Efficient Planning of Disassembly Sequences in Physics-Based Animation

Jacopo Aleotti and Stefano Caselli

Abstract—We address the problem of disassembly planning from a novel perspective. In the proposed method the goal is to find all the physically admissible subassemblies in which a set of objects can be disassembled and to identify feasible disassembly motions. Stability of object configurations under the effect of gravity and friction is computed by relying on a physics-based animation engine. We propose efficient strategies to reduce computational time that take into account precedence relations, arising from user assembly demonstrations as well as geometrical clustering. We have also developed a motion planning technique for generating non-destructive disassembly paths on a query-based approach. Experiments have been performed in an interactive virtual environment including a dataglove that allows realistic object manipulation and grasping.

I. INTRODUCTION

Assemblies are collection of objects. Disassembly planning is the problem of finding appropriate motions that are applied to the individual parts of an assembly to separate the initial agglomerate. We consider a (static) stable assembly configuration as a composition of objects that does not collapse under the effect of gravity forces and static friction. A disassembly motion of an object is feasible if the object can reach an infinite distance from its initial location without colliding with the remaining bodies and if the resulting subassembly configuration (obtained by removing the object) is still stable. A disassembly sequence is a succession of feasible motions that are applied to the objects one by one starting from an initial configuration that includes all the objects in the environment. Disassembly planning has strong applications in industrial manufacturing for recycling and for cost reduction in product dismantling. Assembly and disassembly problems are interrelated since assembly plans can be derived from disassembly sequences. Disassembly planning is a typical combinatorial problem where the total number of possible disassembly sequences is given by the factorial \(n! \) of the number of objects in the initial configuration. Therefore, even a rather small environment with ten objects has a potential of more than three millions of possible disassembly sequences. Moreover, the computational complexity required to compute the stability of a given configuration is NP-hard.

In this work we propose a computational method for planning disassembly tasks which relies on physics-based animation. The method differs from the large amount of previous contributions on disassembly planning that have mainly focused on geometrical aspects. In particular, we propose an effective approach for automatic evaluation of subassembly stability and disassembly planning for models of arbitrary shape. Systematic stability evaluation is achieved by means of a physics simulation engine. The problem can be stated as follows. First, find all the physically stable subassemblies in which a collection of rigid bodies can be disassembled. Second, identify feasible disassembly sequences for all objects by applying a single-query motion planning algorithm. The adopted solution ensures realistic non-destructive disassembly motions, meaning that the objects are disassembled by looking only at continuous paths. Stability of object configurations is computed by taking into account both gravity and friction. We assume that only pure contact forces act on the bodies in the physics-based environment. We do not consider external interconnections such as forces due to connectors like glue, screws or bolts.

In order to reduce the computational time required to compute all the admissible subassemblies of a given set of objects we propose efficient strategies for identifying as many stable configurations as possible without the need of a physical simulation. Such optimizations take advantage of precedence relations arising from user assembly demonstrations. Indeed, we apply the Programming by Demonstration paradigm [9], [17], [23], [2] for collecting multiple demonstrations of the same assembly structure and we exploit redundancy to detect precedence relations. A precedence relation between the two objects means that the first object must be assembled before the second one.

Theoretical overviews of assembly precedence graphs can be found in the work of Chen and Henriod [3] that presented a method for systematic generation of all feasible assembly precedence graphs for mechanical products. A further optimization that we propose consists of a spatial clustering algorithm that groups geometrically adjacent objects, thus allowing stability evaluation on sets of lower dimensions, and also enabling parallel processing. Experiments have been performed in an interactive virtual environment that is also exploited for visualizing the results of the automatic disassembly operations. The virtual environment also enables realistic grasping of objects by means of a simulated anthropomorphic hand driven by a dataglove.

The paper is organized as follows. Section II reviews the state of the art concerning disassembly planning. Section III describes the proposed approach and its optimizations, while section IV reports experiments. Section V focuses on the non-destructive disassembly planner. Section VI closes the paper summarizing the work.
II. RELATED WORK

De Mello and Sanderson [8] defined the AND/OR graph representation for assembly plans. Such representation constitutes the basis for several planning systems. A remarkable number of works have investigated disassembly sequence planning without considering physical issues. Mattikalli et al. [15] proposed a geometrical approach to automatically determine disassembly sequences. Waarts et al. [22] presented a sequence planner which takes into account both feasibility and accessibility of operations but does not include analysis of stability under gravity. Ong and Wong [18] introduced a method to extract subassemblies by grouping components together based on the criteria of connectivity and interference relationships. Sundaram et al. [20] applied conventional motion planning strategies for automatic disassembly. Cortes et al. [4] described a Manhattan-like motion planner based on Rapidly-exploring Random Tree (M-RRT) suitable for disassembly of objects with articulated parts. The use of liaison graphs for generation of mechanical assembly sequences has also been frequently considered to describe connectivity between assembly parts [10], [5]. Aguinaga et al. [1] proposed the targetless RRT (T-RRT) algorithm which has been adopted as a component of our physics-based disassembly planning system (section V). In [7] a general framework for disassembly planning is presented which is based on the concept of motion space. Torres et al. [21] developed a disassembly sequence planner that exploits information encoded as precedence relations introduced by an operator who knows the product. Gadhe et al. [6] proposed a virtual disassembly tool for product dismantling that involves a cost metric. The importance of taking into account stability in disassembly planning was pointed out by Lee and Yi [12] that illustrated different criteria aimed at reducing the search space by pruning unstable subassemblies. In [11] an assembly planning system has been designed that includes physical reasoning about interconnection forces. Loomis and Balkcom [13] introduced an efficient approach which is based on computational reuse of rigid-body dynamics but is limited to 2D environments. Several authors have also investigated theoretical approaches for finding all potential stable orientations of an assembly under the effect of gravity and Coulomb friction [14], [16].

III. EFFICIENT STABILITY EVALUATION

This section describes the proposed method for finding all the physically stable subassemblies of a collection of objects and its optimization. The algorithm also computes all the possible destructive disassembly sequences. A second phase, discussed in section V, performs non-destructive disassembly planning on a query-based approach for selected sequences. Stable subassemblies are organized into a disassembly graph. A disassembly graph of a set of n objects $P = \{p_1, \ldots, p_n\}$ is defined as a directed graph $G = (X, C)$ where X is the set of nodes corresponding to the stable subassembly configurations (partitions of P), while C represents the set of arcs. Each arc is an oriented edge that connects two configurations X_i and X_j, where the stable configuration X_j can be obtained from X_i by removing one object. Configuration X_j is called a child node of X_i. The initial state $X_0 = \{p_1, \ldots, p_n\}$ comprises all the objects in the environment. The terminal nodes are all the stable configurations that comprise only one object. A stable destructive disassembly sequence is given by any path of nodes from the root to the terminal nodes of the graph. Figure 1 shows the interactive virtual environment with one example of stable configuration as well as one unstable collapsing configuration.

Algorithm 1 reports the pseudo-code for generating the disassembly subgraph of a generic node, while Algorithm 2 reports the procedure used for testing the stability of a node. The disassembly phase starts by invoking Algorithm 1 on the root node of the graph (compute_disassembly_graph(X_0)), which contains all the objects in the environment. The disassembly graph is generated iteratively by computing the stability of each configuration. Each child node is generated by removing an object from the parent configuration. Unstable configurations are removed from the graph and their children nodes are pruned. Algorithm 2 shows that in order to evaluate the stability of a configuration the system performs a physics-based simulation of the subassembly for a predefined time and computes, at each step, the linear and angular velocities of all the bodies in the environment. If both velocities do not exceed predefined small thresholds within the simulation period the configuration is considered stable. If the velocity limits are exceeded then the simulation is stopped and the configuration is considered as unstable. Optimizations A and B are described later in this section. To improve the performance of the disassembly algorithm the graphical output is disabled in this phase.

The bottleneck of the disassembly algorithm is clearly the physics-based disassembly routine. Without any optimization the computational time required to compute all possible disassembly sequences may quickly become excessive, due to the combinatorial nature of the problem. One might be tempted to reduce the computational time required to evaluate the stability of a configuration by simply reducing the time period or the velocity thresholds. However, such constants can not be arbitrarily reduced, as this would lead to the generation of false positive stable configurations. Therefore, to speed-up the disassembly phase we introduce efficient strategies to automatically assess the stability of a configuration. The idea is to perform the physics-based simulation for as few configurations as possible. The proposed optimization methods take into account multiple user demonstrations of assembly sequences that generate precedence relations between assembled objects, as well as geometrical object clustering. The user can provide assembly demonstrations by performing grasping and placing operations in a physics-based virtual environment. Indeed, the virtual environment includes a simulated anthropomorphic hand, driven by a dataglove and motion tracker, which can grasp the objects. The optimization strategies are discussed in the following.

- Optimization A is a trivial use of prior knowledge about stable configurations. Configurations that are known to
be stable in advance are subassemblies extracted from user demonstrations. Each complete user demonstration of an assembly configuration X_i that comprises n objects provides a prior knowledge of n subassembly configurations that are stable. In case optimization A is enabled, Algorithm 2 avoids the physics-based test if the current configuration belongs to the set of the configurations that are known to be stable.

- Optimization B exploits precedence relations between objects. There exists a precedence relation between two objects (o_i, o_j) if the post-condition o_j must be assembled before the pre-condition o_i. Each complete user demonstration of an assembly configuration X_i that comprises $n \geq 2$ objects provides a total of $\sum_{k=1}^{n}(k-1) = \frac{n(n-1)}{2}$ precedence relations. The set R of all precedence relations is reduced as multiple demonstrations are provided due to generalization of task constraints. Let X_j be a configuration obtained from X_i by removing object o_r. If o_r is not a pre-condition in any precedence relation involving other objects contained in X_i then X_j is automatically stable. Formally if $\forall o_t \in X_i \setminus \{o_r\}$ $\bar{R}(o_t, o_j) \in R$ then X_j is stable. In other words, given an assembly configuration, the configuration obtained by removing an object that is not expected to be assembled before any other object is always stable. It is trivial to show that optimization B implies optimization A, meaning that all stable configurations that can be identified by applying optimization A can also be found by optimization B. However, optimization A is slightly faster.

- Optimization C is based on an object clustering approach. An algorithm has been developed that identifies clusters of adjacent objects by means of collision detection (another approach for object clustering is proposed in [19]). If a configuration may be split into at least two clusters then clusters are disassembled separately in sequential order. A merging procedure is then applied that automatically generates all the stable configurations from the partial subtrees without the need of a physics simulation.

- Optimization D performs clustering and parallel multi-threaded computation of the identified clusters on a multi-core CPU. Recursive clustering has been limited by empirical assumptions on the number of objects in the clusters to avoid excessive overhead in handling multiple threads concurrently.

IV. EXPERIMENTS

This section describes experiments that have been performed to validate the performance of the proposed optimization strategies for stability evaluation. Four experiments are presented that span different environmental conditions. Figure 2 shows the final assembly configuration of each example where objects are labelled with progressive integer numbers. These environments have been assembled interactively by the user. In addition to the individual optimizations two combined optimizations have also been experimented, namely $A + B$ which stands for a combined approach exploiting both prior knowledge about stable subassemblies and precedence-based optimization, and $A + B + D$ that adds clustering and parallel processing. Table I summarizes the experimental results. The computational time required to compute all the possible disassembly sequences (including those sequences that require destructive operations) is re-
ported for all the optimizations. The number of physics-based
disassembly attempts and the number of stable configurations
that have been completely simulated is also included for each
optimization. Finally, Table 1 reports for each experiment
the speedup obtained by optimization $A + B + D$, the
total number of stable configurations, the total number of
disassembly sequences and the list of the provided assembly
demonstrations (each demonstration is represented as a set
where objects appear in the order in which they are assem-
bled by the user).

Experiments have been run on an Intel Core 2 quad CPU
(@2.66Ghz; 4Gb RAM). Experiment 1 is a complex envi-
ronment comprising 11 objects. Three clusters of adjacent
objects can be immediately identified at the beginning of
the disassembly process $(\{1, 2, 3, 4, 5, 6\},\{8, 9, 10, 11\},\{7\})$.
Four assembly demonstrations are provided by the user.
A first observation, which holds for all the experiments,
is that the computational time of each trial is essentially
determined by the total number of stable configurations that
have been completely simulated. Optimization B performs
significantly better than optimization A. Optimization $A + B$
does not provide any significant improvement compared
to B alone, thus confirming that optimization B is more
general than A. Moreover, the clustering approach, in this
experiment, outperforms both optimizations A and B, as only
17 configurations were required to be tested. Optimization
$A + B + D$ provided the best result with a total time of
14.11s and only 4 fully simulated configurations. Another
general observation is that parallel computation (D) provides
only a limited improvement over the sequential clustering
approach (B) where clusters are disassembled with a single
thread. This behavior is due to the relative small size of
the clusters that are identified in the proposed examples. In
principle, environments with larger clusters would benefit
from a parallel approach but they can not be easily tested
since the total number of possible disassembly sequences
would become intractable.

Experiment 2 comprises 10 objects. Four assembly demon-
strations are provided by the user. The initial configuration
is a single agglomerate of objects. However, if the clustering
optimization is enabled after removal of objects 1 (glass) and
object 2 the algorithm is able to identify two separate clusters
each one made of four objects $(\{3, 4, 5, 6\},\{7, 8, 9, 10\})$.
Figure 3 shows the disassembly trees of the two clusters and
the resulting merged subgraph, which is a partial subtree as
well since it does not include object 1 and 2. The merged
tree is automatically generated and therefore all its nodes do
not have to be physically simulated. The large size of the
merged tree compared to the size of its parent subgraphs
highlights the high efficiency of the clustering optimization
in finding stable configurations. It is also interesting to note
that in this experiment optimization B by itself provides even
better results than C.

The last two experiments illustrate particular environment
configurations. Experiment 3 comprises 9 isolated objects
lying on the ground. Four assembly demonstrations are
initially provided by the user. Since all the objects are stable
and they are not colliding with each other, there are 9 singe-
body clusters and the total number of possible disassembly
sequences is given by all the possible permutations of
the initial configuration ($9! = 362880$). It turns out that
the clustering optimization C outperforms both A and B.
Parallel processing does not improve efficiency as all the
clusters contain only one object. Optimization B alone is
anyhow more than three time faster than the result obtained
without any optimization. It is also worthwhile noting that if
a fifth demonstration is added by the user (given by the fol-
lowing ordered assembly sequence $\{8, 1, 4, 9, 2, 7, 6, 5, 3\}$)
then the computational time of optimization B drops to
37.7s, meaning that providing more demonstrations and
hence reducing the number of precedence constraints greatly
helps the optimization process. However, it must be pointed
out that providing a large number of demonstrations can
be demanding and time consuming for the user, whereas
optimization C is performed automatically by the system
without the need of user involvement.

Experiment 4 comprises 10 objects which are organized
into a single cluttered cluster. The environment configuration
determines a large number of physical constraints. Therefore
the total number of disassembly sequences (16) as well as
the disassembly time are quite low. An important observation
is that the presence of a single cluster for each possible
sassemblage state determines that the clustering optimization
is ineffective whereas optimizations A and B provide a
speedup of more than two times.

A general remark that can be deduced from the previous
examples is that optimizations B and C are somehow
complementary since they provide positive effects in dif-
different environment conditions. In particular, optimization C is effective for environments where separate clusters can emerge in the disassembly phase, while optimization B is effective for constrained environments given a sufficient number of user demonstrations. The combined use of the two optimizations leads to the best performance.

V. NON-DESTRUCTIVE DISASSEMBLY PLANNING

A non-destructive disassembly planner has been developed to generate physically plausible disassembly motions. A disassembly motion of an object is non-destructive if the object can reach an infinite distance from its initial location without colliding with the remaining bodies. The input of the planner is one of the disassembly sequences identified by applying the algorithm described in section III. The planner returns the computed disassembly motions if the selected sequence of objects can be successfully disassembled in a non-destructive manner, otherwise the planner returns that a non-destructive disassembly path cannot be found. The adopted motion planner is derived from the method proposed in [1]. At first, the motion planner tries to disassemble an object by applying forces along pre-computed removal directions. Removal directions are vectors sampled on the unit upward hemisphere that do not point towards bodies that are initially in contact with the object to be disassembled. Therefore, each disassembly attempt is a physics-based simulation that moves an object along a straight line. A disassembly attempt is successful if it is able to guide the object beyond a distance threshold without any collision to the other bodies in the environment. If all the straight-line disassembly attempts fail then a motion planner based on Rapidly-exploring Random Tree is invoked in order to detect feasible disassembly paths that require more complex motions. The approach is called targetless RRT (T-RRT) [1] since there is not a single goal configuration. Feasible disassembly paths are simulated in the physics-based environment by applying forces and torques to the object (kinodynamic planning approach).
An example of a non-destructive disassembly plan is presented in Figure 4. The environment consists of a caged bunny, which is the first object to be disassembled. The bunny can not be disassembled using simple removal directions, but the T-RRT is able to find a feasible path. The top left image also shows the generated random tree. The remaining objects can be disassembled using the straight line removal approach.

![Fig. 4. A non-destructive disassembly experiment also shown in the accompanying short video. RRT-based disassembly of a caged bunny (top row) and straight-line disassembly of some of the remaining objects (second and third rows). Object trails are displayed for convenience.](image)

VI. CONCLUSIONS

A novel approach for efficient disassembly planning of rigid bodies has been introduced. The method allows computation of all the physically stable subassembly configurations and all the possible destructive disassembly sequences of a set of objects. Optimizations based on precedence relations and geometrical clustering have been proposed. A non-destructive algorithm for computing feasible disassembly paths has also been integrated.

VII. ACKNOWLEDGMENTS

This research is partially supported by Laboratory AER-TECH of Regione Emilia-Romagna, Italy.

REFERENCES

