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Abstract— During Simultaneous Localization And Mapping,
geometrical constraints are established between map features.
These constraints, introduced through measurements and mo-
tion prediction, produce a bending effect in the event of closing
a large loop. In this paper we present a discussion of the bending
problem for trajectory based representations. Furthermore,
we propose a generic approach to reduce the bending effect
that exploits common geometrical constraints in human-made
environments through the use of a Heading Based Curvature
measurement. We show by means of experimental results that
our approach increases significantly both the global and local
map accuracy.

I. INTRODUCTION AND MOTIVATION

Simultaneous Localization and Mapping (SLAM [1]) has
seen a fruitful research during the last decade (see [2] for a
complete survey). Most recently, special attention has been
given to reduce the computational complexity of the task
of estimating and updating a global map given a set of
geometrical constraints and their uncertainties. Many tech-
niques have been presented to overcome the computational
limits of the standard Kalman Filter (KF) solution. State-
augmentation, sparsification, particle filters or sub-mapping
[2] are the most relevant successful approaches. Exactly
Sparse Delayed State Filters (ESDSF) have gained particular
attention due to their potential to solve very large mapping
problems where thousands of states need to be estimated [3]
[4]. However, the size of the environment is not the only
limiting factor when consistently mapping large areas. The
source of error for the family of Kalman Filter approaches is
threefold: linearization, data association and error models.

KF based solutions for non linear processes are handled by
linearizing about the mean of the state usually through a first
order approximation. This is a well known problem specially
relevant in large scale mapping. The error induced by lin-
earization increases over time and produces an inconsistent
estimation. Sub-mapping [5] and batch processing techniques
[6] aim at reducing the effects of linearization and improving
map consistency.

Bad data association introduces erroneous links between
the states in the information matrix which can cause an
inaccurate map estimation. Robust data association tech-
niques based on appearance models [7][8] and uncertainty of
pose estimation [3][9] aim to reduce the number of wrong
associations with successful results.

The third source of error for KF based solutions is inaccu-
rate error models for both the process to be estimated and the
measurements taken in the environment. These models are
used for the prediction and update step respectively. Usually

these error models are simplified by estimating a single
covariance from test data which is then used through the
complete estimation. This simplification introduces artifacts
in the event of closing a large loop. For delayed state
approaches, this is a problem that has never been explicitly
discussed in the literature to our knowledge. From here on we
refer to it as the trajectory bending behavior. At every step
in a ESDSF new links are introduced between the current
pose and the previous poses through both control of the
actuation, and measurements. Assuming that the number of
measurements remains constant [10] and no loops are closed
for a long period, the relational structure of the trajectory
becomes very strong locally. In other words, there are
more links connecting neighboring poses. It is reasonable to
assume that when closing a large loop, the distance between
loop closing points in the estimated trajectory is also large.
When the loop-closing measurements are taken, those far
away poses need to be connected. Due to its local structural
strength the trajectory will bend reducing the global error
in the same way as a wire bends when two extremes are
forced together. The amount of bending and the shape of the
bending are determined by the structure of the measurements
and the error models.

Sub-mapping techniques as in [5] naturally reduce the
bending behavior as the links between poses of different
sub-maps are eliminated. However, they do not preserve the
geometrical and statistical dependencies between different
portions of the map. This usually requires after-loop closure
optimization to re-locate the sub-maps.

In this paper, we explore the use of dynamic error models
to reduce the bending problem in the event of closing a large
loop. In the same spirit as [11], we exploit the common
knowledge that the mapping vehicle drives over human-made
environments where straight roads are the norm. As opposed
to their approach, we do not enforce straightness between
landmarks, rather we construct a dynamic observations error
model based on the curvature of the estimated trajectory. We
embed our dynamic models into an Omnivideo ESDSF [3]
[4] [10] algorithm and introduce the metrics for measuring
the improvement. Further, we present results of experiments
in outdoor environments where large loops are closed.

The rest of the paper is organized as follows. In
Section II we introduce our omnivision mapping approach.
In Section III we introduce the conditions for the bending
process to occur. Our proposed dynamic error model and
the metrics to measure the improvement are also detailed.
Section IV describes the results obtained. We close the paper
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with some conclusions and future work in Section V.

II. VIEW-BASED MAPPING

In order to test our approach we used an ESDSF to
estimate the trajectory of our robotic vehicle, for which we
assume a planar movement. The vehicle was equipped with
two measuring devices. A differential GPS unit provided the
ground truth data for evaluation. An omnivideo camera was
mounted on the vehicle’s roof which provided geometrical
constraints for the mapping process. We used a standard
vehicle with no odometry sensors except for the built-in
speedometer.

ESDSFs work in two stages. First, motion prediction
is used to obtain a rough estimation of the map, then
measurements are taken and used to improve this estimation.

A. Motion Prediction

Delayed State filters adopt a state representation xt =
[Xt ,Mt ]T where Xt represents the last vehicle pose and
the map Mt consists of all previous vehicle poses: Mt =
[Xt−1,Xt−2, ...,X0]T . Each vehicle pose is defined as the 2D
position in the plane and orientation angle: Xt = [xt ,yt ,θt ]T .

At every step t (image recording step), an additional robot
pose is added to the state as follows: xt+1 = [Xt+1,xt ] =
[Xt+1,Xt ,Mt ]T = [Xt+1,Mt+1]T . The new vehicle pose is
calculated:

Xt+1 = Xt +ut+1 =

 xt+1
yt+1
θt+1

 =

 xt +d× cos(θt)
yt +d× sin(θt)

θt

 , (1)

where d is the distance traveled since the last step. This
distance is estimated from the observation of the average
speed during the whole trajectory and considered constant.
This motion prediction model is very inaccurate and only
used to provide a rough scale of the map. Motion prediction
with no world observations will yield a straight trajectory
with equally spaced poses. Note that we are adopting a linear
motion model where no rotation is considered for every
step, hence no linearization error is introduced during motion
prediction.

Fig. 1. Outdoors omnidirectional image taken from the roof of the vehicle

B. Omnivideo Observations

The advantages of omnidirectional images are twofold.
Firstly, they convey information from the complete surround-
ings. Secondly, they are well suited for data association. Due
to the omnidirectional point of view, image matching is more
accurate and less limited compared to regular images. The
lack of viewing direction is particularly interesting for loop-
closure situations where image matching is now independent
of the heading of the vehicle.

The goal is then to first match pairs of images and then to
obtain geometrical constraints about their relative location.

1) Image Matching: Every new image needs to be com-
pared to the previously taken images in order to obtain
geometrical constraints about their poses. Comparing every
new image with the rest of the set costs O(n). We improve
that using graph theory. We find key images based on image
appearance [12] and build a connected dominating set [13].
When a new image is recorded, it is compared only with
the key images, reducing the computational costs. In order
to obtain more detailed measurements, the new image is
compared with the images linked to the matching key image.

2) Epipolar geometry: Having obtained the image
matches, we estimate the motion from the camera centers
using the epipolar constraint [14]. SIFT image feature [15]
correspondences are obtained for every pair of images. These
correspondences can be related by the essential matrix E
which describes the relative camera pose. E is then estimated
with the planar version of the 8-point algorithm [14] using 3
of those correspondences. False feature matches are rejected
using RANSAC and if the ratio between the inlaying corre-
spondences and the number of features is larger than a certain
threshold (which we set to 0.17) then we further decompose
E to obtain a relative pose estimation using Horn‘s method
[16], obtaining the heading of the translation φ (the baseline)
and a 2D rotation θ . These two are used to construct the
measurement vector zt = [φ0,θ0,φ1,θ1, ...,φn,θn]T used in the
ESDSF.

C. Exactly Sparse Delayed State Filter

ESDSFs are part of the Information Filters family. Tradi-
tional Kalman Filter approaches estimate the mean state µx
and covariance Σx. Information filters estimate the informa-
tion vector ηx and information matrix Λx instead. These are
related by Λx = Σ−1

x and ηx = Λxµx.
As described by [10], an information filter becomes natu-

rally sparse if a Delayed State approach is taken as the filter
equations can be implemented in constant time as shown
in [10]. The state recovery is solved using the Cholmod2
function that is part of the SuiteSparse package 1 by Tim
Davis to solve the sparse, symmetric, positive-definite linear
system Λxt µxt = ηxt in close to linear time.

1SuiteSparse: collection of packages for large sparse matrices.
http://www.cise.ufl.edu/research/sparse/SuiteSparse/
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III. DYNAMIC ERROR MODELS AND THE BENDING
PROBLEM

A. The Bending Problem

One of the fundamental requirements of consistent map
building is loop-closure. The error estimation during the
mapping procedure tends to accumulate over time. Closing
loops bounds the growth of this estimation error by recog-
nizing when a previously seen area is revisited.

Given that world observations and odometry measure-
ments are noisy, it is reasonable to expect that in the event of
closing a large loop, the estimated distance between connect-
ing poses is large. After a sufficient number of loop-closure
observations, the map is re-estimated in order to correct for
the accumulated error, connecting those coincident poses.

There are two conditions for the bending to occur. First,
a sufficiently large loop needs to be closed. Second, the
observations need to be local. The bending is guaranteed
if these two are met. Udo Frese first described in [17]
the source of the bending problem as the ”Certainty of
Relations despite Uncertainty of Positions”. As the map is
built, relations are established between neighboring poses
through the odometry measurements and world observations.
Motion prediction provides information between successive
poses while world observations provide information between
current and observed poses. The strength of these relations
will depend on the selected odometry and observations error
models. As we assume that the world is not fully observable
the nature of the relations is local. Neighboring poses are
more strongly related than far away poses. Due to the
matching between images taken close by, there are more
geometrical constraints between these poses than far away
poses, enforcing certain probabilistic rigidity in the structure
of the trajectory. This rigidity is highly visible in the event
of closing a large loop where the gap in the loop closure
point is reduced and the trajectory is bent accordingly.

Fig. 2. LEFT: Local structure of the state. Black lines represent relations
introduced by odometry. Dashed lines represent relations introduced by
world observations. RIGHT: Trajectory after loop-closure.

In the example shown in Figure 2 (LEFT), seven robot
poses are drawn. Image matches exist up to two images back
in time. From pose 5, for example, observations are available
of poses 4 and 3. It is easy to see that local poses are strongly
related to neighboring poses. Pose 4 is for instance strongly
related to 3 and 5. The strength of each node with other
nodes weakens with the distance as there are less links. There
is no link between poses 5 and 1 for instance, therefore the
global relation of pose 5 with pose 1 is much weaker than the

relation with pose 4. In the event of closing a loop (see Figure
2, RIGHT), geometrical constraints are observed between
far away poses. These constraints are shown in the figure
between poses 0 and 6 with a dotted line. If the number of
observations is sufficiently large and accurate, poses 0 and 6
must be brought together. Given the relational local structure
of the existing trajectory, the bending is distributed according
to the error estimation of each pose (light gray ellipsoids) and
the strength and number of relations of each pose with their
neighbors. In our example, the bending is more severe on
poses 4,5 and 6 than in poses 0, 1 and 2 due to their smaller
uncertainty given than the uncertainty of the observations
was kept constant (single covariance error model). If the
number of links is not equally distributed and/or the strength
of the links is changing, the bending will be more severe
on those poses with higher flexibility. In other words, the
fewer the links and the weaker the links, the more flexible
a portion of the trajectory is in the case of bending. Note
that in a perfectly consistent filter, the error estimation of
pose 5 should cover the area where pose 5 is moved after
loop closure. This example shows an inconsistent filter. Any
EKF or alike will eventually become inconsistent (optimistic
estimation of the error) due to both inaccurate error models
and errors derived from the linearization process.

B. A Dynamic Measurement Error Model

In order to cope with the bending problem, we propose
a dynamic error model (DEM) approach. Accurate error
models for odometry or world observations are uncommon.
Usually an accurate estimation is difficult to obtain as the
true error depends on many factors such as speed, ground
type, lighting conditions, etc. A dynamic approach will be
more accurate, using different covariances depending on the
external conditions.

We propose a generic approach where the measurement
error model is built dynamically based on a curvature mea-
sure of the estimated trajectory. This idea is born from the
experimental observation that the 8-point algorithm performs
better in estimating the heading of the translation and the
rotation when a straight trajectory is taken [18] (see section
IV-A). In our loop closure experiments we observe that
the bending is distributed according to both the number of
relations between poses and the strength of these relations
which is defined by the error models. In a human-made
environment where corners and straight portions are the
common thing to encounter, we would like the bending to
occur mainly on the corner portions. If the straight sections
are preserved and the corners are used as joints in the bending
process, the global accuracy of the map will increase and the
local structure will improve. Given that this is the precise
behavior of the 8-point algorithm we construct a dynamic
error model. In order to enforce the bending process after
loop closure over the poses in the trajectory with highest
curvature, we define the observations error model Rk at pose
k as:
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Rk =


R0(ck +1)2B 0 . . . 0

0 R0(ck +1)2B 0
...
0 0 . . . R0(ck +1)2B

 ,

where R0 is the baseline error model, ck is the curvature
measure at the estimated pose k as defined below and B is a
constant used to fine tune the model according to the density
of the observations. R0 represents the baseline error and it
is estimated using the single covariance approach so that the
performance is best. The quadratic form is used to enforce
even further the straightness of the majority of the trajectory.
During our experiments we observed that the constant B is
not sensitive if the variance in the number of observations
per meter is very low. On the other hand, if the number
of observations changes over time due to environmental
conditions, the constant B becomes more sensitive and a
change of 50% can be the difference between success or
failure.

It is clear from this definition of Rk that the error model
changes according to ck. The higher the curvature measure,
the higher the error. This will give less credit to the ob-
servations in the event of driving through a corner. As the
model is defined not only for the current pose but all the
observed poses, the strength of the relations between current
and observed poses will decrease accordingly. This relaxation
of the links between poses in corner-like areas will enforce
the bending over those portions after loop-closure, effectively
maintaining the straight portions straight. Note that we use
a diagonal error model that disregards the dependencies
between the estimation of the rotation and translation and
the estimation between multiple frames. Even though this is
a simplistic approach, we show in our experiments that the
idea of a dynamic error model based on an online curvature
measure works. A more accurate error representation with
dependency terms will most likely improve the estimation
even further, though the dependencies in the covariance
matrix between the rotation, translation and across frames
is unclear at the moment.

C. Metrics

1) Heading-Based-Curvature: We define Heading Based
Curvature (HBC) as the average change in heading θ of the
last n poses:

ck =
∑

k−n
i=k−1(θk −θi)

n
, (2)

where k is the current robot pose.
This measure allows the identification of curves and cor-

ners in the trajectory. Its purpose is the evaluation of the
performance in the estimation of the trajectory at a local
level. First we assign an HBC measure to every pose of the
ground truth (GT), then we can compare this value with the
HBC of the estimated trajectory. Observing this difference,
we can then evaluate how close the estimation is from the
GT locally regardless of the position, orientation and scaling.

This will give an impression on how similar the trajectory is
with respect to corners or straight sections.

It is important to note that we use the same metric for the
definition of the error model and the evaluation of the local
performance. However, this metric is only used to define the
error model and has not direct influence on the final curvature
of the estimated trajectory after loop-closure. Also, the metric
used for evaluation is measured at the estimated trajectory
after loop-closure, while the metric used for the definition of
the error model is estimated online and might differ much
from the HBC of the final estimated trajectory.

2) Best-Fit model: In order to measure the global similar-
ity between the estimated trajectory and the GT, we employ a
best-fit model. The nature of the estimation of the trajectory
when mapping is relative, while the nature of the GPS data
is global. Therefore, we need to be able to compare both
maps. The scale of the estimated trajectory is provided by the
motion model so only affine transformations H are allowed
for the GT trajectory to fit the estimated data such that the
sum of the square of the pose-to-pose euclidean distances

Di =
√

(xi
GT − xi

SLAM
2 + yi

GT − yi
SLAM

2) is minimized.

IV. RESULTS AND DISCUSSION

In this section we present the results of our approach to
reduce the bending problem in a medium size loop-closure
scenario. First we evaluate our dynamic error model using
a simulated dataset, then we validate our results in a real
world outdoors environment.

A. Estimating Rotation and Translation

In this experiment we show how the error in the estimation
of the rotation and translation using the 8-point algorithm
grows as the trajectory curvature increases. We use simulated
point correspondences and a perfect trajectory to evaluate the
error in the estimation.

Figure 3 shows the error distribution when estimating the
motion of a simulated camera (640x480, 5 mm focal length).
We simulated 10000 steps with a varying angle for turning
to the right hand side (0, 10 and 20 degrees). For every
step, the motion is calculated using 100 noisy image feature
matches and the error is calculated. For the rotation, we
use the simple subtraction between the true rotation and the
estimated rotation. In the case of the translation, we measure
the angular distance between the true translation direction
and the estimated direction. It is clear that when estimating
the translation the error distribution becomes wider as the
turning angle increases. This shows that the performance of
the motion estimation algorithm depends on the curvature of
the trajectory, the more the camera turns, the less accurate
the estimation of the translation direction is. In the case of
the rotation, the difference in the error distribution is not that
noticeable. However we can see that the error in the case of
a straight trajectory is much smaller than when the camera is
turning. Also, the noise in the estimation increases (left and
right extremes of the plot) as the turning angle increases.
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Fig. 3. [Artificial Dataset] Error distribution (histograms) in the estimation
of rotation and translation using the plannar version of the 8-point algorithm.
Y axis - density. X axis - radians. Deviation in image feature location: 0.001
pixels.

Fig. 4. [Artificial Dataset] Estimated trajectories and GT best fit.

B. Artificial Dataset

We evaluate the performance of our approach in a simu-
lated dataset where an imaginary vehicle drives over a perfect
rectangle. The trajectory consists on 5 different straight
portions, 4 for the rectangle plus 1 for the overlap (see Figure
4). The sides of the rectangle measure 100 meters for the
long side and 50 meters for the short side. The overlap takes
place on the long side. Observations are created with added
Gaussian noise with standard deviation of σ = 0.05 radians.
The number of observations per step are limited to the
number of poses in the GT that lay within a 10 meter radius.
A constant speed model similar to the one adopted in the real
vehicle is employed. The speed is set to 1 image-meter per
time unit. The diagonal elements of the process error matrix
were set to [1.15,1.15,0.0873] (m,m,radians). The diagonal
elements of the baseline observation error matrix were set
to 0.075 radians. For the dynamic error approach a constant
B = 0.5 was used. Even though a deviation of 0.05 might
seem a bit large, we tried to reproduce as best as possible
a real scenario where the images are noisy (see Figure 3).
Also, note that we do not perform a refinement step like
Bundle Adjustment as we are interested in the performance
of the loop closure process. A refinement step would further
improve the overall result. The baseline error matrix is
slightly larger than the true error in order to simulate an
inconsistent filter with an overestimated error model.

Figure 4 shows the best fit GT trajectory for both the
regular estimation and our DEM approach. It is easy to
appreciate that our approach performs better globally as
the estimated trajectory is in general closer to the GT

Fig. 5. [Artificial Dataset] Distance to GT best fit. Average regular
estimation: 10.8602. Average DEM approach: 6.0338. X-axis shows the
pose, Y-axis shows meters.

Fig. 6. [Artificial Dataset] GT and estimated trajectory HBC difference.
The horizontal axis represents the pose number, the vertical axis is the
absolute difference between GT HBC and the estimated trajectory HBC.
The average differences are also shown: regular estimation is 0.0401 and
DEM estimation is 0.0253

trajectory. Also, the rectilinear portions of the trajectory are
better preserved after loop-closure. The corners in the top
end are also improved. Figure 5 shows quantitatively this
improvement. Pose-to-pose euclidean distances from the GT
to both the regular and DEM estimations are shown. Our
approach not only displays a significant improvement around
the corner points (poses 100, 150 and 250) but also on the
average distance. The DEM trajectory is on average 44%
closer to the best fit ground truth trajectory. Figure 6 shows
the local performance in terms of HBC. The DEM trajectory
shows better performance both in the straight portions and
the corners, where the angles are closer to orthogonal . Only
at two poses in the corners the performance is worse than
the regular estimation. The DEM HBC difference shows
on average a 37% improvement with respect to the regular
approach.

C. Mapping a Large City Block

In order to test our approach in a more realistic scenario,
we recorded a dataset in an urban outdoors environment. 826
images were recorded at an approximate rate of one image
every 1.1 meters. The average observed driving speed was
10 km/h. The total length of the trajectory according to the
GPS was 912.5 meters. A sample image is shown in Figure
1. We used the same baseline error model and value for the
constant B as in the simulated dataset.

V. CONCLUSSIONS AND FUTURE WORK

We presented a generic solution based on the observation
that most mapping approaches take place in human-made
environments where geometrical constraints are known. By
defining the observations model according to the heading-
based-curvature of the estimated trajectory, we have shown
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Fig. 7. [Outdoors Dataset] regular trajectories and GT best fit. A Google
map image is show in the background. A dotted line shows the estimated
trajectory.

Fig. 8. [Outdoors Dataset] Distance to GT best fit. Average regular
estimation: 23.9285. Average DEM approach: 11.8228

that good improvements can be achieved with respect to
regular static error models approaches. Our DEM solution
shows an important improvement in terms of pose-to-pose
euclidean distances and a significant improvement with re-
spect to the local structure of the trajectory. In particular, we
show that the accuracy of straight and corner points in the
estimated trajectory improves. The results we obtained are
accurate given that we use a single omnivideo camera and a
naked-eye observation of the average speed to reconstruct the
trajectory of the vehicle. A more accurate motion prediction
mechanism will further improve the estimation.

Fig. 9. [Outdoors Dataset] GT and estimated trajectory HBC difference.
Horizontal axis is the pose, vertical is the absolute difference abs(GT −
HBC) and HBC of estimated trajectory. Average differences are also shown:
regular estimation is 0.3816 and DEM approach is 0.3344

Figure 7 shows the GPS and estimated trajectories. Our
technique performs better in capturing the shape of the
real trajectory even in the presence of noisy observations.
Figure 8 shows the pose-to-pose distances from the GPS
data to the estimated trajectories. DEM estimation performs
better over the complete trajectory showing only comparable
results to the regular approach around pose number 500.
On average, DEM estimation is 49% closer to GPS data.
The local performance shown in Figure 9 also shows some
improvement. In this case the average HBC difference is
better by 10%.

In order to further develop our approach, larger exper-
iments should be made with more complex trajectories.
Also a refinement step such as BA should be added and
a more complex covariance structure should be explored. In
summary, we have presented two contributions to the task
of mapping large human-made environments with a camera.
Firstly our Dynamic Error model approach that shows a con-
siste improvement over standard techniques. Secondly our
Heading Basec Curvature measure which is used to improve
the map accuracy but can also be employed to evaluate
trajectories in their local structure. Given the computational
advantages of ESDFs, we believe that a consistent map can
be built of large-size urban environments with a simple and
inexpensive setup as we have shown.
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