
Automated synthesis of control algorithms from first principles

Henrik Berg, Roland Olsson, Per-Olav Rusås and Morgan Jakobsen

Abstract— A variety of machine learning techniques have
been employed to automatically create control algorithms for
autonomous vehicles. Much research has focused on various
“black box” approaches, in which the synthesized or learned
control algorithms perform well when tested, but are difficult
or impossible to analyze and understand. This paper presents
the use of the ADATE system to evolve a control algorithm
based on a racing car simulator. The system evolved compact
and analyzable yet sophisticated control algorithms capable of
driving millions of randomly generated tracks at high speeds
without ever driving off the road. The approach presented is
likely to be applicable to most automatic control problems,
given a set of training examples and a suitable software
simulator.

I. INTRODUCTION

The design of a fully automatic control system is usually

not a trivial task, especially not if an optimal or near-optimal

solution is required. This paper examines the use of the

ADATE evolutionary system for automatic programming to

automatically evolve a control algorithm for a simulated

racing car. The goal of the system is to control the speed

and steering of a car in order to race as fast as possible on

tracks with randomly varying geometry.

The paper is organized as follows. In Section 2, related

work on autonomous car control is reviewed. Section 3 gives

a brief introduction to the ADATE system for automatic

programming, followed by a description of the car simulator

used during evolution in Section 4. In Section 5, our exper-

iments are described, their results are given and analyzed in

Section 6, followed by a conclusion and directions for further

research in Section 7.

II. RELATED WORK

Many different autonomous or semi-autonomous subsys-

tems can be found in modern cars, or are likely to appear

in commercial cars within few years. Some of these aid

the driver in various tasks, e.g., Cruise Control [1], Active

Steering [2] and Advanced Driver Assistance Systems [3],

whereas others are used to control low-level aspects of the

car dynamics, e.g., engine control [4], [5] and suspension

control [6]. A notable commercially available example is the

newest Honda Accord [7], which can drive autonomously on

a highway for up to ten seconds, using a camera to detect

road marking in order to keep the car in lane, and a radar

system to detect other cars in order to control speed.

H. Berg is with the Norwegian defence research establishment (FFI),
Horten, Norway.

R. Olsson is with the Faculty of Computer Science, Østfold University
College, Halden, Norway.

P. O. Rusås is with Prediktor AS, Fredrikstad, Norway.
M. Jakobsen is with Kongsberg Norcontrol IT, Horten, Norway.

The use of evolutionary computation [8] and other ma-

chine learning [9] techniques have emerged as promising

methods for the development of autonomous driver systems.

A recent example is given in [10], which describes one of

the speed control subsystems of Stanley [11], the winning

car of the DARPA 2005 Grand Challenge [12].

Much research has focused on training of neural networks

[13] for autonomous vehicle control [14], [15], [16], [17].

In [18], it is suggested that adding fuzzy logic to a neural

network makes it more robust and better able to drive safely

on unseen tracks. In [19], Neural Fuzzy Networks are con-

structed using a combination of evolution and training. The

focus is on speed control in a highway situation containing

numerous other cars, and it is demonstrated that the resulting

controller is able to safely interact with the other cars,

including cars changing lanes just in front of it, forcing the

controller to slow down to maintain its safety distance. A

more recent example of the use of fuzzy neural networks is

[20], in which a set of fuzzy rules were generated based on

a real human driver driving a simulated car on a race track.

The rules control the acceleration of the vehicle based on the

curvature of the road ahead, and as expected, when driving

slowly or when driving on a straight road, more acceleration

can be safely be performed than when driving fast or in sharp

turns.

Togelius et al. [21], [22], [23], [24] have employed various

evolutionary methods to evolve controllers for simulated RC-

cars. In [21], different architectures and sensor settings are

explored, concluding that the most promising controllers

were evolved when using neural networks taking sensor

inputs representing a first-person view. The robustness of

evolved controllers when tested on tracks not used during

training was investigated in [22]. Controllers were evolved

using eight different tracks of varying difficulty level, but

the performance of these controllers when tested on the

remaining seven tracks was not satisfactory. It was found

that the most robust controllers were acquired when using

incremental evolution. In incremental evolution, the evolution

of the controllers is initialized on one single track, and

repeatedly a new track is added each time the performance

of the evolved controllers have reached some predefined

value. This is quite similar to our approach described in

Section 5.3. It was also shown that once a set of robust

controllers had been evolved, they could be further improved

and specialized for a given track by evolving them further

using only this track for training. This work is further refined

in [23], in which Genetic Programming [25] is used to evolve

controllers utilizing internal state variables. Reasonable use

of the state variables is encouraged by a multi-objective

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2958

approach, resulting in controllers clearly superior to simple

state-less controllers. Another addition is given in [24],

where predictors are added, aiding the control system in

deciding what actions to take in situations where sensor

inputs may be delayed or completely absent for short periods.

A work slightly similar to that of Togelius et al. is

presented by Tanev et al. [26]. Here, a driving style for

one single, rather simple track is evolved. However, after

a preliminary evolution using a software simulation, Tanev

et al. evolve the controller further using a real RC car on a

real track for a few more generations. This enables a direct

comparison between the evolved controller and a human

driver, the results of which show that the performance of

the evolved controller is roughly equal to that of the human

driver when the human driver is allowed to see the car and

the track directly. However, when the human driver is only

allowed to see the car and the track through a camera with

a latency comparable to that given to the evolved controller,

the evolved controller completes the track markedly faster

than the human driver.

III. THE ADATE SYSTEM FOR AUTOMATIC

PROGRAMMING

ADATE (Automatic Design of Algorithms Through Evo-

lution) [27] is a system for evolving programs in a purely

functional subset of the programming language Standard

ML [28]. It is a general system that has successfully been

applied to a wide variety of programming tasks, like evolving

standard textbook algorithms from scratch [29], learning sim-

ple natural languages [30], improving existing classification

algorithms [31] and evolving better neurons for automatic

image segmentation [32]. To evolve a solution to a problem,

the system needs a specification file that defines data types

and auxiliary functions, a number of training and validation

input examples, and an evaluation function that is used

to grade and select potential solutions during evolution.

Additionally, the specification file contains an initial program

from which evolution will start. This program will be empty

when evolving programs from scratch, but it is possible to

start the evolution from any given program, for example to

search for improvements for the best known program for a

given problem.

The evolution in the ADATE system consists of the

following overall steps.

1) Initiate the population with the single program given as

the start program in the specification file. In addition to

the actual programs in the population, the system also

maintains an integer value CP for each program P ,

called the cost limit of the program. For new programs

this value is set to the initial value 100.

2) Select the program P with the lowest CP value from

the population.

3) Apply CP program transformations to the selected

program, yielding CP new programs.

4) Try to insert each of the created programs into the

population.

5) Double the value of CP , and repeat from step 2.

The above loop is repeated until the user terminates the

system.

As in all evolutionary systems, individuals with good

fitness values are preferred, but in ADATE, the syntactic

complexities of the individuals also play an important role,

in that smaller programs are preferred over bigger ones.

For a program to be allowed to exist in the population, it

must therefore be better than all other programs syntacti-

cally smaller than it. This approach reduces the problems

of overfitting since solutions highly specialized to a given

set of training data tend to be syntactically larger than

cleaner, more general solutions. As a consequence of this

population management strategy, the population of ADATE

has a dynamic size, as opposed to the fixed-size approach of

most common evolutionary systems.

IV. THE CAR SIMULATOR

The motion of the car is modeled by a set of non-linear

differential equations based on rigid body dynamics. These

are discretized in time and stepped forward by utilizing the

second order Runge Kutta method. An implementation is

written in Standard ML, and is used by the ADATE system

in order to evaluate drivers as they are evolved.

The non-linear dynamical model is based on a single

track model [33] which approximates a car by a bicycle

like vehicle. The model is two dimensional by neglecting

rotation about the horizontal axes, but includes the moment

of inertia about the vertical axis. A non-linear tire model [34]

is also utilized. It limits the maximum transverse forces

on the wheels and lets the wheels slip in curves. The

transverse slip combined with transverse forces yields a

desirable dissipation of kinetic energy in curves.

The limitations to two dimensional rigid body dynamics

and the single track model greatly simplify the dynamical

model, but still retain the leading behavior of a race car with

a low center of gravity. The simplifications also keep the

simulation time down, which is of great importance to make

a large number of training runs possible in a feasible time

span.

Figure 1 depicts the single track modeled car and shows

the parameters of the model. These are the distance between

the wheels L, the distance from the rear wheel to the center

of gravity Lcg and the steering angle φ. Three time dependent

parameters fully represent the position of the car. These are

the spatial coordinates xg(t) and yg(t) of the car’s center of

gravity, and the rotation angle θ(t).
By adding models of the forces acting on the car, a

dynamic model based on rigid body dynamics can be con-

structed. The forces are the motor and breaking forces, the

air drag and the lateral forces on the tires. The latter are

considered functions of the tire slip angle α of the wheel

(see e.g. the review of Schofield [35]). This is defined as

tan α = −
un

us

, (1)

where un is the lateral velocity of the wheel and us is the

velocity in the wheel’s longitudinal direction. We let αr

2959

Fig. 1. The single track model. The model and its parameters are described
in Section IV.

and αf denote the slip angle of the rear and front wheel,

respectively.

We consider the tire slip angles as expression of the

velocity of the center of gravity, and obtain

tan αr = −
ugn − Lcgθ̇

ugs

, (2)

tan αf = φ −
ugn + (L − Lcg)θ̇

ugs

, (3)

where the dot represent time derivative, and ugs and ugn are

the velocities of the car’s center of gravity in the longitudinal

and lateral directions, respectively. The tire slip angles are

usually linearized by replacing tanα with α (see e.g. [36],

[35]), but we have chosen not to do this in our approach.

To obtain a realistic behavior at large tire slips, we utilize

the so called magic formula [34]. The lateral force on each

tire is

Fn = µFz sin [C arctan(Bα − E(Bα − arctan(Bα)))]
(4)

where µ is the friction coefficient, Fz is the vertical force on

the wheel, B = Cα/(CµFz) is a stiffness factor, Cα is called

the lateral tire stiffness, and C and E are chosen parameters.

To simplify, but still obtain the non-linearity of the model, we

let C = 1 and E = 0. This yields the following non-linear

tire model for the rear and front wheel, respectively

Frn = µFrz sin

(

arctan

(

Cααr

µFrz

))

. (5)

Ffn = µFfz sin

(

arctan

(

Cααf

µFfz

))

. (6)

Note that these reduce to the linear model for small values

of tire slip angles αr and αf , and for large values a pure

frictional force µFz .

We assume the car to have rear-wheel drive. A manip-

ulating parameter −1 ≤ q ≤ 1 is introduced to model the

driver’s power control and breaking. A value of q = 1 means

maximum motor power and q = −1 maximum breaking

force. The motor is assumed to have a flat torque curve up

to a maximum speed Vm. The maximum motor power is

denoted by Pmax. With a continuously variable transmission

(CVT) the maximum possible force acting on the rear wheel

due to the motor is then Pmax/us for a forward speed of

us. For velocities smaller than a selected limit, us < V0, the

force is Pmax/V0. The force may however be limited by the

maximum friction force µFz . Thus, a reasonable model for

the force due to the motor for 0 ≤ q ≤ 1 is

Fm =

min(µFz , qPmax/V0) for us ≤ V0

min(µFz , qPmax/us) for V0 < us ≤ Vm

0 for us > Vm

(7)

For −1 ≤ q < 0, which means breaking, the force

acting on the rear wheel in the car’s longitudinal direction is

modeled as Fm = qµFz .

We model the longitudinal and lateral slips independently,

which is a simplification motivated by the need for a very

effective simulator. We could have used a friction circle

model or a more advanced combined slip model such as

the one in [37], which would have increased the physical

realism of our simulation at the expense of longer run

times. However, our goal in this paper is to demonstrate the

usefulness of automatic programming for control systems in

general and to do so with the limited computational resources

at our disposal. Therefore, we chose to prefer computational

speed over increased realism when modeling friction.

The air drag force on the car is

Fd =
1

2
ρACdu

2

s (8)

where A is the cross section area of the car in the forward

direction and Cd is the non-dimensional drag coefficient. For

simplicity the drag coefficient is assumed constant.

The front wheel angle φ as defined in figure 1, is controlled

by the ordinary differential equation

φ̇ = ν tanh(K(sφmax − φ))

where −1 ≤ s ≤ 1 is a manipulating variable, φmax is the

maximum value of φ and K is a chosen factor. The front

wheel angle is considered a part of the car’s state, and we

may now formulate a set of ordinary differential equations for

the system by utilizing the equations of rigid body dynamics

for the car restricted to two dimensional motion. The mass

of the car is in the following denoted by M and the inertia

about the vertical axis through the center of mass by Izz .

The system reads

d

dt

xg

yg

θ
ugs

ugn

ω
φ

=

us cos(θ) − un sin(θ)
us sin(θ) + un cos(θ)

ω
unω + 1

M
(Fm(q) − Fd − Ffn sin(φ))

−usω + 1

M
(Frn + Ffn)

1

Izz

(−LcgFrn + (L − Lcg)Ffn)

ν tanh(K(sφmax − φ))

.

(9)

The system is influenced by the two independent manipu-

lating parameters q and s which reflect the driver’s actions.

2960

Parameter Min value Max value
Number of segments 1 100
Track width [m] 3 6
Length of segment [m] 100 200
Curve span [radians] 0 π
Initial speed [m/s] 20 40

TABLE I

MINIMUM AND MAXIMUM VALUES FOR GENERATED TRACKS.

The parameter values used in this paper are M = 1500kg,

Izz = 2500kgm2, L = 3m, Lcg = 1.5m, φmax = π/8, ν =
1rad/s, K = 10/rad, Pmax = 150kW , Vmax = 60m/s,

V0 = 7.5m/s, ρACd = 0.8kg/m, µ = 1.0, g = 9.81m/s2

and Cα = 80000N/rad. The time step used for the second

order Runge Kutta method is 0.1s.

V. EXPERIMENTS

Using the car simulator described above, we employed the

ADATE system to evolve general and robust programs for

driving a car as fast as possible on racing tracks. Each newly

synthesized program was evaluated by letting it control the

car in a simulation on a number of tracks, as described in

the following sections.

A. Training and testing tracks

All tracks were generated automatically. The tracks have

the following characteristics. Each track has a constant

random width, and consists of a random number of segments.

The first segment is always a straight segment, and the last

segment is always a long, straight segment. When the car

enters this last segment it is considered to have completed

the track. All the other segments are curves with random

directions and curve spans. We also use a random initial

speed at which the car starts to race.

The parameters used for generating the random tracks are

shown in table I. All random numbers are selected uniformly

from the given intervals.

As a measure to avoid overfitting, a safety margin of

0.5 meters was used during training. If a driver ever got

closer to the edge than this margin during simulation, it was

considered to have driven off the track.

As will be explained in Section V-D below, an iteratively

increasing set of training tracks was used during the evolu-

tion. After the experiments, the evolved drivers were tested

on millions of new, freshly generated tracks not used during

training.

B. Parameters and return values of the programs to evolve

In addition to specifying the tracks to use for training the

drivers, we also needed to specify the sensor inputs available

for the drivers, as well as the actions the drivers are allowed

to perform.
Table II summarizes the sensor inputs we decided to use.

Most of them are self-explanatory, but the following need

some additional comments:

• β, the Rotation Slip Velocity, measures the spin of the

car in excess of what should be expected based on

Sensor input Description
us The longitudinal speed of the car [m/s]
un The lateral speed of the car [m/s]
w The road width [m]
dc The distance from the center of the car

to the center of the road [m]
β The Rotation Slip Velocity [rad/s]
φ The angle of the front wheels relative to

the rest of the car [rad]

The angle to a point . . .
α10 . . . 5.10 meters ahead of the car
α20 . . . 20.39 meters ahead of the car
α30 . . . 45.87 meters ahead of the car
α40 . . . 81.55 meters ahead of the car
α50 . . . 127.42 meters ahead of the car

TABLE II

SENSOR INPUTS AVAILABLE TO THE EVOLVED PROGRAMS

the current speed and front wheel angle. It may be

expressed as

β = θ̇ −
v

L
tan(φ) (10)

• The five αN values are computed relative to the current

heading of the car. The distances to the measurement

points are selected as the braking distance of the car

when driving at 10, 20, 30, 40 and 50 m/s, respectively.

As described in section IV, the car is controlled by two

parameters: The throttle and brake control q, and the steering

control s. Correspondingly, we decided to evolve programs

returning two floating point numbers. The returned values

were clipped to the interval [−1, 1], and fed into the car

simulator as q and s for the next time step. Thus, at each time

step, the program controls the car by directly manipulating

the throttle/brake and steering controls.

C. Expressiveness of evolved programs

Even though ADATE has the ability to define new aux-

iliary functions on-the-fly, the effectiveness of its program

synthesis may strongly depend on the set of predefined

functions that it is allowed to use. For the experiments

reported in this paper, we included addition, multiplication,

subtraction and division of floating point numbers in this

set and also the hyperbolic tangent function tanh, which is

commonly used in neural networks.

Since ADATE is able to effectively introduce and optimize

floating-point constants on its own, there was no need to

include any special, predefined constants.

The above set of predefined functions is a superset of what

is needed to implement standard feed-forward neural net-

works with any number of hidden layers, which can express

quite good approximations to any non-linear function [38].

Therefore, the same result holds for our evolved programs.

In practice, however, the limiting factor for most neural

and evolutionary computation techniques is not the theoret-

ical expressiveness of the languages that they employ but

their ability to avoid entrapment in local optima in the search

space. Another key limiting factor is overfitting. We believe

that ADATE excels at both reducing overfitting and avoiding

2961

local optima, but we do not have space here for a discussion

of the many mechanisms employed to do so [27].

D. Iterative-deepening of the total training distance

In order to keep program evaluation times short, we

started by using only 8 tracks randomly generated with the

distribution described in Table I for evaluation of the evolved

robot drivers. However, this limited driving experience turned

out to be far from sufficient to guarantee generally safe

driving among the fastest evolved drivers.

Therefore, we iteratively increased the number of training

tracks by a factor of about 1.2 and each time restarted

the evolution using the last population obtained during the

previous iteration. Thus, the amount of training data for the

robots increased gradually as they became more and more

advanced drivers. We continued the iterative deepening of

the number of tracks until a total of 210 tracks were used

for training.

We then used a 0.25m margin and 16384 tracks to select a

program from from all so-called parent programs, which are

the ones considered good enough to be further transformed

during ADATE runs. For our runs, the parent programs were

about 0.1% of all generated programs. The selected program

was then tested with zero margin by running the simulation

continuously for several days on millions of new random

tracks without any crash.

The initial 8 track iteration was allotted about two weeks

on a cluster with 56 CPU cores. Using these 8 tracks, a single

core performs about 37 simulations per second for an average

driver. This means that about 2.5 billion evaluations of

programs were performed altogether on the 56 cores during

the two weeks. We then used between two and four days

between restarts and altogether expended several months of

wall clock time on the cluster.

VI. THE EVOLVED DRIVERS

One of the advantages of the ADATE system over numeric

approaches like neural networks is the ability for humans

to read, understand and analyze the solutions found. The

solutions given by the ADATE system are programs in a

subset of Standard ML, and with some simple rewriting they

can be made quite understandable for humans. In this section

we will present two of the drivers evolved by the ADATE

system. One of these drivers is quite slow, but has been tested

for millions of tracks without driving off the track a single

time. The second driver presented is the fastest but still safe

driver, also being able to drive millions of tracks without

crashing.

A. A simple, slow but safe driver

The control algorithm for one of the simplest but still safe

drivers is given by the following equations for throttle control

q and steering control s, restructured from the raw ML code

created by the ADATE system for better readability:

q = 5
w

20.89− us

s = α20

This simple evolved driver never crashes, but then it does

not drive very fast. It maintains an approximately constant

speed of around 20-21 m/s which enables it to drive through

all the curves it encounters on our training and testing tracks

without skidding.
The driving strategy employed by this driver is very

simple. The throttle algorithm simply tries to maintain a

fixed constant speed at all times. To do this, it computes the

difference between the speed of the car and 20.89, which

seems to be its preferred “ideal speed” regardless of the

situation. If the current car speed is lower than this, it applies

throttle, and if the speed is higher, it applies brakes. The

amount of throttle/braking is proportional to the road width

w, and inversely proportional to the difference between the

current car speed and the ideal speed.
The steering algorithm is also quite simple. It simply aims

to steer towards the direction of α20, that is, towards a point

approximately 20 meters ahead of the car. Since the driver

keeps a constant moderate speed of about 20 m/s, it never

looses control of the car, and little or no skidding occurs.

Consequently, the driver is able to keep the car near the

center of the road at all times.
Figure 2 (a) shows how the front wheel angle φ varies

during a sharp left turn. Note the slight delay of φ when

α20 starts to increase. This is due to a simulated delay in the

transmission from the steering wheel to the front wheels, and

results in a slightly exaggerated steering at the beginning and

at the end of the turn.
Many of the evolved individuals have found ways to avoid

this slightly unstable steering, by using the current angle of

the front wheels to adjust the requested steering, for example

with the following formula:

s = 2α20 − φ (11)

At the beginning of the turn, when φ is near zero, this

formula steers the wheel sharper than the simple formula

s = α20, and thus compensates for the mentioned delay.

However, once the front wheels start to react, the steering

is decreased slightly until a stable state is reached. This

is illustrated in Figure 2 (b), where the car drives through

the same turn, but this time using φ to adjust the steering

parameter. As we can see, the front wheel angle increases

faster in this case than in Figure 2 (a). Consequently, by using

φ to adjust the steering parameter, the car follows the curve

better, and the steering is smoother both at the beginning and

at the end of the curve. In the following section we show

that such a technique is employed by the steering algorithm

of the best driver found by the ADATE system.

B. The best evolved driver

The control algorithm for the best driver found is given

by the following equations:

2962

-0.05

 0

 0.05

 0.1

 0.15

 40 60 80 100 120 140

-0.05

 0

 0.05

 0.1

 0.15

 40 60 80 100 120 140

(a) (b)

Fig. 2. Plots of α20 (solid line) and the front wheel angle φ (dotted line)
during a turn. In (a), the simple steering algorithm s = α20 is used, whereas
(b) uses the slightly more sophisticated s = 2α20 − φ.

q = tanh

(

35.17 − us

100 tanh(tanh(usα2

30
))

− (2.515 + dc)

)

s =
α10 + α20 − φ

w/20

The evolved driver has been tested on millions of tracks,

driving several million kilometers without ever driving off

the track. It maintains an average speed of about 30.5 m/s,

that is, approximately 110 km/h.
The driver tends to brake down for a brief period in the

beginning of curves, thereafter it often applies a high level

of throttle and skids through the turn, with the car pointing

inwards.

C. An analysis of the best evolved driver

We will now present an analysis of the behavior of the

evolved driver, starting with the steering algorithm.
The two sensor inputs α10 and α20, denoting the angle to

points approximately 5 and 20 meters respectively ahead of

the car, are added to guide the direction and magnitude of

the steering. Additionally, the current front wheel angle φ is

subtracted. As explained earlier, this reduces the delay of the

front wheels relative to the steering wheel by exaggerating

the control of the steering wheel at the beginning and end

of turns.
Additionally, the steering algorithm depends on the width

of the road, in that on narrow roads, the magnitude of the

steering parameter s is higher than on wider roads. This

seems like a natural behavior: On narrow roads, the steering

must be more aggressive than on wider roads in order to

keep the car on the track. On a wide road, the steering can

be more relaxed.
The throttle algorithm is slightly more complex. The

throttle to apply is computed by subtracting two terms, and

then applying the tanh function on the result.
Let us first look at the second term, (2.515 + dc). This

term is subtracted from the first term, thus, the driver will

accelerate whenever the first term is greater than this second

term. Note the addition of dc, the current distance between

the car and the center of the road. The higher this distance,

the greater will the second term be. Consequently, the driver

is more reluctant to accelerate and more willing to brake

when the distance to the center of the road is high.

The first term,

35.17 − us

100 tanh(tanh(usα2

30
))

depends on the current velocity us of the car and on the angle

α30 to a point approximately 45 meters ahead of the car. In

the numerator, us is subtracted from the constant 35.17. As

a result, if ever the speed exceeds this value, the value of

the first term of the throttle algorithm, and thus the value of

the entire throttle expression, will be negative. Thus, the car

will always brake if its speed exceeds 35.17 m/s.

At speeds below this limit, the value of the first term

decreases quickly when α30 increases. Additionally, the

value decreases when us increases. Thus, at low speeds and

relatively straight roads, the value of this term will be high,

resulting in the driver accelerating. If the speed is high, or

if the road ahead turns, the value of the first term will be

lower, and if it is lower than the second term, the driver will

brake.

Recall that the parameter α30 denotes the angle to a point

on the road 45 meters ahead of the car. This angle is given

relative to the current direction of the car. When testing our

driver, we noted that in most curves, the driver oversteers the

car, that is, the car points inwards throughout the curve. The

more oversteer the driver applies, the lower the value of α30,

thus the first term of the throttle algorithm will be higher.

When testing the driver, we have seen that this makes the

driver apply throttle throughout most of the curves. When

the car points inwards throughout the curve, the effect of

this throttle is to generate a centripetal force in excess of

what the friction of the tires is capable of, thus allowing the

car to be kept on the road despite the high speed.

D. About the robustness of the evolved driver

As in all reinforcement learning contexts, the particular

evolved solution is only trained and tested on situations that

actually occur when using the driver to drive around a track.

For example, the solution given in Section VI-B above tends

to keep the car not too far from the middle of the road.

Therefore, it may not be suitable for handling situations in

which the car is close to the edge of the road. To test this, we

ran two small tests on a single straight 6 meter wide track:

One in which the car was initially placed 1 meter from the

edge of the road, and another one in which the car was placed

only 0.3 meters from the edge. The initial speed was set to

10 m/s in both cases.

The results are presented graphically in Figure 3. As can

be seen in these figures, when starting the car 1 meter from

the edge, the driver immediately steers rightwards towards

the center of the road. As a result, the car crosses the center

of the road, but the driver is quickly able to stabilize the car

by applying a modest left steer.

In Figure 3 (b), however, the robot driver is driving only

0.3m from the edge of the road. It steers towards the center,

resulting in the car crossing the center at a somewhat sharper

angle than in the previous case. Thus, to stabilize, the driver

needs to apply a sharper left steer, but this causes the car

2963

-3

 0

 3

 0 10 20 30 40 50

(a)

-3

 0

 3

 0 10 20 30 40 50

(b)

Fig. 3. Using 10m/s and (a) 1 meter and (b) 0.3 meters from the edge of
the road as the initial state. The position, orientation and steering of the car
is plotted every 2 iterations (that is, every 0.2 seconds)

to cross the center of the road with a too sharp angle again.

Thus the driver needs to apply a sharp right steer, resulting

in a rightwards spin After crossing the center again and

approaching the right edge of the road, the driver is not able

to regain control of the spinning car before it is too late and

the car crosses the edge.

This behavior is somewhat similar to a so-called pilot

induced oscillation (PIO) that is a well-known cause for

accidents with fly-by-wire fighter aircraft.

In order to evolve a driver able to handle situations that

do not occur during normal driving, such situations must be

added as training examples. For example, our evolved drivers

would probably be more robust if the lateral starting position

of the car relative to the road was varied in the training

examples. Additionally, other difficult situations could be

added, like, e.g., entering a curve while the car is spinning

in the wrong direction or approaching a curve at very high

speeds. Such an approach is further examined in [15].

E. Comparing ADATE with an approach based on Evolution

Strategies

In order to compare our results with those obtainable using

other evolutionary optimization methods, we ran experiments

using Evolution Strategies (ES) [39]. We used the same

simulation and the same method for creating training and

validation tracks as above, and used an ES to determine a

set of coefficients for the following linear model.

q = c0 +

11
∑

i=1

cipi (12)

s = d0 +
11
∑

i=1

dipi (13)

As above, q and s are the throttle and steering control output

of the controller. The parameters p1, . . . , p11 are the same

11 inputs to the controller as those used in the ADATE

experiments. The task of the ES is to optimize the ci and

di coefficients, that is, a total of 24 coefficients.

We used a standard (µ + λ) ES, with uniform discrete

crossover and individuals encoding standard deviations used

for mutations. Each individual in the initial population was

Number of Number of
µ λ training tracks generations Result

1000 7000 400 120 26.601
1000 7000 800 120 27.214
1000 7000 1600 140 26.880
1000 7000 3200 160 27.323

10000 70000 400 120 27.352

TABLE III

RESULTS FROM VARIOUS ES EXPERIMENTS. THE RESULTS GIVEN ARE

THE AVERAGE SPEEDS OF THE BEST VALIDATED DRIVER IN EACH RUN.

initiated with all standard deviations set to 0.2, and coeffi-

cients randomly drawn from a normal distribution using this

standard deviation.

We used a variety of population sizes and number of

training tracks, as summarized in Table III, with a total run

time of more than two weeks on a cluster with 84 CPU

cores. After each 20. generation, the current population was

validated using 16384 validation tracks.

Table III summarizes the results of our experiments,

showing the average speed of the best validated individual

on the 16384 validation tracks. As shown in the table,

our ES experiments were not able to produce safe drivers

driving faster than about 27 m/s, even when using very large

populations.

Comparing these results with the results obtained by

the ADATE system, we see that the controller evolved by

the ADATE system drives the car 10% faster than the

best ES-evolved controller. The total number of evaluations

performed in the ES experiments were significantly lower

than the number of evaluations performed during the ADATE

experiments though, but we have no reason to believe that

spending more computation time by e.g. using even larger

populations would yield significantly better results. We there-

fore conclude that the ADATE system is capable of evolving

controllers with significantly better performance than our ES-

based approach.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we have shown that if a simulation and

some method for creating training examples are available,

the ADATE system is capable of evolving sophisticated,

robust and effective control algorithms. Our domain has been

the evolution of automatic drivers for a racing car, but our

methods are likely to be applicable to most automatic or

semiautomatic control problems.

Section VI-E above presented a comparison between our

approach and an ES based approach. The ES based approach

was only able to evolve linear drivers, whereas our ADATE

system is not restricted like this to any predefined solution

structure. An important area for future research is to compare

our results with those achieved using other, more general

evolutionary paradigms, e.g., Genetic Programming.

As shown in Section VI-D above, our evolved driver is not

generally able to recover from critical situations that did not

occur during training. One possible area of further research

2964

may be to evolve a more robust control algorithm by using

a large number of such critical situations as training inputs.

In the near future, such an approach may be able to evolve

general and robust semi-autonomous systems for avoiding

accidents in commercial cars.

To have any practical use, an autonomous driver should

also be able to control the car in the presence of stationary

and moving obstacles in the road, based on inputs from

inaccurate or noisy sensors. In the near future we believe

it should be possible to evolve drivers with these abilities

using our approach, by adding obstacles to the tracks used

for training, and by adding random noise to the sensor inputs

given to the evolved individuals.

One may also start the evolution from some already

existing control system in order to optimize the system by

evolution. We showed the potential use of this approach

in [32], where neurons used for image segmentation were

automatically evolved based on a standard neuron model

from the literature. It is likely that such an approach would

also yield good results for problems within the field of

automatic control.

REFERENCES

[1] P. A. Ioannou and C. C. Chien, “Autonomous intelligent cruise
control,” IEEE Transactions on Vehicular Technology, vol. 42, no. 4,
pp. 657–672, 1993.

[2] J. Ackermann, T. Bnte, and D. Odenthal, “Advantages of active steer-
ing for vehicle dynamics control,” in Proceedings of the International

Symposium on Automotive Technology and Automation, 1999.
[3] E. Bertolazzi, F. Biral, and M. D. Lio, “Future advanced driver

assistance systems based on optimal control: The influence of ”risk
functions” on overall system behavior and on prediction of dangerous
situations,” in IEEE Intelligent Vehicles Symposium, 2004, pp. 386–
391.

[4] A. Balluchi, L. Benvenuti, M. D. di Benedetto, C. Pinello, and
A. L. Sangiovanni-Vincentelli, “Automotive engine control and hybrid
systems: Challenges and opportunities,” Proceedings of the IEEE,
vol. 88, no. 7, pp. 888–912, 2000.

[5] R. D. Filippi and R. Scattolini, “Idle speed control of a f1 racing
engine,” Control Engineering Practice, vol. 14, no. 3, pp. 251–257,
2006.

[6] J. Marzbanrad, G. Ahmadi, H. Zohoor, and Y. Hojjat, “Stochastic
optimal preview control of a vehicle suspension,” Journal of Sound

and Vibration, vol. 275, no. 3-5, pp. 973–990, 2004.
[7] Honda, “The all-new honda accord,” Press-release, published at

http://world.honda.com/news/2008/

4080211all-new-Accord-for-Europe/, 2008.
[8] H.-P. Schwefel, Evolution and Optimum Seeking. New York: Wiley

and Sons, 1995.
[9] T. M. Mitchell, Machine Learning. Singapore: McGraw-Hill, 1997.

[10] D. Stavens, G. Hoffmann, and S. Thrun, “Online speed adaptation
using supervised learning for high-speed, off-road autonomous driv-
ing,” in Proceedings of the International Joint Conference on Artificial

Intelligence, 2007.
[11] S. T. et al, “Stanley: The robot that won the darpa grand challenge,”

Journal of Robotics Systems, vol. 23, no. 9, pp. 661–692, 2006.
[12] “The DARPA Grand Challenge ’05,” Web-page:

http://www.darpa.mil/grandchallenge05, 2005.
[13] S. Haykin, Neural Networks - A Comprehensive Foundation (2nd

Edition). Upper Saddle River, NJ, USA: Prentice-Hall, 1999.
[14] D. Pomerleau, “Knowledge-based training of artificial neural networks

for autonomous robot driving,” in Robot Learning, J. Connell and
S. Mahadevan, Eds., 1993.

[15] M. Jakobsen, “Learning to race in a simulated environment,” Master’s
thesis, stfold University College, 2007.

[16] L. D. Pyeatt and A. E. Howe, “Learning to race: Experiments with
a simulated race car,” in Proceedings of the Eleventh International

Florida Artificial Intelligence Research Society Conference, 1998, pp.
357–361.

[17] M. Carreras, J. Yuh, J. Batlle, and P. Ridao, “A behavior-based scheme
using reinforcement learning for autonomous underwater vehicles,”
IEEE Journal of Oceanic Engineering, vol. 30, no. 2, pp. 416–427,
2005.

[18] B. Freisleben and T. Kunkelmann, “Combining fuzzy logic and neural
networks to control an autonomous vehicle,” in Proceedings of the

IEEE International Conference on Fuzzy Systems, 1993, pp. 321–326.
[19] S. Huang and W. Ren, “Use of neural fuzzy networks with mixed

genetic/gradient algorithm in automated vehicle control,” IEEE Trans-

actions on Industrial Electronics, vol. 46, no. 6, pp. 1090–1102, 1999.
[20] D. Partouche, M. Pasquier, and A. Spalanzani, “Intelligent speed adap-

tation using a self-organizing neuro-fuzzy controller,” in Proceedings

of the IEEE Intelligent Vehicles Symposium, 2007, pp. 846–851.
[21] J. Togelius and S. M. Lucas, “Evolving controllers for simulated car

racing,” in Proceedings of the 2005 IEEE Congress on Evolutionary

Computation, 2005, pp. 1906–1913.
[22] ——, “Evolving robust and specialized car racing skills,” in Proceed-

ings of the 2006 IEEE Congress on Evolutionary Computation, 2006,
pp. 1187–1194.

[23] A. Agapitos, J. Togelius, and S. M. Lucas, “Multiobjective techniques
for the use of state in genetic programming applied to simulated car
racing,” in Proceedings of the 2007 IEEE Congress on Evolutionary

Computation, 2007, pp. 1562–1569.
[24] H. Marques, J. Togelius, M. Kogutowska, O. Holland, and S. M. Lucas,

“Sensorless but not senseless: Prediction in evolutionary car racing,”
in Proceedings of the 2007 IEEE Symposium on Artificial Life, 2007,
pp. 370–377.

[25] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.
[26] I. Tanev and K. Shimohara, “Evolution of human competitive driving

agent operating a scale model of a car,” in Proceedings of the SICE

Annual Conference 2007, 2007, pp. 1582–1587.
[27] R. Olsson, “Inductive functional programming using incremental pro-

gram transformation,” Artificial Intelligence, vol. 1, pp. 55–83, 1995.
[28] S. Weeks, “Homepage of the MLton Standard ML compiler,” Web-

page: http://www.mlton.org, 2007.
[29] R. Olsson, “ADATE — Automatic Design of Algorithms Through

Evolution,” Web-page:
http://www-ia.hiof.no/˜rolando/adate_intro.html, 2006.

[30] R. Olsson and D. Powers, “Machine learning of human language
through automatic programming,” in International Conference on

Cognitive Science, 2003.
[31] S.-E. Hansen and R. Olsson, “Improving decision tree pruning through

automatic programming,” in Proceedings of the Norwegian Conference

on Informatics (NIK-2007), 2007, pp. 31 – 40.
[32] H. Berg, R. Olsson, T. Lindblad, and J. Chilo, “Automatic design

of pulse coupled neurons for image segmentation,” to be published

in Neurocomputing - Special Issue on Neurocomputing for Vision

Research, 2008.
[33] P. Riekert and T. Schunck, “Zur fahrmerchanik des gummibereiften

kraftfahrzeugs,” Ingenieur Archiv, vol. 11, pp. 210–224, 1940.
[34] H. B. Pacejka, Tyre and Vehicle Dynamics. Butterworth Heinemann,

2002.
[35] B. Schofield, “Vehicle dynamics control for rollover prevention,” Ph.D.

dissertation, Lund University, 2006.
[36] M. Egerstedt, X. Hu, and A. Stotsky, “Control of a car-like robot using

a dynamic model,” in IEEE International Conference of Robotics &

Automation, 1998.
[37] J. Svendenius and M. Gfvert, “A semi-empirical tire-model for tran-

sient combined-slip forces,” Vehicle System Dynamics, vol. 44, no. 2,
pp. 189–208, 2006.

[38] T. M. Mitchell, Machine Learning. McGraw-Hill Companies, Inc.,
1997.

[39] H.-P. Schwefel, Evolution and Optimum Seeking. John Wiley and
Sons, Inc., 1995.

2965

