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Abstract— This paper derives analytic guidelines to tune
the popular Position-Force bilateral controller and improve
its performance by incorporating available knowledge on the
bounds of the environment impedance. The proposed guide-
lines can prove especially useful in the domain of telesurgery
where a need exists for well-understood bilateral teleoperation
controllers, that show good performance and where many tasks
can be characterized by restricted and relatively easily definable
impedance regions. This paper firstly analyses the two-port
passivity and absolute stability properties of two alternatives
of the Position-Force controller. The limitations on achievable
performance when guaranteeing absolute stability with arbi-
trary environments are detailed. Next, a novel method, called
Bounded Environment Passivity method is introduced. This
method enables the design of teleoperation controllers that show
passive behaviour for interactions with an environment that
varies over a given range of impedances. A set of guidelines that
allow a smarter trade-off between performance and stability
follows. The theoretical results are verified experimentally on
a 1-d.o.f. teleoperation setup.

I. INTRODUCTION

This paper rigorously analyzes the stability properties

of the well-known Position-Force bilateral controller [1],

[2]. This controller appears under many different names in

literature1. The Position-Force controller commands the slave

robot to follow the position of the master robot and reflects

the interaction force, measured at the slave side, to the master

side. The success of the Position-Force controller lies in

its simplicity. It is relatively easy to implement and shows

a reasonably good performance. Its main limitation is its

stability. Especially for stiff environments stability problems

are being reported [1], [10], [11], [12].

Researchers have spent a considerable amount of effort to

study the stability properties of the Position-Force controller.

McAree et al. analyze the pole-locations of the closed

loop system encompassing operator and environment [12],

whereas Fite et al. apply loop-shaping techniques in [2].

Both works, however, rely on a fixed operator and a known

environment. It is widely known that the behaviour of an

operator is highly variable and difficult to predict, depending

on factors such as posture, grip and fatigue [13], [11]. Also,

in realistic teleoperation scenario’s precise knowledge of the

environment characteristics is missing. To cope with the
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unpredictable behaviour of the operator and the unknown en-

vironment, Passivity Theory could be applied [14]. However,

a well-known fact, which is confirmed analytically further in

this paper, is that the Position-Force controller is non-passive.

Another, less conservative but still sufficient condition for

stable interaction with arbitrary passive environment and

operator is the absolute stability property [15]. This property

can be checked by calculating Llewellyn’s absolute stability

criteria [16], [17]. Tavakoli et al. proved analytically that

a specific implementation of the Position-Force controller

cannot be absolutely stable [9]. Hashtrudi-Zaad et al. inves-

tigated among other controllers the Position-Force controller

based on a numerical evaluation of Llewellyn’s absolute

stability criteria [4]. However, none of the aforementioned

works described analytic closed-form stability conditions, as

presented further in this paper.

The Position-Force controller under study in this paper

is popular when targeting soft environment manipulation,

such as in telesurgery [18]. This controller is being applied

for telesurgery in, among others, [7], [8] and [9]. Other

works, such as [19], [20] and and [21] compare alternative

controllers to the Position-Force controller. The popular-

ity of the Position-Force controller in telesurgery can be

explained by the need for a) well-understood b) bilateral

teleoperation controllers, that c) show good performance.

Although time delay is often mentioned as an important

aspect of telesurgery [22], [23], this work does not deal

with time delay. The authors are convinced that even without

time delay, the design of performant teleoperation controllers

remains a real challenge. Moreover, time delay is mostly

not an issue in current telesurgical systems used in clinical

practice, as the master and slave device are typically in the

same room.

This paper presents a new method, which is called Bounded

Environment Passivity. The proposed method runs parallel

to efforts by [24], [25] and [26] which also incorporate

bounds on the dynamic range of the environment and/or

operator to obtain less conservative controllers. As stated

in [14], pure springs and pure masses can be considered as

the worst case environments for stability. In this work, the

environment is considered to be a pure stiffness as in teleop-

eration, especially in telesurgery [8], displaying stiffnesses

seems to be more relevant. Moreover, in telesurgery, one

can easily delineate a maximum value of the environment

stiffness. This knowledge is exploited here to come up with

guidelines to tune the Position-Force controllers, allowing a
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more conscious trade-off between performance and stability.

Two alternatives of the Position-Force controller are de-

scribed in section II. The Two-port Passivity and the Abso-

lute Stability of these alternatives are studied in section III

and section IV respectively. The novel method is described

in section V. The paper ends with experimental results in

section VI, after which conclusions are drawn in section VII.

II. THE POSITION-FORCE CONTROLLER

The analysis in this paper is based on 1-d.o.f rigid-body

models for master and slave, obeying the following equations

of motion:
Fh + τm = Mmẍm +Bmẋm, (1)

τs −Fe = Msẍs +Bsẋs, (2)

Zm = Mms+Bm, Zs = Mss+Bs, (3)

with Zm and Zs representing the impedances of the master

and the slave robot. Remark that for a rigid body model the

positions xm and xs (the position of the motors) are equal

to respectively xh and xe (the position of the end-effectors).

The basic configuration of the Position-Force controller is

illustrated in Fig. 1. The control inputs for the motors of the

master and the slave are:
τm = −λ .Fe (4)

τs = Cs(s).(µ.xm − xs), (5)

with µ and λ the position and force scaling factor. Note

that here an impedance-type 2 master is supposed and pure

open-loop force control is used. The compensator Cs(s)
of the closed-loop position controller is typically a PD-

compensator: Kvs+Kp. This configuration has been studied

in [1], [4], [27], [9]. An alternative controller that appears

in literature [5], [12], [28] differs in the fact that it does

not contain a master velocity feedforward term. The control

input for the slave is then given by:

τs = Kp(µxm − xs)−Kvẋs (6)

As far as the authors are aware of, a concise comparison of

the difference between both configurations has not yet been

described. In this paper both configurations will be covered.

For clarity the approach based on (5) will be referred to

as the PD-F scheme, whereas the one based on (6) will be

called the P-F scheme.

All numerical calculations and experiments reported in this

paper are based and done on the 1-d.o.f. experimental master-

slave setup shown in Fig. 9. The experimental setup consists

2An impedance-type device is characterized by low inertia and low
friction/damping. A good example is the PHANToM haptic device.

Fig. 1. Representation of the classic Position-Force controller (PD-F

scheme)

TABLE I

PARAMETERS OF THE TELEOPERATION SYSTEM

Model Controller

Mm: 0.64 kg Kv: 80 Ns/m

Bm: 3.4 Ns/m Kp: 4000 N/m

Ms: 0.61 kg µ: 1

Bs: 11 Ns/m λ : 1

of two current-driven voice coil motors from hard disk

drives. On both devices, one-dimensional force sensors are

mounted, measuring the interaction forces between slave and

environment at one side, and between the human operator

and the master at the other side (resolution: 0.05 N). Linear

encoders offer accurate position measurements (resolution:

1µm). A rigid-body model for the master and the slave of this

setup is justified because structural resonance frequencies

are above 100 Hz. Table I gives an overview of the used

parameters for the model and the controller. These nominal

parameters are based on the linear model identification of

the real setup and on the implementation of the controllers

on this setup. The controllers are implemented on a dSpace

board, in a real time loop with a frequency of 1 kHz.

III. TWO-PORT PASSIVITY ANALYSIS

Passivity has turned out to be an interesting property for

the study of human-robot interaction [29], [30]. In the case

of teleoperation, the robotic system contains both a master

and slave robot, which interact with the human operator at

the master side and the external environment at the slave

side. Fig. 2 shows a network model of such a teleoperation

system. To evaluate the passivity of the teleoperation system,

one can look at its scattering matrix [14], or make use of the

Raisbeck passivity criteria [31] based on the elements hi j of

the hybrid matrix [6] of the teleoperation system:

• no hi j has poles in the right half plane,

• any poles of the h-parameters h11, h12, h21 and h22 on

the imaginary axis are simple, and the residues d11, d12,

d21 and d22 at these poles satisfy the conditions: d11 ≥ 0,

d22 ≥ 0 and d11d22 −d12d21 ≥ 0 with d21 = d∗
12, and

• the real (ri j =ℜ(hi j)) and imaginary (ii j =ℑ(hi j)) parts

of the hi j-elements satisfy:

r11 ≥ 0, r22 ≥ 0,∀ω (7)

4r11r22 − (r12 + r21)
2 − (i12 − i21)

2 ≥ 0,∀ω. (8)

In the case of the Position-Force controller the elements of

the hybrid matrix are found to be:

h11 = Mms+Bm, h12 = λ , (9)

h21 =
−µKp

Mss2+(Bs+Kv)s+Kp
, h22 = s

Mss2+(Bs+Kv)s+Kp
.

Fig. 2. A two-port network representation of a teleoperation system
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for the P-F scheme, whereas the PD-F scheme leads to the

following hybrid parameters:

h11 = Mms+Bm, h12 = λ , (10)

h21 =
−µ(Kvs+Kp)

Mss2+(Bs+Kv)s+Kp
, h22 = s

Mss2+(Bs+Kv)s+Kp
,

For both hybrid matrices, it is relatively straightforward to

see that all conditions except (8) hold. After performing some

algebraic manipulations, (8) can be written as:

−λ 2M2
s ω4 +a2ω2 −Kp(λ −µ)2 ≥ 0, ∀ω (11)

with a2 = 4Bm(Bs +Kv)−λ 2(Bs +Kv)
2 −µ2K2

v

+2µλKpMs(λ −µ)+2µλKv(Bs +Kv) (12)

for the PD-F scheme. One can easily verify that this

inequality in ω can only hold in the trivial case that

Ms = Bs = 03. Note that a similar derivation can be made

for the P-F scheme. The above derivation allows the

formulation of the following theorem:

THEOREM 1 (Active Position-Force Controller): The

Position-Force controllers defined by (4) and (5) or by (4)

and (6) form a non-passive system when applied upon the

teleoperator (1) and (2) for non-trivial parameters of the

system.

Actually, passivity is a conservative property as it neglects

the fact that no direct interaction between operator and

environment occurs. The next section analyzes the absolute

stability property which is a less conservative property in-

corporating this structural knowledge.

IV. ABSOLUTE STABILITY ANALYSIS

A linear two-port is absolutely or unconditionally stable

if and only if there is no set of passive one-ports for which

the coupled system is unstable. Llewellyn’s stability criteria

provide necessary and sufficient conditions for absolute

stability [16]. These criteria are equivalent to the following

conditions in terms of the immittance matrix P:

• the immittance parameters p11 and p22 have no poles

in the open right-half-plane (RHP),

• any poles of p11 and p22 on the imaginary axis are

simple and have real and positive residues, and

•
ℜ(p11) ≥ 0,∀ω (13)

η(ω) = −cos(∠p12 p21)+2
ℜ(p11)ℜ(p22)

|p12 p21|
≥ 1,∀ω.

(14)

These conditions are valid for any member of the im-

mittance class. Here, the conditions are checked for the

hybrid matrices (10) and (9). For both hybrid matrices, it

is relatively straightforward to see that all conditions stated

above, except (14), hold. The following subsections elaborate

further on this inequality (14) for both the P-F and the PD-F

scheme.

3Note that (11) can be written as ax2 +bx+c ≥ 0, ∀x ≥ 0 where x = ω2

is used. This holds ⇔ a ≥ 0 and c ≥ 0 and (b ≥ 0 or b2 −4ac ≤ 0).

A. Absolute stability of the P-F scheme

The parameter η(ω) in inequality (14) can be written as

the sum of η1(ω) and η2(ω). For the P-F scheme these two

parameters can be written as:

η1(ω) = cos(∠
µλKp

Mss2 +(Bs +Kv)s+Kp

), (15)

η2(ω) = 2
ℜ(Mms+Bm)ℜ( s

Mss2+(Bs+Kv)s+Kp
)

| −µλKp

Mss2+(Bs+Kv)s+Kp
|

. (16)

Replacing s by jω results in the following analytic equations:

η1(ω) =
Kp −Msω

2

√

(Kp −Msω2)2 +(Bs +Kv)2ω2
, (17)

η2(ω) =
2Bm(Bs +Kv)ω

2

µλKp

√

(Kp −Msω2)2 +(Bs +Kv)2ω2
. (18)

Based on these analytic equations, it turns out that the

condition (14) only holds when the parameters of the system

satisfy the following conditions:

µλ ≤ 4
Bm

(Bs +Kv)
, (19)

µλ ≤ Bm(Bs +Kv)

MsKp

. (20)

Fig. 3 illustrates these conditions for the parameters of

Table I. All sets of parameters belonging to the shaded

area result in an absolutely stable system. The absolute

maximum value of µλ is reached for a critically damped

slave robot (Bs + Kv = 2
√

MsKp). For the parameters of

Table I, the maximum value of µλ is e.g. 0.127, which

clearly restricts the transparency of the system. The above

results are summarized in the following theorem:

THEOREM 2 (Absolutely stable P-F controllers):

The Position-Force controller without master velocity-

feedforward, applied upon the teleoperator (1), (2) and (3),

and expressed by control laws (4) and (6) is absolutely stable

when the scale factors λ and µ respect both inequalities

(19) and (20).

Fig. 3. Conditions on the parameters of the system resulting in an absolute
stable system for the P-F scheme.
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Fig. 4. The parameters η(ω),η1(ω) and η2(ω) for two different values
of µλ for (a) the P-F scheme and (b) the PD-F scheme.

Fig. 4(a) shows the parameters η(ω),η1(ω) and η2(ω) for

two different values of µλ and the parameters of Table I.

For µλ = 0.1 it can be checked that the two conditions are

satisfied, thus the system with µ = 0.1 is absolutely stable.

This can be seen in Fig. 4(a) as η(ω) ≥ 1 holds for all

frequencies.

B. Absolute stability of the PD-F scheme

For the PD-F scheme, the parameter η(ω) can again be

written as the sum of η1(ω) and η2(ω), with:

η1(ω) = cos(∠
µλ (Kvs+Kp)

Mss2 +(Bs +Kv)s+Kp

), (21)

η2(ω) = 2
ℜ(Mms+Bm)ℜ( s

Mss2+(Bs+Kv)s+Kp
)

| −µλ (Kvs+Kp)

Mss2+(Bs+Kv)s+Kp
|

. (22)

Replacing s by jω results in the following analytic equations:

η1(ω)=sign(µλ )
K2

p+(K2
v +KvBs−MsKp)ω2√

(Kp−Msω2)2+((Bs+Kv)ω)2
√

K2
p+K2

v ω2
, (23)

η2(ω)=
2Bm(Bs+Kv)ω2

|µλ |
√

(Kp−Msω2)2+((Bs+Kv)ω)2
√

K2
p+K2

v ω2
. (24)

From these equations follows that for ω→∞, η1(ω)→0 and

η2(ω)→ 0, independent of the parameters of the system.

This means that (14) does not hold for all ω , leading to the

following result:

THEOREM 3 (Non absolutely stable PD-F controller):

The Position-Force controller with master velocity-

feedforward, applied upon the teleoperator (1), (2) and

(3), and expressed by control laws (4) and by (5) is never

absolutely stable when Ms 6= 0.

Fig. 4(b) shows η(ω),η1(ω) and η2(ω) for two different

values of µλ and the parameters of Table I.

Fig. 5. A one-port network YMS(Ke) representation of a combined
teleoperator-environment system.

V. ONE-PORT PASSIVITY ANALYSIS

The above derivation showed that stable interaction can

be achieved with any passive environment for the Position-

Force controller, but only for very limited values of µλ in

the case of P-F and even never in the case of PD-F. In this

section, a novel method is proposed that allows to improve

the tuning of the Position-Force controller, by making use of

available knowledge about the environment. The new method

is also based on the passivity concept, but in contrast to

section III, here, the dynamics of the master, slave, controller

and environment are combined into one one-port network

YMS(Ke), as shown in Fig. 5. Next, the coupled stability

between any operator and the YMS(Ke) one-port is discussed.

Coupled stability can be checked by verifying positive real-

ness of the admittance YMS(Ke) [14]. In order to determine

YMS(Ke), an assumption has to be made about the environ-

ment. As stated in[14], pure springs and pure masses can be

considered as the worst case environments since their admit-

tance is not strictly passive. Since in teleoperation, especially

in telesurgery, displaying stiffnesses is in most cases more

relevant, in this work the environment is considered to be a

pure spring with stiffness Ke. Through this assumption the

admittance of the one-port for the P-F scheme can be written

as:

YMS(Ke) =
s(Mss2+(Bs+Kv)s+(Kp+Ke))

(Mms2+Bms)(Mss2+(Bs+Kv)s+(Kp+Ke))+µλKeKp
. (25)

For the PD-F scheme this yields:

YMS(Ke) =
s(Mss2+(Bs+Kv)s+(Kp+Ke))

(Mms2+Bms)(Mss2+(Bs+Kv)s+(Kp+Ke))+µλKe(Kvs+Kp)
.

(26)

The proposed approach, referred to as Bounded Environment

Passivity, results in conditions to calculate controllers that

make the combined system YMS(Ke) behave ‘passively’ for a

range of [Ke = 0−Kmax
e ]. The derived expressions provides

limits to the achievable scale factors µλ as a function of

the range on Ke and as a function of system and control

parameters. First derivations are done for the P-F, then for

the PD-F scheme.

A. Bounded Environment passivity for the P-F scheme

The YMS(Ke) of the P-F scheme can be checked analyti-

cally. ℜ(YMS(Ke)( jω)) ≥ 0 can be expressed as:

(M2
s Bm)ω6+(Bm(Bs+Kv)

2−2(Kp+Ke)MsBm)ω4+

(Bm(Kp+Ke)
2−µλKeKp(Bs+Kv))ω

2 ≥ 0, ∀ω≥0, (27)

which results in the following conditions on the system

parameters:

Blim = min[
√

2(Kp +Kmax
e )Ms,2

√

KpMs] (28)

0≤(Bs+Kv)≤Blim : µλ≤ Bm(Bs+Kv)
MsKp

[1+
Kp

Kmax
e

− (Bs+Kv)2

4Kmax
e Ms

] (29)

(Bs+Kv)≥Blim and Kmax
e ≤Kp : µλ≤ Bm(Kp+Kmax

e )2

(Bs+Kv)KpKmax
e

(30)

(Bs+Kv)≥Blim and Kmax
e >Kp : µλ≤ 4Bm

(Bs+Kv)
(31)

Fig. 6 illustrates these conditions for the values in Ta-

ble I and for different values of the selected maximum

environment stiffness Kmax
e (1000, . . . ,16000N/m). Note that

solutions belonging to the area below the curves are valid.
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Fig. 6. The P-F scheme: conditions for bounded environment passivity for
different values of Kmax

e [1000-∞ N/m].

The maximum attainable value µλ max for a given Kmax
e is

reached at different values of Bs +Kv. For Kmax
e <2Kp, µλ max

is found for:

(Bs +Kv)
max =

√

4Ms(Kmax
e +Kp)

3
, (32)

with:

µλ max =
4

3

Bm√
MsKpKmax

e

√

(Kmax
e +Kp)3

3
. (33)

When Kmax
e ≥ 2Kp, maximal µλ is reached for a critically

damped slave and equals 2Bm/
√

MsKp (this follows from

(29), (32) and (33)). Note that this value corresponds to the

value found for absolute stability in subsection IV-A. Thus,

no gain in the factor µλ can be achieved for the P-F scheme

by using Bounded Environment Passivity when Kmax
e ≥ 2Kp.

For smaller Kmax
e e.g. 1000N/m, µλ max is 0.29, compared

to the absolute maximum value of 0.137 reached under the

condition of absolute stability.

Based on (33) the effect of the various parameters on µλ max

were calculated and plotted in Fig. 7(a). The figure shows

the relation between the selected maximum environment

stiffness Kmax
e and µλ max as well as the effect of Ms, Bm

and Kp for a fixed maximum environment stiffness Kmax
e =

1000N/m. One can see that:

• Kmax
e : a significant increase in allowable µλ can only be

obtained when the maximum environment stiffness Kmax
e

is limited. For Kmax
e → ∞, the curve evolves towards the

condition of absolute stability (derived in subsection IV-

A).

Fig. 7. Effect of Kmax
e on µλ max and the effect of Ms, Bm and Kp on

µλ max when Kmax
e = 1000 for a) the P-F scheme and b) the PD-F scheme.

• Ms: reductions of the slave mass are very effective to

realize passivity with larger values of µλ .

• Bm: an increase of master damping allows larger values

of µλ . However, extra damping jeopardizes the system’s

transparency, causing a sluggish feeling.

• Kp: also, a tighter position loop at the slave is found to

increase maximal µλ .

B. Bounded Environment passivity for the PD-F scheme

The ℜ(YMS(Ke)( jω)) ≥ 0 condition for P-DF can be ex-

pressed as:
(M2

s Bm)ω6+(Bm(Bs+Kv)
2−2(Kp+Ke)MsBm−µλMsKvKe))ω

4

+(Bm(Kp+Ke)
2+µλKvK2

e−µλKeKpBs)ω
2 ≥ 0, ∀ω≥0. (34)

Similar to subsection V-A, this condition can be reformulated

to a set of conditions upon the parameters. Here, these

conditions are rather complicated and they can be found in

the Appendix. However, for Kv ≤ (MsKp)/Bs, the conditions

simplify to the following:

µλ ≤ Bm(Bs +Kv)

MsKeK2
v

(

(Bs+Kv)Kv−2MsKp+2

√

M2
s K2

p+MsK2
v Ke−KpKvBsMs

)

. (35)

Fig. 8 illustrates this relation for the parameters of Table I

and Kmax
e (1000, . . . ,27000N/m). In order to compare the PD-

F scheme with the P-F scheme, the curves delimiting the

region of bounded environment passivity for the P-F scheme

are shown again. For relatively low values of Kmax
e the PD-

F scheme outperforms the P-F scheme. For a maximum

environment stiffness Kmax
e = 1000N/m and Kv = 88Ns/m

e.g., µλ = 0.67 (compared to 0.137 and 0.29 for respectively

absolute stability and bounded environment passivity of the

P-F scheme).

Based on (35), Fig. 7(b) shows the effect on the maximum

allowed µλ of the selected Kmax
e as well as the effect of

Ms, Bm and Kp for a fixed maximum environment stiffness

Kmax
e = 1000N/m. Note that the relation Kp-µλ shown here,

supposes a fixed damping ratio of the slave. Similar relations

as in Fig. 7(a) appear for the dependency on Kmax
e , Ms, Bm

and Kp. The main difference with the P-F scheme is that

higher values of µλ can be achieved for a certain value of

Kmax
e , Ms and Bm.

Fig. 8. Comparison between the conditions for bounded environment
passivity for the P-F scheme (dashed) and the PD-F scheme (solid).
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VI. EXPERIMENTAL RESULTS

Section V showed how to select a value for µλ in order

to guarantee stable interaction for any passive operator,

based upon the selected value Kmax
e . The correctness of

the proposed analytic conditions was numerically and ex-

perimentally verified. The experiments presented here study

the inverse problem: the passivity of YMS(Ke) is checked for

different Ke for µ = λ = 1, as µλ = 1 is in favour of

transparency.

As a human operator tends to stabilize the interaction,

stable interaction with a human operator is not a sufficient

demonstration of passivity YMS(Ke). To check the passivity,

the operator should behave as a worst case operator [14].

To approximate such behaviour, the system is checked for

three different operators: a human operator holding the

master, a soft spring fixed between a rigid wall and the

master and a hard object contacting the master. For each of

these ‘operators’, the stability is checked for four different

environments: three springs fixed between a rigid wall and

the slave (Ke=100, 300 and 880 N/m) and one hard contact

(Ke=27000 N/m). The parameters for both control schemes

are those in Table I, except for Kv for the P-F scheme. This

parameter is selected based on (32). For Kmax
e = 100 N/m

for example, this results in Kv= 58 Ns/m. Fig. 10 shows the

calculated ℜ(YMS(Ke)( jω)), ω ∈ [1−100] Hz, for the differ-

ent environments for both the PD-F and the P-F scheme.

Table II shows for each environment/controller combination,

whether YMS(Ke) is passive for µ = λ = 1, what µλ max is

and how the system behaves for the different operators.

For the spring and hard contact operator, the system was

considered stable, if a small, manually given, force input at

the master did not result in growing oscillations. As can be

expected, none of the ‘operators’ could cause an instability

when the one-port is passive. However, for an active one-

port the findings are less straightforward, as the stability

depends on the operator. Remark the case with Ke=300 N/m

for the P-F scheme. Although the system is clearly active,

no human operator experiences an instability. This suggests

that the current approach of guaranteeing stability for any

Fig. 9. The 1 d.o.f experimental teleoperation setup in the case that both
the environment and the operator are a pure stiffness (Ke and Kh).

TABLE II

NUMERICAL AND EXPERIMENTAL RESULTS

P-F: Ke Num µλ max
Kv=58 Exp

100 N/m Passive 2.2 Stable for

all operators

300 N/m Active 0.78 Unstable for

(peak at 3 Hz) soft spring

880 N/m Active 0.32 Unstable for

(peak at 5 Hz) soft spring

27000 N/m Active 0.13 Unstable for

(peak at 12 Hz) all operators

PD-F: Ke Num µλ max
Kv=80 Exp

100 N/m Passive 5.14 Stable for

all operators

300 N/m Passive 1.81 Stable for

all operators

880 N/m Active 0.7 Stable for

(peak at 11 Hz) all operators

27000 N/m Active 0.07 Only stable for

(peak at 34 Hz) soft spring

Fig. 10. Comparison between ℜ(YMS(Ke)( jω)) for the PD-F scheme and
the P-F scheme for different values of Ke.

passive operator might still be too conservative. This will

be investigated in further research. Lastly, these experiments

confirm the finding in section V-B that the PD-F scheme has

better stability properties.

VII. CONCLUSIONS

In this paper, a detailed stability analysis of two alterna-

tives of the classical Position-Force controller is presented.

The analysis is based on two existing methods, i.e. Two-port

Passivity and Absolute Stability and a new method which is

referred to as Bounded Environment Passivity.

Firstly, it is proven analytically that the Position-Force con-

troller is a non-passive controller. Secondly, it is analytically

proven that for the PD-F scheme, absolute stability can never

be guaranteed and that for the P-F scheme absolute stability

can only be guaranteed for very limited scaling factors µλ .

Next, the new bounded environment passivity approach is

explained. This method makes use of the known/selected

restrictions on the environment impedance. The environment

is considered to be a pure stiffness. The passivity of the one-

port YMS(Ke) with which the operator interacts, is investigated

for environment properties within the predescribed bounded

region. This results in analytical guidelines to tune the

Position-Force controller as a function of the selected range

of environments. Two important findings are that: (1) the
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larger the maximum stiffness of the environment, the harder

the restriction on µλ and (2) reducing the inertia of the slave

robot is an effective way to obtain larger maximal µλ -values.

Moreover, the analysis pushes the PD-F scheme forward as

the scheme with most possibilities to select a smart trade-off

between performance and stability. Experiments confirm this

finding.

In future work, the stability properties of extensions of the

Position-Force controller, these can be 3- or 4-channel con-

trollers, will be investigated following the same methodology.

Also a method to deal with contacts that lie outside the

hypothesized region of interest need to be further developed.
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APPENDIX

This appendix shows the full analytic conditions resulting

from the requirement that ℜ(YMS(Ke)) ≥ 0 for the PD-F

scheme: [(36) or (37)] and [(38) or [(39) and (40)]]:

Kmax
e ≤ BsKp

Bs +2Kv

⇒ µλ ≤ Bm(Kmax
e +Kp)

2

(BsKp −KvKmax
e )Kmax

e

(36)

Kmax
e >

BsKp

Bs +2Kv

⇒ µλ ≤ 4Bm(Bs +Kv)

Bs

(37)

µλ ≤ Bm(Bs +Kv)
2 −2(Kp +Ke)MsBm

MsKvKe

(38)

µλ≤ Bm(Bs+Kv)

MsKeK2
v

(

(Bs+Kv)Kv−2MsKp+2
√

M2
s K2

p+MsK2
v Ke−KpKvBsMs

)

(39)

µλ≥ Bm(Bs+Kv)

MsKeK2
v

(

(Bs+Kv)Kv−2MsKp−2
√

M2
s K2

p+MsK2
v Ke−KpKvBsMs

)

(40)
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