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Abstract—This paper presents a vision-based navigation strat-
egy for a Vertical Take-off and Landing (VTOL) Unmanned
Aerial Vehicle (UAV) using a single embedded camera observing
natural landmarks. In the proposed approach, images of the
environment are first sampled and stored as a set of ordered key
images (visual path) and organized providing a visual memory of
the environment. The robot navigation task is then defined as a
concatenation of visual path subsets (called visual route) linking
the current observed image and a target image belonging to the
visual memory. The UAV is controlled to reach each image of
the visual route using a vision-based control law adapted to its
dynamic model and without explicitly planning any trajectory.
This framework is largely substantiated by experiments with a
X4-flyer equipped with a fisheye camera.

I. INTRODUCTION

In [1], Sarris establishes a list of civilian applications

for UAVs including border interdiction, search and rescue,

wild fire suppression, communications relay, law enforcement,

distaster and emergency management, research, industrial and

agricultural applications. 3D archaeological map reconstruc-

tion and image mosaicing may be added to this list. In order

to develop such applications, automatic navigation of those

vehicles has to be addressed. While most of the current

researches deal with the attitude estimation [2] and with the

control of UAVs [3], few works propose navigation strategies.

The most popular sensor for navigation of UAVs is the GPS

receiver. In this case, the navigation task consists generally

to reach a series of GPS waypoints. Unfortunately, GPS data

are not always available (for instance in indoor environment)

or can be inaccurate (for instance in dense urban area where

buildings can mask some satellites). For those reasons, it is

necessary to use other sensors. The use of camera is very

attractive to solve those problems because in place where the

GPS is difficult to use such as city centers or even indoors,

there are usually a lot of visual features. A navigation system

based on vision could thus be a good alternative to GPS.

Some vision-based navigation systems originally developed

for ground vehicles have been transposed to the context

of UAV navigation. For instance in [4], 2D Simultaneous

Localization And Mapping (SLAM) techniques is used. In

[5], a bearing-only SLAM is proposed. Vision based control

scheme have been also employed to drive the UAV during the

autonomous navigation step. An homography-based control

scheme is proposed in [6]. However, this approach requires

the camera to point to the ground supposed planar. In [7], an

image-based control strategy using points as visual features is
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Fig. 1. Quad-rotor UAV used in our experiments

used for a positioning task. The centroid of artificial landmarks

(white blobs) are used as visual features. In [8], a visual

servoing scheme is proposed to align an airplane with respect

to a runway in a simulated environment.

In this paper, we propose to control the VTOL UAV by

successively reaching visual waypoints. Our framework does

not need to recover the position of the UAV with respect to a

reference frame. We suppose that images of the environment

have been acquired during a human-guided navigation. These

images are first sampled and stored as a set of key images

(visual path) and organized providing a visual memory of the

environment. The visual route to be followed by the UAV

is then defined as a concatenation of visual path subsets

connecting the initial and target images. The UAV is controlled

to reach each image of the visual route using a vision-

based control law adapted to its dynamic model and without

explicitly planning any trajectory.

The concept of visual memory is briefly described in Section

II. The control strategy is presented in III-B. Experiments with

a quadrotor UAV (see Figure 1) capable of quasistationary

flight developed at CEA (French Atomic Energy Commission)

equipped with a fisheye camera are finally presented in Section

IV.

II. VISUAL MEMORY AND ROUTE BUILDING

In [9], navigation approaches using a memorization of

images of the environment acquired with an embedded camera

are ranked among mapless navigation systems. The first step of

our framework consists on a learning stage to build the visual

memory which structure is recalled in this section (refer to

[10] for more details).

A. Visual memory

The visual memory is considered as a set of images

{Ii | i ∈ {1, 2, . . . , n}} connected to form a graph. Let R
be the body fixed frame attached to the center of mass of the

robot. Without loss of generality, we suppose that the camera

frame is confounded with the robot frame. For control purpose,

the authorized motions between two connected images are

assumed to be limited to those of the considered UAV. The

following Hypothesis 2.1 formalizes these constraints.
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Hypothesis 2.1: Given two frames Ri and Rj , respectively

associated to the vehicle when two successive key images

Ii and Ij of the memory were acquired, there exists an

admissible path ψ from Ri to Rj for the UAV.

Moreover, the vehicle is controllable from Ii to Ij only if the

hereunder Hypothesis 2.2 is respected.

Hypothesis 2.2: Two successive key images Ii and Ij

contain a set Pij of matched visual features, which can be

observed along a path performed between Ri and Rj and

which allows the computation of the control law.

If Hypothesis 2.1 and 2.2 are verified then an edge connects

the two configurations of the vehicle’s workspace related to

the two corresponding images of the visual memory 1.

The visual memory is thus structured as a graph with edges

connecting key images.

B. Visual route

A visual route describes the vehicle’s mission in the sensor

space. Given two key images of the visual memory I∗
s and Ig,

corresponding respectively to the starting and goal locations

of the vehicle in the memory, a visual route is a set of key

images which describes a path from I∗
s to Ig . I∗

s is the closest

key image to the current image Is. The image I∗
s is extracted

from the visual memory during a localization step. During

this stage, no assumption about the vehicle’s position is made.

The localization process consists of finding the image which

best fits the current image in the visual memory. With this

aim, we use a hierarchical process combining global and local

descriptors we have developped in a previous work [11].

C. Image matching

A central clue for implementation of our framework relies

on efficient point matching. Interest points are detected in each

image with Harris corner detector. Interest points between

two images are then matched by using a Zero Normalized

Cross Correlation score. This method is almost invariant to

illumination changes and its computational cost is small. Note

that matching has been preferred to tracking because it is

more robust when images’ information may be partially lost

(this case frequently occurs when images are transmitted by

wireless link as in our experiments).

III. ROUTE FOLLOWING

When starting the autonomous navigation task, the output

of the localization step provides the closest image I∗
s to the

current initial image Ic. A visual route Ψ connecting I∗
s to

the goal image is then extracted from the visual memory. As

previously explained, the visual route is composed of a set

of key images. The next step is to automatically follow this

visual route using a vision-based control scheme.

To design the controller, described in the sequel, the key

1Depending on the vehicle, an edge is directed or not. In case of an
omnidirectional vehicle like the X4-flyer, if the UAV is able to be controlled
from Ri to Rj , it is able to be controlled from Rj to Ri.
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Fig. 2. The four rotors generating the collective thrust.

images of the reference visual route are considered as con-

secutive waypoints to reach in the sensor space. The control

problem is thus formulated as a position control to guide the

underactuated robot along the visual route.

A. Model and assumptions

1) Vehicle Modelling: In this section, we derive equations

of motion for a UAV in quasi stationary flight conditions

following [12]. Let us define the inertial frame attached to

the earth, relative to a fixed origin Rin(e1, e2, e3) assumed to

be Galilean and R(Xc, Yc Zc) the frame attached to the UAV

(refer to Fig. 2). The position of the center of mass of the

robot with respect to the inertial frame Rin is denoted p. The

orientation of the airframe is given by a rotation R : R → Rin.

Let v (respectively Ω) be the linear (resp. angular) velocity of

the center of mass expressed in the inertial frame Rin (resp.

in R). The control inputs to send to the vehicle are: T , a

scalar input termed thrust or heave, applied in direction Zc

and Γ = [Γ1 Γ2 Γ3]
T (the control torques relative to the Euler

angles). The geometry of the robot is supposed to be perfect.

Let us denote m the mass of the airframe, g the gravity

constant and I be the 3 × 3 constant inertia matrix around

the centre of mass. Newton’s equations of motion yield the

following dynamic model for the motion of a rigid object:














ṗ = v

mv̇ = −TRe3 +mge3

Ṙ = Rsk(Ω)

IΩ̇ = −Ω × IΩ + Γ

(1)

B. Control Design

1) Translational control: In this Section, the translational

dynamic is supposed to be controlled by an on-board controller

[13]. Consequently, the desired matrix Rd is already assigned

to have the velocity v converging to the desired velocity vd
and the control torques Γ are assigned in order to have the

rotational matrix R converging to this desired matrix Rd. This

control assures that the tilt angle is limited to small-angle and

that the velocity is bounded in order to stay in quasi-stationary

flight conditions if vd allows this condition. The goal of this
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part is to control the position of the UAV in assigning the

desired translational velocity and to assure that the system

stays in quasi-stationary flight conditions. Let us define the

position error p̃ and the velocity error ṽ:

p̃ = p − pd (2)

ṽ = v − vd (3)

where pd is the constant desired position (ṗd = 0). Let us

introduce the vectorial function satǫ(x) which represents the

saturation of each component of the vector x to ǫ: satǫ(xi) =
xi if |xi| ≤ ǫ and satǫ(xi) = ǫ sign(xi) if |xi| > ǫ. As a

consequence, the relation xT satǫ(x) > 0 exists for all x 6= 0 .

Theorem 3.1: The control input defined by:

vd = −κsatǫ(p̃) (4)

with κ small compared to the translational dynamic gains,

is stabilizing the system and assures that the system stays

in quasi-stationary flight conditions. Note that ǫ depends on

the quasi-stationary flight limit conditions on the translational

velocity.

Proof: Let us consider the storage function:

S =
1

2
||p̃||2 (5)

Taking into account Equation (1) and the control input (4),

the time derivative of S is Ṡ = p̃T v and this Equation may

be written:

Ṡ = −κp̃T satǫ(p̃) + p̃T ṽ (6)

The term p̃T ṽ acts as a perturbation on the position stabiliza-

tion. If we assume that this term converges to 0 according to

the translational gains, then Ṡ = −κp̃T satǫ(p̃). This function

is definite negative which assures the convergence of p to pd.

In order to limit the effect of the perturbation term, we have to

choose κ small compared to the translational dynamic gains.

2) Control objective: Let Ii and Ii+1 be two consecutive

key images of a given visual route to follow and Ic be the

current image. Let us note Ri = (Oi,Xi,Yi,Zi) and Ri+1 =
(Oi+1,Xi+1,Yi+1,Zi+1) the frames attached to the vehicle

when Ii and Ii+1 were stored and Rc = (Oc,Xc,Yc,Zc)
the frame attached to the vehicle in its current location. The

hand-eye parameters (i. e. the rigid transformation between

Rc and the frame attached to the camera) are supposed to be

known. According to Hypothesis 2.2, the state of a set of visual

features Pi is known in the images Ii and Ii+1. The state of

Pi is also assumed available in Ic (i.e Pi is in the camera field

of view). The task to achieve is to drive the state of Pi from its

current value to its value in Ii+1 which is equivalent to drive

Rc to Ri+1. If the lateral error p̃ and yaw error θ̃ of Rc with

respect to Ri+1 are regulated to zero thus the task is achieved.

In the next Section, we describe how geometrical relationships

between two views acquired with a camera under the generic

projection model (which includes conventional, catadioptric

and some fisheye cameras) are exploited to enable a partial

Euclidean reconstruction from which p̃ and θ̃ are derived.

X

Xi

X ∗
m

Xm

F∗
c

Fc

X ∗
i

M∗

(R, t)

F∗
m

M

Fm

Fig. 3. Geometry of two views.

C. State estimation from the generic camera model

In this work, we propose to use the unified model described

in [14], since it allows to formulate state estimations that are

valid for visual sensors having a single viewpoint (that is, there

exists a single center of projection, so that, every pixel in the

sensed images measures the irradiance of the light passing

through the same viewpoint in one particular direction). In

other words, it encompasses all sensors in this class [14]:

perspective and catadioptric cameras as well as some fisheye

cameras.

1) Camera model: The unified projection model consists of

a central projection onto a virtual unitary sphere followed by a

perspective projection onto the image plane [14]. This generic

model is parametrized by ξ describing the type of sensor

and by a matrix K containing the intrinsic parameters. The

coordinates xi of the point in the image plane corresponding

to the 3D point X are obtained after three steps:

Step 1 : the world points X of coordinates X = [X Y Z ]
T

in the camera frame Rm are projected onto the unit

sphere on a point Xm of coordinates Xm in Rm:

Xm = X/‖X‖
Step 2 : the point coordinates are then changed to a new

reference frame Rc centered in C = (0, 0, −ξ) and
perspectively projected onto the normalized image
plane Z = 1 − ξ:

x
⊤ = [x⊤ 1] = [x y 1] = f(X)

=

»

X

Z + ξ‖X‖

Y

Z + ξ‖X‖
1

–

(7)

Step 3 : finally, the coordinates x⊤i = [x⊤i 1] in the image

plane are obtained after a plane-to-plane collineation

K of the 2D projective point x: xi = Kx.

We highlight that Xm can be computed as a function of the

coordinates in the image and the sensor parameter ξ:

Xm = (η−1 + ξ)x (8)

x =

[

xT 1

1 + ξη

]T

with:







η =
−γ − ξ(x2 + y2)

ξ2(x2 + y2) − 1
γ =

√

1 + (1 − ξ2)(x2 + y2)
.
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2) Scaled Euclidean reconstruction: Let X be a 3D point

with coordinates Xc = [Xc Yc Zc ]T in the current frame Fc

and X∗ = [Xi+1 Yi+1 Zi+1 ]T in the frame Fi+1. Let Xm and

X∗
m be the coordinates of those points, projected onto the unit

sphere (refer to Fig. 3).

The epipolar plane contains the projection centers Oc and

Oi+1 and the 3D point X. Xm and X∗
m clearly belong to this

plane. The epipolar relation is obtained from this complanarity

condition and is written as in the case of the pinhole model:

Xm
∗T

EXm
T = 0 (9)

where R and t represent the rotational matrix and the trans-

lational vector between the current and the desired frames

expressed in the current vehicle frame and E = R [t]
×

is

the essential matrix.

In Equation (9), Xm (respectively X∗
m

) corresponds to the

coordinates of the point projected onto the sphere, in the

current image Ic (respectively in the desired key image).

Those coordinates are obtained thanks to the relation (8)

and to the coordinates of the point matched in the first and

second images. The essential matrix E between two images

can be estimated using five couples of matched points as

proposed in [15] if the camera calibration (matrix K) is

known. Outliers are rejected using a random sample consensus

(RANSAC) algorithm. From the essential matrix, the camera

motion parameters (that is the rotation R and the translation

t up to a scale) can be determined. Finally, the estimation

of the input of the control law (4), i.e p̃ can be computed

straightforwardly from t up to a scale factor and the yaw error

θ̃ is extracted from R.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the results obtained with our

experimental platform. The UAV used for the experimentation

is a quadrotor manufactured by the CEA (see Figure 1). It is a

Vertical Take Off and Landing (VTOL) vehicle ideally suited

for stationary and quasi stationary flight [3].

A. Experimental set-up

The X4-flyer is equipped with a Digital Signal Processing

(DSP), running at 150 MIPS, which performs the control

algorithm of the orientation dynamics and filtering computa-

tions. The final board provides a serial wireless communication

between the operator’s joystick and the vehicle. The embedded

camera with a view angle of 120 degrees pointing in front,

transmits 640x480 pixels images to a laptop using RTAI-

Linux OS with a 2GHz Centrino Duo processor via a wireless

analogical link. Vision algorithms are implemented in C++

language in this laptop. The images sent by the embedded

camera are received at a frequency of 12.5fps and processed.

Then, the state required by the control law is sent to the ground

station (PC) by an ethernet connection. In parallel, the X4-

flyer sends the inertial data to the station on the ground at

a frequency of 15Hz. Desired orientation and desired thrust

are generated on the ground station PC and sent to the drone.

The velocity in X and Y directions is estimated on-board as

Fig. 4. Key image to reach (Exp. 1)
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Fig. 5. Errors in translation along the X-axis and Y-axis and in rotation (yaw
angle) and associated control input vs time (s) (Exp. 1)

well as the attitude of the UAV. For orientation dynamics,

an embedded high gain controller in the DSP running at

166Hz, independently ensures the exponential stability of the

orientation towards the desired one.

B. Waypoint reaching (Exp. 1)

This section deals with the vision-based control of the UAV

in order to reach the key image drawn in Fig.4. The robot is

manually guided to an initial position and then automatically

controlled in order to reach the key image. Results are reported

in Fig. 5. Errors in translation are expressed in meters and yaw

angle in degrees, versus time (in seconds).

The experiment lasts 25 seconds. A mean of 73 robust

matches for each frame has been found. The mean compu-

tational time during the online navigation is of 94 ms / image.

X and Y errors are converging to zero as well as the yaw angle.

The remaining noise is caused by the mechanical vibrations of

the body frame during the flight, the lost of quality in images

after the transmission, the partial 3D reconstruction errors and
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Fig. 7. Errors in translation along the X-axis and Y-axis and in rotation (yaw
angle) and associated control input vs time (s) (Exp. 2)
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Fig. 8. Visual memory of the UAV consisting on a graph with 12 key images.
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Fig. 9. Errors in translation along the X-axis and Y-axis and in rotation (yaw
angle) and associated control input vs time (s) (Exp. 3)

Fig. 10. Robustly matched features between the current image (left) and the
image to reach (left; Im-6)

Fig. 11. Robustly matched features between the current image (left) and the
image to reach (left; Im-5)
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(a) Key image 1 (b) Key image 2

Fig. 6. Key images to successively reach (Exp. 2)

by the asynchronous sensors’ data. Nevertheless, the results

show the very good behaviour of the visual servoing.

C. Succession of two images (Exp. 2)

In this second experiment, we use two key images as targets

(refer to Fig. 6). When the first target is reached, the key image

2 is set as the new target. When the key image 2 is reached,

the key image 1 is set as the new target and so on (7 times). A

key image is assumed to be reached when the distance from

the origin of the current frame to the origin of the desired

frame in the XY plane is under a threshold. Note that the

two key images are approximately situated in the direction of

the vehicle. Translations thus occur more in X-axis direction.

Results are reported in Fig. 7. In the figures vertical dotted

lines denote that a key image is reached. After each change

of desired key image, error in Y direction and yaw angles are

converging to zero. Error in X direction is also converging.

A static error in X direction remains due to errors in velocity

estimation. Future works will deal with this point.

D. Waypoints following (Exp. 3)

The UAV is now manually controlled along an

approximately linear path situated in the XY plane and

at 45◦ from the direction of the UAV (Xc) and images are

acquired by the embedded camera pointing forward. After a

selection process, a single edge containing 12 key images is

extracted and stored in the visual memory (refer to Fig. 8).

The visual path to follow is set manually as the sequence:

Im: 3-4-5-6-7-8-9-10-9-8-7-6-5-4-3-2-3-4-5-6-7-8-9-10-9-8-7-

6-5-4-3-2. Results are drawn in Fig. 9. Even if errors in X

and Y directions and in yaw angles are not exactly regulated

to zero, the vehicle successfully follows the visual path.

Samples of robust matching between the current image and

the desired key image are represented in Fig. 10 (68 matched

points) and Fig. 11 (48 matched points). In Fig. 11, the current

image has a low quality. Despite this fact, many points have

been matched.

V. CONCLUSION

We have presented a framework for autonomous navigation

of an unmanned aerial vehicle using a single camera and

natural landmarks and without any recovery of the pose of

the vehicle in a reference frame. The robot environment is

modeled as a graph of images, called visual memory from

which a visual route connecting the initial and goal images
can be extracted. The UAV is driven along the images thanks

to a vision based control law which takes into account its

dynamic model. Note that only a single camera and natural

landmarks have been used for control purpose.

Future works will deal with the improvements of the velocity

estimation and of the robustness of the visual algorithms.

Moreover, the fusion of the camera with other sensors may

improve the quality of the path following as well as the

robustness to missing or temporarily unavailable sensor data.
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