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Abstract— In recent years, many applications in precision
engineering require a careful isolation of the instrument from
the vibration sources by adopting active vibration isolation
system to achieve a very low remaining vibration level especially
for the very low frequency under 10Hz vibration signals. In this
paper, based on the previous research experiences in the system-
atical modeling and study of parallel robots, a hybrid robot is
described and the vibration model is given by using Lagrange’s
Equations. Then the present study addresses the issues related
to the active vibration control schemes for the MIMO system
using LQR algorithm. Finally, numerical simulations on the
effect of active vibration control are presented.

I. INTRODUCTION

There are three fundamental control strategies to regulate

or control the response of a system: passive control, semi-

active control, and active control. Design and implementa-

tions of passive isolation systems have been studied for many

years. Passive isolation systems generally consist of one

or several stages of mass-spring-damper systems introduced

in the propagation path, whose parameters are adjusted

to achieve the desired corner frequency and a reasonable

compromise between the amplification at resonance and the

high-frequency attenuation. The passive damping is neces-

sary to limit the amplification at resonance, but it tends to

reduce the high-frequency attenuation of the isolation system.

Semi-active control has been developed as a compromise

between passive and active control. A semi-active control

system can achieve favorable results through selective energy

dissipation, but is incapable of injecting energy into a system.

Active isolation has been introduced to allow to achieve

simultaneously a low amplification at resonance and a large

attenuation at high-frequency. Active control can change

the properties of the system based on the change in the

instantaneous operating conditions as measured by sensors.

To counteract the vibration on precision instruments, active

isolation systems are best suited, since these units achieve

a very low remaining vibration level, especially for low

frequency disturbances without the resonance behavior of a

passive isolation system.

Active vibration control technology consists of a mix-

ture of mechanical engineering, structural mechanics, con-

trol engineering, material sciences and computer science.

Nowadays, a careful isolation of the instrument from the
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vibration sources is required in many precision engineering

applications, which is realized by adopting active vibration

isolation system to achieve a very low remaining vibration

level especially for the very low frequency under 10Hz

vibrations.

Active vibration isolation project based on parallel ma-

nipulator is on-going aiming to cross the bridge between

the structural dynamics and control communities, while

providing an overview of the potential of smart materi-

als for sensing and actuating purposes in active vibration

control. Parallel manipulators can offer the advantages of

high stiffness, low inertia, and high speed capability which

have been intensively researched and evaluated by indus-

try and institutions in recent years. And some designers

adopt the flexure hinges instead of conventional mechanism

joints since the backlash and friction in the conventional

joints influence the performances of parallel mechanisms

remarkably. Micro/nano positioning manipulators and active

vibration control devices are increasingly being made of

parallel manipulators due to their characteristics of high

precision and high speed capability.

Therefore, a lot of designers focus their attentions on

multi-degree of freedom hybrid manipulators or develop-

ing wide range flexure hinges. A spatial compliant 3-DOF

parallel robot with SMA pseudo-elastic flexure hinges was

presented in [1], which has a workspace larger than 200 ×
200×60 mm3 and resolution is better than 1µm. A parallel

structure for macro-micro systems was proposed in [2]. In

this new design, the macro-motion (DC motor) and micro

motion are connected by a parallel structure, the two motions

are coupled under one compliant mechanism framework.

At the same time, a kind of dual parallel mechanism was

developed [3], called a 6-PSS parallel mechanism and a

6-SPS one, which is integrated with wide-range flexure

hinges as passive joints to ensure the large workspace of

the whole system and high precision motion. A XYZ-flexure

parallel mechanism was proposed with large displacement

and decoupled kinematics structure [4], which has a large

motion range beyond of 1mm.

The piezo actuator is a well-known commercially available

device for managing small displacements, which has the

advantages of high precision, large force generation, sub-

millisecond response, no magnetic fields et al. Nowadays,

piezo actuators in high precision positioning systems and ac-

tive vibration control systems have been investigated widely.

However there are limited research works on using piezo

actuators in parallel manipulator for active vibration control.

This research is concerned with the development of a
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system that can achieve three high accurate translational

positioning and a 3-DOF active vibration isolation, which

attenuates the vibration transmission above some corner

frequencies, to protect the payload from the jitters induced by

the various disturbance sources. In this paper, based on the

previous research experiences in the systematical modeling

and study of parallel robots, a novel dual 3-DOF parallel

robot with flexure hinges will be described. A vibration

model of the parallel manipulator will be presented by

Lagrangian’s equations. Then the present study addresses

the issues related to the active vibration control schemes

for the MIMO system using LQR algorithm with the piezo

actuators as the actuators, laser sensors for displacement and

accelerometers as the sensors. Finally, numerical simulations

about the dynamic characteristics and control effects will be

presented.

II. SYSTEM DESCRIPTION

The designed 3-DOF dual parallel platform is a 3-DOF

dual parallel mechanism combining a 3-PUU parallel mech-

anism with another spatial 3-UPU one. In the 3-PUU parallel

structure, the prismatic actuators provide three translational

macro motions with micron level accuracy and cubic cen-

timeter workspace. At the same time, the micro motion is

provided by a spatial 3-UPU structure which can increase

the accuracy of the whole system to the nanometer level or

provide a strictly acceleration level for payload placed on

the moving platform. 3-PUU and 3-UPU kinematical struc-

tures with conventional mechanical joints can be arranged

to achieve only translational motions with some certain

geometric conditions satisfied.

Using flexure hinges at all joints, the parallel platform

consists of a mobile platform, a fixed base, and three limbs

with identical kinematic structure. Each limb connects the

mobile platform to the fixed base by one prismatic actuator,

one flexure universal (U) hinge and a piezo actuator followed

by another U joint in sequence as shown in Fig. 1, where the

first U joint is fixed at the prismatic actuator and the second

one connects to the moving platform actuated by a piezo

actuator to offer the micro motions with merits of involving

smooth motion, high accuracy, and fast response, etc. The

flexure universal hinge is a slender shaft configuration with

very high torsional stiffness which is adopted as passive joint

to ensure the large workspace of the whole system and high

precision motion. High precision ceramic motors are adopted

as the prismatic actuators to provide the macro motion for

the mechanism.

III. DYNAMIC MODEL

Since the macro motion is adopted for the rough posi-

tioning, the kinematic analysis is necessary for the 3-PUU

structure. The details have been published in [5]. In this

section, the vibration model using Lagrange’s equations will

be described first for the 3-UPU structure, and then Kane’s

dynamics modeling will be built up to verify the results.

Fig. 1. The 3-DOF 3-PUU/3-UPU dual parallel manipulator.

A. Kinematic Analysis

In this case, the prismatic actuators for macro motion are

self-locked when the micro motion is available.

1) Coordinate System: Let L=[l1 l2 l3]
T be the vector

of the three PZT actuated length variables and the vector

roo′=[x y z]T of the reference point o′ be the position of

the moving platform. As shown in Fig. 2, let bi be the

vector
−−→
oBi and mi be the vector

−−→
o′Mi. The mass of moving

platform is M . The mass of each strut is ml. C∗

i (i=1, · · · , 3)

is the center of mass for the ith limb. Let a limb fixed

right-handed coordinate system with origin C∗

i (i=1, · · · , 3)

located at the center of mass for the ith limb, with axis

directions determined by an orthonormal set of unit vectors

ĉ
i
j (j=1,· · · ,3). The hat indicates unit length, the index i

corresponds to the ith limb, and the index j distinguishes

the three vectors. ĉ
i
3 is along the ith limb, toward the ith

flexure hinge which connects the moving platform. ĉ
i
2 is

perpendicular to the vector
−−→
oBi when the moving platform

is in its home position, and ĉ
i
1 is in the direction ĉ

i
2 × ĉ

i
3.

Let a reference frame ŝj attach to the fixed platform at the

center o with the ŝ1 toward the point B1 and ŝ3 vertical the

fixed platform. Fix a coordinate system f̂j to the moving

platform at the center o’ with f̂1 toward the point Mi and

f̂3 vertical the moving platform. ℜ is a three-order identity

transformation matrix from f̂j coordinate system to ŝj . ℜci

is the transformation matrix from ĉj coordinate system to ŝj .

In order to determine the angles of flexure hinges directly,

an initial coordinate system is set on origin C∗

i with axis

directions determined by an orthonormal set of unit vectors

ĉ
i
j0 when the moving platform is in the home position. The

axis directions are located coincident with the corresponding

limb fixed coordinate system ĉ
i
j when the moving platform is

in the initial position. Let the orientation of the ĉ
i
j coordinate

system, relative to the ĉ
i
j0, be described by consecutive

positive rotations qi
1 about the ĉ

i
10 and qi

2 about the moved

two-axis. The rotation matrix ℜci0 is:

ℜci0 =
[

ĉ
i
10 ĉ

i
20 ĉ

i
30

]
−1 [

ĉ
i
1 ĉ

i
2 ĉ

i
3

]
. (1)

It is assumed that the small-angle approximations hold for

angles qi
k, the rotation matrix is:

ℜci0 =




1 0 qi
2

0 1 −qi
1

−qi
2 qi

1 1


 . (2)
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Fig. 2. Coordinate system of the 3-UPU parallel platform

2) Generalized Speeds for the System: Define generalized

speeds u for the system as the time rate of change of

the generalized coordinates of q=[x y z]T in the inertial

reference frame:

u =
[

ẋ ẏ ż
]T

. (3)

An intermediate reference frame is introduced previously

to permit describing the angular velocity of each limb to

the initial limb position. Designate the unit vectors of these

intermediate reference frames by m̂
i
j . The expressions for

the angular velocities of the reference frame of each upper

arm with respect to initial reference frame of upper arm are:

ωC∗

i

= −q̇i
1ĉ

i
10 − q̇i

2m̂
i
2. (4)

The position vectors are:

roo′ = liĉ
i
3 + bi − mi,

rmi
= liĉ

i
3 + bi, rC∗

i
=

li

2
ĉ
i
3 + bi. (5)

Differentiating Eq. (5) with respect to time:

vo′ = l̇iĉ
i
3 + liωC∗

i

× ĉ
i
3 (6)

vmi
= vo′ , vC∗

i
=

l̇iĉ
i
3 + liωC∗

i

× ĉ
i
3

2
=

vo′

2
.

Dot-multiplying both sides of Eq. (6) by ĉ
i
3:

(ĉ
i
3)

T vo′ = l̇i (i = 1, 2, 3) (7)

which can be assembled into a matrix form:
[

l̇1 l̇2 l̇3
]T

= A · vo′ (8)

where A =
[

(ĉ
1

3) (ĉ
2

3) (ĉ
3

3)
]T

.

Cross-multiplying both sides of Eq. (6) by ĉ
i
3:

ωC∗

i

=
ĉ
i
3 × vo′

li
(9)

The linearized accelerations are:

ao′ = (2l̇iωC∗

i

+ liεC∗

i

) × ĉ
i
3 + liωC∗

i

× (ωC∗

i

× ĉ
i
3) + l̈iĉ

i
3

aC∗

i
=

ao′

2
(10)

Cross-multiplying both sides of Eq. (10) by ĉ
i
3, the angular

acceleration of each limb can be obtained by:

εC∗

i

=
ĉ
i
3 × ao′ − 2l̇iωC∗

i

− li(ωC∗

i

· ĉ
i
3)(ωC∗

i

× ĉ
i
3)

li
(11)

B. Vibration Model

In this paper, the vibrational model is established by

using Lagrange’s equation which is a well known tool for

establishing equations of motion of discrete systems. The key

point of Lagrange’s equations is kinetic energy, which can

be formulated favorably with respect to a moving coordinate

system as well.

1) Kinetic Energy of the System: For the moving platform,

the kinetic energy can be given by

EkM =
1

2
M(ẋ2 + ẏ2 + ż2) (12)

For each limb, assume rotations about a fixed axis, the kinetic

energy can be given by

Ekli =
1

2
ml‖vC∗

i
‖2 +

1

2
ICi

ω2
C∗

i

(13)

where

ICi
=

1

3
mll

2
i

and according to Eq. (4), the kinetic energy of the whole

system can be derived by

Ek = EkM+

3∑

i=1

Ekli =
1

2
M(ẋ2+ẏ2+ż2)+

3∑

i=1

(
1

2
ml‖vC∗

i
‖2

+
1

2
ICi

((q̇i
1)

2 + (q̇i
2)

2)) = (
1

2
M +

3

8
ml)(ẋ

2 + ẏ2 + ż2)

+

3∑

i=1

1

6
mll

2
i ((q̇

i
1)

2 + (q̇i
2)

2)) (14)

2) Potential Energy of the System: The potential energy

of moving platform is given by

EpM = Mgz. (15)

Since the system is investigated in tiny vibration environ-

ment, according to the Eq. (5), we can obtain

ĉ
i
3 =

1

li




x − xbi
+ xmi

y − ybi
+ ymi

z − zbi
+ zmi


 (16)

Let

[
ĉ
i
10 ĉ

i
20 ĉ

i
30

]
−1

=




ri
11 ri

12 ri
13

ri
21 ri

22 ri
23

ri
31 ri

32 ri
33


 (17)

According to Eq. (1) and (2), the consecutive positive rota-

tions qi
1 and qi

2 about the moved two-axis are:

1

li




ri
11 ri

12 ri
13

ri
21 ri

22 ri
23

ri
31 ri

32 ri
33







x − xbi
+ xmi

y − ybi
+ ymi

z − zbi
+ zmi


 =




qi
2

−qi
1

1




qi
1 = H1i −

ri
21

li
x −

ri
22

li
y −

ri
23

li
z

qi
2 = H2i +

ri
11

li
x +

ri
12

li
y +

ri
13

li
z (18)
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where

H1i =
ri
21

li
(xbi

− xmi
) +

ri
22

li
(ybi

− ymi
) +

ri
23

li
(zbi

− zmi
)

H2i =
ri
11

li
(xmi

− xbi
) +

ri
12

li
(ymi

− ybi
) +

ri
13

li
(zmi

− zbi
)

For each limb, the potential energy can be written as:

Epli = mlg
z − zbi

+ zmi

2
+ ki

1(q
i
1)

2 + ki
2(q

i
2)

2 (19)

Hence, the potential energy of the whole system can be given

by

Ep = Mgz +

3∑

i=1

(mlg
z − zbi

+ zmi

2
+ ki

1(q
i
1)

2 + ki
2(q

i
2)

2)

(20)

3) Lagrange’s Equations: Let FDj and F ai

j be the distur-

bance force and the actuated force of each limb associated

to the qj respectively. The Lagrange’s equations are:

d

dt
(
∂Ek

∂uj

) −
∂Ek

∂qj

+
∂Ep

∂qj

= FDj +

3∑

i=1

F ai

j (21)

where

d

dt
(
∂Ek

∂ẋ
) = (M +

3

4
ml)ẍ +

3∑

i=1

1

3
ml(((r

i
21)

2 + (ri
11)

2)ẍ

+(ri
22r

i
21 + ri

12r
i
11)ÿ + (ri

23r
i
21 + ri

13r
i
11)z̈)

d

dt
(
∂Ek

∂ẏ
) = (M +

3

4
ml)ÿ +

3∑

i=1

1

3
ml((r

i
21r

i
22 + ri

11r
i
12)ẍ

+((ri
22)

2 + (ri
12)

2)ÿ + (ri
23r

i
22 + ri

13r
i
12)z̈)

d

dt
(
∂Ek

∂ż
) = (M +

3

4
ml)z̈ +

3∑

i=1

1

3
ml((r

i
21r

i
23 + ri

11r
i
13)ẍ

+(ri
22r

i
23 + ri

12r
i
13)ÿ + ((ri

23)
2 + (ri

13)
2)z̈)

∂Ek

∂x
= 0,

∂Ek

∂y
= 0,

∂Ek

∂z
= 0

∂Ep

∂x
=

3∑

i=1

(2ki
1(−

ri
21

li
)(H1i −

ri
21

li
x −

ri
22

li
y −

ri
23

li
z)

+2ki
2(

ri
11

li
)(H2i +

ri
11

li
x +

ri
12

li
y +

ri
13

li
z))

∂Ep

∂y
=

3∑

i=1

(2ki
1(−

ri
22

li
)(H1i −

ri
21

li
x −

ri
22

li
y −

ri
23

li
z)

+2ki
2(

ri
12

li
)(H2i +

ri
11

li
x +

ri
12

li
y +

ri
13

li
z))

∂Ep

∂z
= Mg +

3mlg

2
+

3∑

i=1

(2ki
1(−

ri
23

li
)(H1i −

ri
21

li
x−

ri
22

li
y

−
ri
23

li
z) + 2ki

2(
ri
13

li
)(H2i +

ri
11

li
x +

ri
12

li
y +

ri
13

li
z)) (22)

The final forward dynamic equation of this parallel multi-

body system can be written as:

M · u̇ + K · q = QF + FD (23)

where M = (M + 3

4
ml)I + 1

3
ml

3∑
i=1

Mi,

Mi =

[
(ri

21)
2 + (ri

11)
2

r
i
22r

i
21 + r

i
12r

i
11 r

i
23r

i
21 + r

i
13r

i
11

r
i
21r

i
22 + r

i
11r

i
12 (ri

22)
2 + (ri

12)
2

r
i
23r

i
22 + r

i
13r

i
12

r
i
21r

i
23 + r

i
11r

i
13 r

i
22r

i
23 + r

i
12r

i
13 (ri

23)
2 + (ri

13)
2

]

FD is the disturbance force acting on the mass center of

moving platform. I is the identity matrix. In this case, the

pertinent flexure hinge stiffness has the relationship of

ki
1 = k

j
2 = k (i = 1, 2, 3, j = 1, 2, 3)

Hence, the stiffness matrix of the whole system is:

K = 2k




3∑
i=1

ri

21

2
+ri

11

2

l2
i

3∑
i=1

ri

21
ri

22
+ri

11
ri

12

l2
i

3∑
i=1

ri

21
ri

23
+ri

11
ri

13

l2
i

3∑
i=1

ri

21
ri

22
+ri

11
ri

12

l2
i

3∑
i=1

ri

22

2
+ri

12

2

l2
i

3∑
i=1

ri

22
ri

23
+ri

12
ri

13

l2
i

3∑
i=1

ri

21
ri

23
+ri

11
ri

13

l2
i

3∑
i=1

ri

22
ri

23
+ri

12
ri

13

l2
i

3∑
i=1

ri

23

2
+ri

13

2

l2
i




Let Fai be the vector of force exerted by the ith piezo

actuator on each limb at the mass center of the strut in

the global coordinate system. The generalized external force

matrix is:

QF =

3∑

i=1

Fai +




2k
3∑

i=1

( r21

li
H1i −

r11

li
H2i)

2k
3∑

i=1

( r22

li
H1i −

r12

li
H2i)

2k
3∑

i=1

( r23

li
H1i −

r13

li
H2i) − Mg − 3mlg

2




Let the Fa be the matrix of scalars of driving forces given

by:

Fa =
[

F1 F2 F3

]T
(24)

where Fai = Fiĉ
i
3.

IV. CONTROL STRATEGY

The simple form of loop shaping in scalar systems does

not extend directly to multi-variable (MIMO) plants, which

are characterized by transfer matrices instead of transfer

functions. The notion of optimality is closely tied to MIMO

control system design [6]. In this section, the control

strategy will be analyzed by using the linear quadratic

regulator (LQR) method, which is a well-known design

technique that provides practical feedback gains.

A process of the active vibration control is shown in

Fig. 3. The sensors on the moving platform detect the

disturbances acting on the system first. Then the signals

are converted by A/D signal converter and feed back to

the controller to calculate the driving forces which will be

sent to three piezo actuators, and finally realize the active

vibration isolation. The block diagram for this feedback

active vibration control is shown in Fig. 4, where ̟ is the
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Fig. 3. Process of the active vibration control.

Fig. 4. Block diagram for feedback active vibration control.

disturbance vector, u is the control vector and Y is the

measurement vector.

As shown in Fig. 5, let Xb and Xm be the 3 degree

of freedom displacements of base platform and moving

platform. Hence, the Eq. (23) can be written as:

M · Ẍm + K · (Xm − Xb) = QF + FD (25)

According to the Eq. (25), the state vector consists of Xm

with the 3 coordinates:[
Ẋm

Ẍm

]
=

[
0 I

−M−1K 0

] [
Xm

Ẋm

]
+

[
0 0

M−1 M−1K

]

·

[
FD

Xb

]
+

[
0

M−1

]
QF (26)

Let the state vector, disturbance vector and control vector be

X =

[
Ẋm

Ẍm

]
, ̟ =

[
FD

Xb

]
, u = QF

respectively. Hence, the generalized plant of the control

problem is given by:

Ẋ = A · X + B · u + D · ̟, Y = X (27)

where

A =

[
0 I

−M−1K 0

]
, B =

[
0

M−1

]
,

D =

[
0 0

M−1 M−1K

]
.

Let the weighted matrix Q and R be:

Q = α

[
K 0

0 M

]
, R = βI. (28)

Fig. 5. Active vibration isolation system.

where α and β is the undetermined coefficient. The full state

feedback controller gain matrix G can be solved by LQR

method, and

u = −GX (29)

Substitute Eq. (29) to Eq. (27), the closed loop system

dynamics is given by:

Ẋ = Ã · X + D · ̟ (30)

where Ã = A − BG. Finally, the time response of the close

loop control model can be obtained by using differential

equation solver.

V. NUMERICAL SIMULATIONS

The parameters of the parallel mechanism are shown in

Table I. As the well elastic nature of the selected material of

wide-range flexure hinges, the workspace of micro motion

only depends on the limits of piezo actuator. The maximal

usable inscribed workspace of micro motion, when the inputs

of ceramic motors are zero and self-locked at the initial

position, is a column with a radius of 66.6µm and 38.6µm

height according to [5] of our previous work.

TABLE I

GEOMETRIC AND MATERIAL PARAMETERS

Item Value

Radius of moving platform r 20mm

Radius of fixed platform R 60mm

Radius of flexure hinge rf 0.9mm

Length of flexure hinge lf 10mm

Radius of strut rs 6.35mm

Length of strut ls 120mm

Modulus of elasticity of flexure hinge Ef 130GPa

Modulus of elasticity of strut Es 70GPa

A. Influence of Undetermined Coefficient

First, in order to determine the weighted matrix Q and

R, the influence of the undetermined coefficients α and β

should be considered. Since the response and driving forces

are related to the ratio of α and β, the value of β is set

to 100 in this paper according to the empirical value. The

trend of the z-axis response of moving platform and the

maximal driving force is shown in Fig. 6. In this state, it is

obviously that the maximal driving force can be decreased

with increase the value of β. But the effect of control gets

worse. In this case, in order to control the displacement of

moving platform under 1nm, α and β are set to 100 and

7×10−6 for taking consideration of the response of moving

platform and maximal driving force.

B. Active Vibration Control

As shown in Fig. 7, the red lines represent to the open

loop response of the moving platform and the blue lines

represent to the close loop response by using LQR method.

It is obviously that the disturbance could be eliminated about

50-70% especially the disturbance acting along the z-axis.
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Fig. 6. Relationship between displacement/driving force and β (α=100).

(a) X-axis displacement (b) Y-axis displacement

(c) Z-axis displacement (d) X-axis acceleration

(e) Y-axis acceleration (f) Z-axis acceleration

Fig. 7. Positions and accelerations of the moving platform

The change of the driving forces of three piezo actuators are

shown in Fig. 8.

VI. CONCLUSION

In this paper, a novel dual 3-DOF parallel robot with

flexure hinges has been presented. This system can achieve

three high accurate translational positioning with a 3-DOF

active vibration isolation and excitation function to the pay-

load placed on the moving platform. Based on the previous

research experiences in the systematical modeling and study

of parallel robots, a vibrational model of the parallel manip-

ulator has been presented by using Lagrange’s dynamics.

Then the active vibration control scheme for the MIMO

system using LQR algorithm has been introduced. Finally,

some simulation results by MATLAB are shown to verify

the validity of the control strategy.

The investigations of this paper are expected to make

(a) Actuator 1 (b) Actuator 2

(c) Actuator 3

Fig. 8. Driving forces of the three actuators.

contributions to the research on active vibration isolation

based on parallel manipulators. After this work, some control

modeling for active vibration control will be given and opti-

mal control algorithm will be discussed. Finally, a prototype

of the parallel robot will be developed, and the experimental

investigation will be carried out to verify the vibration control

performance of the prototype.
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