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Fig. 2. Principle of harmony recognition in the advanced interaction level.
Sound data is recorded from the instrumentalist by the microphone. After the
spectral analysis a melody histogram is created. Comparing this histogram
with the harmony library, the best match is selected.

Similar to the timing analysis, we apply a running average to

adjacent frequency spectra and perform thresholding opera-

tions to reduce noise. If the threshold amplitude is retained

by one or more peaks of the spectrum for long enough not

to be suppressed by the low-pass filter, the peak with the

highest amplitude is identified as lead-frequency. A recently

registered pitch frequency is approximated by the twelve-

tone system note with the closest frequency. The value of

this note is queued into the sequence window.

When looking for harmonic information we look into the

past only for the number of notes contained in the longest

library pattern. The note information in the sequence window

is gathered by generating a histogram from the pitch values.

Again we match this histogram to the library histogram in

order to find the best match. Information regarding which

pattern was recognized is then forwarded to the mapping

module.

C. Mapping

In our vision approach we mapped the result values of

the computer vision analysis to control parameters like song

tempo or vibrato amplitude. The gestures performed by the

interacting musician do by themselves not have an influence

on the music (as they do not produce any sound), so we

can create a direct connection between instrument movement

and the parameter to modulate without producing noise just

by the means of information transmission. In contrast, given

the case of intending to control the robot through music,

the modulation data needs to be extracted from the actual

musical content. Given the aural analysis that we perform

now, the resulting information identifies at least a part of the

musical intention of the partner instrumentalist. The robot is

to use this data to complement the performance with his own

play in compliance with the present rhythm and harmony.

The knowledge about which timing and harmony pattern is

being currently used, can be utilized to create active feedback

to the immediate song context. For that reason we mapped

rhythmic as well as timing recognition to trigger one-to-one

corresponding patterns from the robot‘s pattern library. The

intended result is that the robot echos the performance of

partner.

IV. EXPERIMENTS AND RESULTS

The purpose of our experiments is to show how well a

user can express his musical intention using the provided

interaction setup. The interaction system itself resembles a

closed control loop, with the robot on one side and the

human musician on the other side. The fact that decides

about the quality of the output is how responsive the robot

is to the actions of its interaction partner. In the same way,

naturally it also depends on the skill level of the human

player. To accommodate for these parameters our interaction

system is separated into beginner level interaction module

and advanced level interaction module. For each of these,

we propose separate experiments. Although we examine the

two modules in different experiments we in principle use the

same setup and evaluation method for both.

In case of the beginner level interaction interface, the

robot is programmed with a library of three rhythm patterns.

We chose these patterns specifically to be easily discernible

to prevent false recognition. For the current state of our

research our purpose is to verify the functionality and also

practicability of the system as such. As we will write in

more detail in the future works section we consider several

approaches to enhance our recognition technique.

The experiment itself consist of a human saxophone player

situated in front of the robot at a distance of about 2 meters.

The human musician has knowledge about the three patterns

that are contained in the robot‘s library. With the start of the

experiment, he will begin to deliberately play one of these

rhythm patterns on a single note. He will repeat playing this

rhythm until the robot responds. After that he will, again

randomly, choose the next pattern. This procedure is repeated

for several times. The responses of the robot as well as the

play by the musician that triggered a response are recorded.

The two recorded sound waves are examined using a FFT

spectral analysis algorithm to find pitch and amplitude of

the music data. Looking at the resulting graph we have

the possibility to analyze the robot‘s choice of a response.

Also the time-relationship of input and output are to be

examined. The quality of the response can be characterized

by how quickly (time difference between musician‘s first

complete play of the pattern and the robot‘s response) it

is produced and how accurately (compliance of the response

timing pattern with the input pattern).

We perform the same method of experimentation for

evaluating the aural recognition algorithm of the advanced

level interaction system. In this case additionally to the three

rhythm patterns, three harmony structures are contained in

the robot‘s library. During the experiment, the saxophone

player performs deliberate combinations of one timing and

one harmony pattern. The human musician‘s play and the

recognition response of the robot are recorded and analyzed

in the same way as in the previous experiment. We chose

all patterns to have the same length of 1 bar. This makes

the recognition of the end of one pattern more easy. As

can be examined in Fig. 3a, Pattern 1 consists of one bar of

four equally spaced quarter notes. The instrumentalist plays
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Fig. 3. Recorded input and output of the beginner level interaction system.
a) is the amplitude plot of the flute robot response, b) the pitch analysis of
this response, c) the amplitude plot of the question by the robot‘s partner
musician and d) the pitch analysis of the musician‘s phrases. Because the
flutist robot plays legato notes, alteration between the notes C and D was
pre-programmed.

Fig. 4. Recorded input and output of the advanced level interaction system.
As in the previous figure, a) is the amplitude plot of the flute robot response,
b) the pitch analysis of this response, c) the amplitude plot of the question

by the robot‘s partner musician and d) the pitch analysis of the musician‘s
phrases.

this pattern alternating between the notes C and D at a

tempo of 80bpm. After the first pattern has been performed

(from 0s to 3s), the robot answers by reproducing the same

pattern (in beginner level interaction mode pre-programmed

to alternate between C and D). The duration between the

beginning of the instrumentalist‘s question and the robot‘s

answer is approximately 3s. The robot continues playing

the last tone of the rhythm pattern until the next successful

recognition. During this time the robot is in an idle state. The

purpose of playing the last tone of a pattern continuously,

is to give the interacting partner of the robot a feeling of

the breathing cycles of the robot. When we look at the

volume plot we can identify areas, where the level suddenly

drops for a certain duration. These moments are called

breathing points and relate to the time when the robot‘s

lung system is deflated and needs to pull air in order to

be able to produce the air-beam necessary to generate the

flute sound. As the lung breathing speed is constant we

see these events regularly happening at 7.5s and 14s in the

graph. The duration of one breathing phase is ≈ 10s long.

At 7.0s the musician starts playing rhythm pattern 2. This

pattern is more complicated than the first one, consisting of

one bar, containing two eighth-notes and two quarter notes.

Again, this rhythm pattern is played without consideration

to harmony, as variation of notes C and D. The answer of

the robot is observed after the pattern has been finished, at

≈ 9.5s. The duration between the last tone of the question

pattern and the robots answer is ≈ 0.1s. The third rhythm

pattern is the most complicated of the three sequences used

in this experiment. Besides a quarter and an eighth note it

contains a triplet. The instrumentalists plays it two times,

at 14.5s and 19.8s. When played for the second time it is

correctly recognized by the aural processing algorithm and

the robot gives a response at 24.5s.

For the advanced level interaction we used the same setup

of microphones as for the previous experiment. Now the

robot‘s library contains, besides the three rhythm patterns

we already used for the previous experiment, three melody

structures. The instrumentalist can now freely choose a

combination of one of the rhythms and one of the harmonies

as a question pattern. A graph of the results of the advanced

interaction level aural recognition experiment is shown in

Fig. 4. The following rhythm pattern / melody pattern

combinations are chosen as questions to the robot:

- Combination 1: rhythm 1 / melody 1

- Combination 2: rhythm 2 / melody 2

- Combination 3: rhythm 3 / melody 3

The first combination pattern is played at 0s. The further

two patterns follow at 11.5s and 17.5s. The robot generates

an answer for each of these questions, reproducing the

rhythm and melody combination that has been chosen by

the musician (3.5s, 11.5s and 19.5s). Again, in the volume

plot of the output of the robot we observe the artificial lung‘s

breathing rhythm. Breathing points are registered at 7.5s and

17.5s. The break in audio output takes a duration of ≈ 1s.
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V. CONCLUSIONS AND FUTURE WORK

We have shown that after implementing our algorithm the

robot is able to correctly recognize a number of rhythms and

harmonies. It is able to engage in a simple form of question

and answer play with a human musician. In case a pattern

fails to pass the similarity threshold level that was described

earlier, it will not be recognized. If this threshold is high, the

human musician has to be very precise in his performance.

If the threshold is low, false positive recognitions can occur.

We experimentally chose a threshold that in most cases lead

to satisfying results. We documented results for both, the

beginner level and the advanced level interaction system.

The results show, that, given certain circumstances during

the experimentation, our method does lead to the intended

outcome. This justifies further research in this direction,

based on the development we explained in this paper. Several

parts of the method leave room for improvement and we plan

to address these problems in future research.
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