
Efficient Planning of Disassembly Sequences in Physics-Based
Animation

Jacopo Aleotti and Stefano Caselli

Abstract— We address the problem of disassembly planning
from a novel perspective. In the proposed method the goal is to
find all the physically admissible subassemblies in which a set of
objects can be disassembled and to identify feasible disassembly
motions. Stability of object configurations under the effect of
gravity and friction is computed by relying on a physics-based
animation engine. We propose efficient strategies to reduce
computational time that take into account precedence relations,
arising from user assembly demonstrations as well as geomet-
rical clustering. We have also developed a motion planning
technique for generating non-destructive disassembly paths on
a query-based approach. Experiments have been performed in
an interactive virtual environment including a dataglove that
allows realistic object manipulation and grasping.

I. INTRODUCTION

Assemblies are collection of objects. Disassembly plan-
ning is the problem of finding appropriate motions that are
applied to the individual parts of an assembly to separate the
initial agglomerate. We consider a (static) stable assembly
configuration as a composition of objects that does not
collapse under the effect of gravity forces and static friction.
A disassembly motion of an object is feasible if the object
can reach an infinite distance from its initial location without
colliding with the remaining bodies and if the resulting
subassembly configuration (obtained by removing the object)
is still stable. A disassembly sequence is a succession of
feasible motions that are applied to the objects one by one
starting from an initial configuration that includes all the
objects in the environment. Disassembly planning has strong
applications in industrial manufacturing for recycling and for
cost reduction in product dismantling. Assembly and disas-
sembly problems are interrelated since assembly plans can be
derived from disassembly sequences. Disassembly planning
is a typical combinatorial problem where the total number of
possible disassembly sequences is given by the factorial n! of
the number of objects in the initial configuration. Therefore,
even a rather small environment with ten objects has a
potential of more than three millions of possible disassembly
sequences. Moreover, the computational complexity required
to compute the stability of a given configuration is NP-hard.

In this work we propose a computational method for
planning disassembly tasks which relies on physics-based
animation. The method differs from the large amount of
previous contributions on disassembly planning that have
mainly focused on geometrical aspects. In particular, we

J. Aleotti is with Dipartimento di Ingegneria dell’Informazione, Univer-
sity of Parma, Italy aleotti@ce.unipr.it

S. Caselli is with Dipartimento di Ingegneria dell’Informazione, Univer-
sity of Parma, Italy caselli@ce.unipr.it

propose an effective approach for automatic evaluation of
subassembly stability and disassembly planning for models
of arbitrary shape. Systematic stability evaluation is achieved
by means of a physics simulation engine. The problem can
be stated as follows. First, find all the physically stable
subassemblies in which a collection of rigid bodies can
be disassembled. Second, identify feasible disassembly se-
quences for all objects by applying a single-query motion
planning algorithm. The adopted solution ensures realistic
non-destructive disassembly motions, meaning that the ob-
jects are disassembled by looking only at continuous paths.
Stability of object configurations is computed by taking
into account both gravity and friction. We assume that only
pure contact forces act on the bodies in the physics-based
environment. We do not consider external interconnections
such as forces due to connectors like glue, screws or bolts.

In order to reduce the computational time required to com-
pute all the admissible subassemblies of a given set of objects
we propose efficient strategies for identifying as many stable
configurations as possible without the need of a physical
simulation. Such optimizations take advantage of precedence
relations arising from user assembly demonstrations. Indeed,
we apply the Programming by Demonstration paradigm [9],
[17], [23], [2] for collecting multiple demonstrations of the
same assembly structure and we exploit redundancy to detect
precedence relations. A precedence relation between the two
objects means that the first object must be assembled before
the second one.

Theoretical overviews of assembly precedence graphs can
be found in the work of Chen and Henrioud [3] that presented
a method for systematic generation of all feasible assembly
precedence graphs for mechanical products. A further op-
timization that we propose consists of a spatial clustering
algorithm that groups geometrically adjacent objects, thus
allowing stability evaluation on sets of lower dimensions,
and also enabling parallel processing. Experiments have
been performed in an interactive virtual environment that
is also exploited for visualizing the results of the automatic
disassembly operations. The virtual environment also enables
realistic grasping of objects by means of a simulated anthro-
pomorphic hand driven by a dataglove.

The paper is organized as follows. Section II reviews the
state of the art concerning disassembly planning. Section III
describes the proposed approach and its optimizations, while
section IV reports experiments. Section V focuses on the
non-destructive disassembly planner. Section VI closes the
paper summarizing the work.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 87

II. RELATED WORK
De Mello and Sanderson [8] defined the AND/OR graph

representation for assembly plans. Such representation con-
stitutes the basis for several planning systems. A remarkable
number of works have investigated disassembly sequence
planning without considering physical issues. Mattikalli et
al. [15] proposed a geometrical approach to automatically
determine disassembly sequences. Waarts et al. [22] pre-
sented a sequence planner which takes into account both
feasibility and accessibility of operations but does not include
analysis of stability under gravity. Ong and Wong [18]
introduced a method to extract subassemblies by grouping
components together based on the criteria of connectivity
and interference relationships. Sundaram et al. [20] applied
conventional motion planning strategies for automatic disas-
sembly. Cortes et al. [4] described a Manhattan-like motion
planner based on Rapidly-exploring Random Tree (M-RRT)
suitable for disassembly of objects with articulated parts. The
use of liaison graphs for generation of mechanical assembly
sequences has also been frequently considered to describe
connectivity between assembly parts [10], [5]. Aguinaga
et al. [1] proposed the targetless RRT (T-RRT) algorithm
which has been adopted as a component of our physics-based
disassembly planning system (section V). In [7] a general
framework for disassembly planning is presented which is
based on the concept of motion space. Torres et al. [21]
developed a disassembly sequence planner that exploits in-
formation encoded as precedence relations introduced by an
operator who knows the product. Gadh et al. [6] proposed a
virtual disassembly tool for product dismantling that involves
a cost metric. The importance of taking into account stability
in disassembly planning was pointed out by Lee and Yi
[12] that illustrated different criteria aimed at reducing the
search space by pruning unstable subassemblies. In [11] an
assembly planning system has been designed that includes
physical reasoning about interconnection forces. Loomis and
Balkcom [13] introduced an efficient approach which is
based on computational reuse of rigid-body dynamics but
is limited to 2D environments. Several authors have also
investigated theoretical approaches for finding all potential
stable orientations of an assembly under the effect of gravity
and Coulomb friction [14], [16].

III. EFFICIENT STABILITY EVALUATION
This section describes the proposed method for finding all

the physically stable subassemblies of a collection of objects
and its optimization. The algorithm also computes all the
possible destructive disassembly sequences. A second phase,
discussed in section V, performs non-destructive disassembly
planning on a query-based approach for selected sequences.
Stable subassemblies are organized into a disassembly graph.
A disassembly graph of a set of n objects P = {p1, . . . , pn}
is defined as a directed graph G = {X, C} where X is
the set of nodes corresponding to the stable subassembly
configurations (partitions of P), while C represents the set
of arcs. Each arc is an oriented edge that connects two con-
figurations Xi and Xj , where the stable configuration Xj can

be obtained from Xi by removing one object. Configuration
Xj is called a child node of Xi. The initial state X0 =
{p1, . . . , pn} comprises all the objects in the environment.
The terminal nodes are all the stable configurations that
comprise only one object. A stable destructive disassembly
sequence is given by any path of nodes from the root to the
terminal nodes of the graph. Figure 1 shows the interactive
virtual environment with one example of stable configuration
as well as one unstable collapsing configuration.

Algorithm 1 reports the pseudo-code for generating the
disassembly subgraph of a generic node, while Algorithm 2
reports the procedure used for testing the stability of a node.
The disassembly phase starts by invoking Algorithm 1 on the
root node of the graph (compute disassembly graph(X0)),
which contains all the objects in the environment. The
disassembly graph is generated iteratively by computing the
stability of each configuration. Each child node is gener-
ated by removing an object from the parent configuration.
Unstable configurations are removed from the graph and
their children nodes are pruned. Algorithm 2 shows that in
order to evaluate the stability of a configuration the system
performs a physics-based simulation of the subassembly for
a predefined time and computes, at each step, the linear and
angular velocities of all the bodies in the environment. If
both velocities do not exceed predefined small thresholds
within the simulation period the configuration is considered
stable. If the velocity limits are exceeded then the simulation
is stopped and the configuration is considered as unstable.
Optimizations A and B are described later in this section. To
improve the performance of the disassembly algorithm the
graphical output is disabled in this phase.

The bottleneck of the disassembly algorithm is clearly the
physics-based disassembly routine. Without any optimization
the computational time required to compute all possible
disassembly sequences may quickly become excessive, due
to the combinatorial nature of the problem. One might
be tempted to reduce the computational time required to
evaluate the stability of a configuration by simply reducing
the time period or the velocity thresholds. However, such
constants can not be arbitrarily reduced, as this would lead
to the generation of false positive stable configurations.
Therefore, to speed-up the disassembly phase we intro-
duce efficient strategies to automatically assess the stability
of a configuration. The idea is to perform the physics-
based simulation for as few configurations as possible. The
proposed optimization methods take into account multiple
user demonstrations of assembly sequences that generate
precedence relations between assembled objects, as well as
geometrical object clustering. The user can provide assembly
demonstrations by performing grasping and placing oper-
ations in a physics-based virtual environment. Indeed, the
virtual environment includes a simulated anthropomorphic
hand, driven by a dataglove and motion tracker, which can
grasp the objects. The optimization strategies are discussed
in the following.

• Optimization A is a trivial use of prior knowledge about
stable configurations. Configurations that are known to

88

be stable in advance are subassemblies extracted from
user demonstrations. Each complete user demonstration
of an assembly configuration Xi that comprises n
objects provides a prior knowledge of n subassembly
configurations that are stable. In case optimization A
is enabled, Algorithm 2 avoids the physics-based test
if the current configuration belongs to the set of the
configurations that are known to be stable.

• Optimization B exploits precedence relations between
objects. There exists a precedence relation between two
objects (oa, ob) if oa (pre-condition) must be assembled
before ob (post-condition). Each complete user demon-
stration of an assembly configuration Xi that comprises
n ≥ 2 objects provides a total of

∑n
k=1(k−1) = n(n−1)

2
precedence relations. The set R of all precedence rela-
tions is reduced as multiple demonstrations are provided
due to generalization of task constraints. Let Xj be
a configuration obtained from Xi by removing object
or. If or is not a pre-condition in any precedence
relation involving other objects contained in Xi then
Xj is automatically stable. Formally if ∀oi ∈ Xi \ {or}
!(or, oi) ∈ R then Xj is stable. In other words, given
an assembly configuration, the configuration obtained
by removing an object that is not expected to be
assembled before any other object is always stable. It is
trivial to show that optimization B implies optimization
A, meaning that all stable configurations that can be
identified by applying optimization A can also be found
by optimization B. However, optimization A is slightly
faster.

• Optimization C is based on an object clustering ap-
proach. An algorithm has been developed that identifies
clusters of adjacent objects by means of collision detec-
tion (another approach for object clustering is proposed
in [19]). If a configuration may be split into at least
two clusters then clusters are disassembled separately in
sequential order. A merging procedure is then applied
that automatically generates all the stable configurations
from the partial subtrees without the need of a physics
simulation.

• Optimization D performs clustering and parallel multi-
threaded computation of the identified clusters on a
multi-core CPU. Recursive clustering has been limited
by empirical assumptions on the number of objects in
the clusters to avoid excessive overhead in handling
multiple threads concurrently.

IV. EXPERIMENTS
This section describes experiments that have been per-

formed to validate the performance of the proposed opti-
mization strategies for stability evaluation. Four experiments
are presented that span different environmental conditions.
Figure 2 shows the final assembly configuration of each
example where objects are labelled with progressive integer
numbers. These environments have been assembled interac-
tively by the user. In addition to the individual optimizations
two combined optimizations have also been experimented,

Algorithm 1 Computation of disassembly subgraph of a
node

1: procedure compute disassembly graph(Xi)
2: Initialize graph with node Xi

3: for all Nodes in the graph do
4: if (!node is stable) then
5: node is stable=evaluate node stability(current node)
6: end if
7: if (node is stable) then
8: Environment cluster()
9: if clusters found>1 then

10: for all clusters do
11: compute disassembly graph(cluster)
12: end for
13: Merge clusters and update stability of nodes
14: else
15: Add children nodes to the graph
16: end if
17: else
18: remove current node from the graph
19: end if
20: end for

Algorithm 2 Evaluation of node stability
1: procedure evaluate node stability(current node)
2: node is stable ⇐ true
3: if Optimization rules (A,B) fail then
4: for iteration = 0 to MAX ITERATION do
5: for all objects in current node do
6: Compute linear and angular velocity
7: if (linear velocity≥LinVel threshold)

or (angular velocity≥AngVel threshold) then
8: node is stable ⇐ false
9: return node is stable

10: end if
11: end for
12: Advance step of simulation
13: end for
14: end if
15: return node is stable

Fig. 1. Example of a stable configuration (left image) and one unstable
configuration (right image).

namely A + B which stands for a combined approach
exploiting both prior knowledge about stable subassemblies
and precedence-based optimization, and A + B + D that
adds clustering and parallel processing. Table I summarizes
the experimental results. The computational time required to
compute all the possible disassembly sequences (including
those sequences that require destructive operations) is re-

89

1

2 3

11 4

56

7

8

9

10

1
2

3

4

5 6

7

8

9

10

1

234

5

6 7 8 9

1

2 3

4
5

6

7

8
9

10

a) Experiment 1 b) Experiment 2 d) Experiment 4c) Experiment 3

Fig. 2. User-assembled environments in 4 proposed experiments.

ported for all the optimizations. The number of physics-based
disassembly attempts and the number of stable configurations
that have been completely simulated is also included for each
optimization. Finally, Table I reports for each experiment
the speedup obtained by optimization A + B + D, the
total number of stable configurations, the total number of
disassembly sequences and the list of the provided assembly
demonstrations (each demonstration is represented as a set
where objects appear in the order in which they are assem-
bled by the user).

Experiments have been run on an Intel Core 2 quad CPU
(@2.66Ghz,4Gb RAM). Experiment 1 is a complex envi-
ronment comprising 11 objects. Three clusters of adjacent
objects can be immediately identified at the beginning of
the disassembly process ({1, 2, 3, 4, 5, 6},{8,9,10,11},{7}).
Four assembly demonstrations are provided by the user.
A first observation, which holds for all the experiments,
is that the computational time of each trial is essentially
determined by the total number of stable configurations that
have been completely simulated. Optimization B performs
significantly better than optimization A. Optimization A+B
does not provide any significant improvement compared
to B alone, thus confirming that optimization B is more
general than A. Moreover, the clustering approach, in this
experiment, outperforms both optimizations A and B, as only
17 configurations were required to be tested. Optimization
A + B + D provided the best result with a total time of
14.11s and only 4 fully simulated configurations. Another
general observation is that parallel computation (D) provides
only a limited improvement over the sequential clustering
approach (C) where clusters are disassembled with a single
thread. This behavior is due to the relative small size of
the clusters that are identified in the proposed examples. In
principle, environments with larger clusters would benefit
from a parallel approach but they can not be easily tested
since the total number of possible disassembly sequences
would become intractable.

Experiment 2 comprises 10 objects. Four assembly demon-
strations are provided by the user. The initial configuration
is a single agglomerate of objects. However, if the clustering
optimization is enabled after removal of objects 1 (glass) and
object 2 the algorithm is able to identify two separate clusters
each one made of four objects ({3, 4, 5, 6}, {7, 8, 9, 10}).
Figure 3 shows the disassembly trees of the two clusters and

the resulting merged subgraph, which is a partial subtree as
well since it does not include object 1 and 2. The merged
tree is automatically generated and therefore all its nodes do
not have to be physically simulated. The large size of the
merged tree compared to the size of its parent subgraphs
highlights the high efficiency of the clustering optimization
in finding stable configurations. It is also interesting to note
that in this experiment optimization B by itself provides even
better results than C.

The last two experiments illustrate particular environment
configurations. Experiment 3 comprises 9 isolated objects
lying on the ground. Four assembly demonstrations are
initially provided by the user. Since all the objects are stable
and they are not colliding with each other, there are 9 single-
body clusters and the total number of possible disassembly
sequences is given by all the possible permutations of
the initial configuration (9! = 362880). It turns out that
the clustering optimization C outperforms both A and B.
Parallel processing does not improve efficiency as all the
clusters contain only one object. Optimization B alone is
anyhow more than three time faster than the result obtained
without any optimization. It is also worthwhile noting that if
a fifth demonstration is added by the user (given by the fol-
lowing ordered assembly sequence {8, 1, 4, 9, 2, 7, 6, 5, 3})
then the computational time of optimization B drops to
37.7s, meaning that providing more demonstrations and
hence reducing the number of precedence constraints greatly
helps the optimization process. However, it must be pointed
out that providing a large number of demonstrations can
be demanding and time consuming for the user, whereas
optimization C is performed automatically by the system
without the need of user involvement.

Experiment 4 comprises 10 objects which are organized
into a single cluttered cluster. The environment configuration
determines a large number of physical constraints. Therefore
the total number of disassembly sequences (16) as well as
the disassembly time are quite low. An important observation
is that the presence of a single cluster for each possible
subassembly state determines that the clustering optimization
is ineffective whereas optimizations A and B provide a
speedup of more than two times.

A general remark that can be deduced from the previous
examples is that optimizations B and C are somehow
complementary since they provide positive effects in dif-

90

TABLE I
EXPERIMENTAL RESULTS FOR THE PROPOSED EXPERIMENTS.

Experiment Time(seconds) for each optimization,
in brackets (total disassembly attempts, fully simulated configurations)

None A B A + B C D A + B + D speedup stable disassembly Demonstrations
configurations sequences (ordered assembly sequences)

{2,3,8,9,10,1,5,11,4,6,7}
1 200.53 152.50 71.84 70.56 20.28 17.05 14.11 14.2 143 46200 {3,8,10,2,1,5,4,6,7,9,11}

(506,143) (467,103) (401,37) (401,37) (399,17) (399,17) (386,4) {8,7,2,9,10,3,11,1,5,4,6}
{2,10,3,1,4,8,7,5,11,6,9}
{5,4,6,3,8,7,2,9,1,10}

2 109.23 83.31 34.50 34.31 39.06 37.62 20.95 5.2 108 8380 {8,9,5,6,4,7,10,3,2,1}
(312,108) (285,81) (228,24) (228,24) (249,37) (249,37) (226,14) {8,6,4,5,7,3,9,2,10,1}

{8,9,10,6,4,5,7,3,2,1}
{1,2,3,4,5,6,7,8,9}

3 616.16 565.81 166.61 157.16 24.12 23.20 24.09 25.6 511 362880 {9,8,7,6,5,4,3,2,1}
(511,511) (479,479) (128,128) (123,123) (9,9) (9,9) (9,9) {1,3,5,7,9,2,4,6,8}

{6,2,8,1,9,3,5,7,4}

4 14.70 5.78 5.66 5.5 14.30 14.42 5.65 2.6 14 16 {6,1,2,3,4,5,7,8,9,10}
(70,14) (61,5) (61,5) (61,5) (70,14) (70,14) (61,5)

3-4-5-6-7-8-9-10

4-5-6-7-8-9-10 3-5-6-7-8-9-10 3-4-6-7-8-9-10 3-4-5-7-8-9-10 3-4-5-6-8-9-10 3-4-5-6-7-8-9

5-6-7-8-9-10 4-6-7-8-9-10 4-5-7-8-9-10 4-5-6-8-9-10 4-5-6-7-8-93-5-7-8-9-10 3-5-6-8-9-10 3-5-6-7-8-93-4-6-8-9-10 3-4-6-7-8-93-4-5-8-9-10 3-4-5-7-8-9 3-4-5-6-8-9 3-4-5-6-7-8

6-7-8-9-10 5-7-8-9-10 5-6-8-9-10 5-6-7-8-94-7-8-9-10 4-6-8-9-10 4-6-7-8-94-5-8-9-10 4-5-7-8-9 4-5-6-8-9 4-5-6-7-83-5-8-9-10 3-5-7-8-9 3-5-6-8-9 3-5-6-7-83-4-6-8-9 3-4-6-7-83-4-5-8-9 3-4-5-7-8 3-4-5-6-8

7-8-9-10 6-8-9-10 6-7-8-95-8-9-10 5-7-8-9 5-6-8-9 5-6-7-84-8-9-10 4-7-8-9 4-6-8-9 4-6-7-84-5-8-9 4-5-7-8 4-5-6-83-5-8-9 3-5-7-8 3-5-6-8 3-4-6-8 3-4-5-8 3-4-5-6

8-9-10 7-8-9 6-8-9 6-7-85-8-9 5-7-8 5-6-84-8-9 4-7-8 4-6-8 4-5-8 4-5-63-5-8 3-5-6 3-4-6 3-4-5

8-9 7-8 6-8 5-8 5-64-8 4-6 4-5 3-5

8 6 54

7-8-9-10

8-9-10 7-8-9

8-9 7-8

8

Disassembly subgraph (cluster 1)

Disassembly subgraph (cluster 2) Merged subgraph

3-4-5-6

4-5-6 3-5-63-4-6 3-4-5

5-64-6 4-5 3-5

6 54

Fig. 3. Experiment 2: disassembly trees of two clusters and their resulting merged disassembly graph.

ferent environment conditions. In particular, optimization C
is effective for environments where separate clusters can
emerge in the disassembly phase, while optimization B
is effective for constrained environments given a sufficient
number of user demonstrations. The combined use of the two
optimizations leads to the best performance.

V. NON-DESTRUCTIVE DISASSEMBLY
PLANNING

A non-destructive disassembly planner has been developed
to generate physically plausible disassembly motions. A
disassembly motion of an object is non-destructive if the
object can reach an infinite distance from its initial location
without colliding with the remaining bodies. The input of
the planner is one of the disassembly sequences identified by
applying the algorithm described in section III. The planner
returns the computed disassembly motions if the selected se-
quence of objects can be successfully disassembled in a non-
destructive manner, otherwise the planner returns that a non-

destructive disassembly path can not be found. The adopted
motion planner is derived from the method proposed in [1].
At first, the motion planner tries to disassemble an object
by applying forces along pre-computed removal directions.
Removal directions are vectors sampled on the unit upward
hemisphere that do not point towards bodies that are initially
in contact with the object to be disassembled. Therefore,
each disassembly attempt is a physics-based simulation that
moves an object along a straight line. A disassembly attempt
is successful if it is able to guide the object beyond a distance
threshold without any collision to the other bodies in the
environment. If all the straight-line disassembly attempts fail
then a motion planner based on Rapidly-exploring Random
Tree is invoked in order to detect feasible disassembly
paths that require more complex motions. The approach is
called targetless RRT (T-RRT) [1] since there is not a single
goal configuration. Feasible disassembly paths are simulated
in the physics-based environment by applying forces and
torques to the object (kynodinamic planning approach).

91

An example of a non-destructive disassembly plan is
presented in Figure 4. The environment consists of a caged
bunny, which is the first object to be disassembled. The
bunny can not be disassembled using simple removal di-
rections, but the T-RRT is able to find a feasible path. The
top left image also shows the generated random tree. The
remaining objects can be disassembled using the straight line
removal approach.

Fig. 4. A non-destructive disassembly experiment also shown in the
accompanying short video. RRT-based disassembly of a caged bunny (top
row) and straight-line disassembly of some of the remaining objects (second
and third rows). Object trails are displayed for convenience.

VI. CONCLUSIONS

A novel approach for efficient disassembly planning of
rigid bodies has been introduced. The method allows compu-
tation of all the physically stable subassembly configurations
and all the possible destructive disassembly sequences of a
set of objects. Optimizations based on precedence relations
and geometrical clustering have been proposed. A non-
destructive algorithm for computing feasible disassembly
paths has also been integrated.

VII. ACKNOWLEDGMENTS

This research is partially supported by Laboratory AER-
TECH of Regione Emilia-Romagna, Italy.

REFERENCES

[1] I. Aguinaga, D. Borro, and L. Matey. Parallel RRT-based path
planning for selective disassembly planning. Intl Journal of Advanced
Manufacturing Technology, 36:1221–1233, 2008.

[2] J. Aleotti and S. Caselli. Robot Grasp Synthesis from Virtual Demon-
stration and Topology-Preserving Environment Reconstruction. In
IEEE/RSJ Intl Conference on Intelligent Robots and Systems, (IROS),
San Diego, USA, October 2007.

[3] K. Chen and J.M. Henrioud. Systematic Generation of Assembly
Precedence Graphs. In IEEE Intl Conference on Robotics and
Automation, pages 1476–1482, 1994.

[4] J. Cortes, L. Jaillet, and T. Simeon. Disassembly Path Planning
for Complex Articulated Objects. IEEE Transactions on Robotics,
24(2):475–481, 2008.

[5] T. Dong, L. Zhang, R. Tong, and J. Dong. A hierarchical approach to
disassembly sequence planning for mechanical product. The Interna-
tional Journal of Advanced Manufacturing Technology, 30:507–520,
2006.

[6] R. Gadh, H. Srinivasan, S. Nuggehalli, and R. Figueroa. Virtual
Disassembly - A Software Tool for Developing Product Dismantling
and Maintenance Systems. In IEEE Annual RELIABILITY and
MAINTAINABILITY Symposium, 1998.

[7] D. Halperin, J.C. Latombe, and R.H. Wilson. A General Framework
for Assembly Planning: The Motion Space Approach. In ACM annual
symposium on Computational geometry, Minneapolis, USA, 1998.

[8] L.S. Homem de Mello and A.C. Sanderson. AND/OR Graph Rep-
resentation of Assembly Plans. IEEE Transactions on Robotics and
Automation, 6(2):188–199, 1990.

[9] K. Ikeuchi and T. Suehiro. Toward an assembly plan from observation,
Part I: Task recognition with polyhedral objects. IEEE Transactions
on Robotics and Automation, 10(3):368–385, 1994.

[10] S. Lee. Subassembly Identification and Evaluation for Assembly
Planning. IEEE Transactions on Systems, Man, and Cybernetics,
24(3):493–503, 1994.

[11] S. Lee and F.C. Wang. Physical Reasoning of Interconnection Forces
for Efficient Assembly Planning. In IEEE Intl Conference on Robotics
and Automation, Atlanta, USA, May 1993.

[12] S. Lee and C. Yi. Subassembly Stability and Reorientation. In IEEE
Intl Conference on Robotics and Automation, pages 521–526, 1993.

[13] A. Loomis and D. Balkcom. Computation reuse for rigid-body
dynamics. In IEEE Intl Conference on Robotics and Automation, pages
4181–4186, 2006.

[14] R. Mattikalli, D. Baraff, and P. Khosla. Finding all Stable Orientations
of Assemblies with Friction. IEEE Transactions on Robotics and
Automation, 12(2):290–301, 1996.

[15] R.S. Mattikalli, P.K. Khosla, and Y. Xu. Subassembly Identification
and Motion Generation for Assembly: a Geometric Approach. In IEEE
Intl Conference on Systems Engineering, pages 399–403, 1990.

[16] H. Mosemann, F. Rohrdanz, and F.M. Wahl. Stability Analysis of
Assemblies Considering Friction. IEEE Transactions on Robotics and
Automation, 13(6):805–813, 1997.

[17] H. Ogata and T. Takahashi. Robotic Assembly Operation Teaching in a
Virtual Environment. IEEE Transactions on Robotics and Automation,
10(3):391–399, jun 1994.

[18] N. S. Ong and Y. C. Wong. Automatic Subassembly Detection from
a Product Model for Disassembly Sequence Generation. The Interna-
tional Journal of Advanced Manufacturing Technology, 15:425–431,
1999.

[19] A.D. Sappa and M.A. Garcia. Hierarchical Clustering of 3D Objects
and its Application to Minimum Distance Computation. In IEEE
Intl Conference on Robotics and Automation, pages 5287–5292, April
2004.

[20] S. Sundaram, I. Remmler, and N.M. Amato. Disassembly Sequencing
Using a Motion Planning Approach. In IEEE Intl Conference on
Robotics and Automation, pages 1475–1480, 2001.

[21] F. Torres, S.T. Puente, and R. Aracil. Disassembly Planning Based on
Precedence Relations among Assemblies. Intl Journal of Advanced
Manufacturing Technology, 21:317–327, 2003.

[22] J.J. Waarts, N. Boneschanscher, and W.F. Bronsvoort. A Semi-
Automatic Assembly Sequence Planner. In IEEE Intl Conference on
Robotics and Automation, pages 2431–2438, 1992.

[23] R. Zöllner, M. Pardowitz, S. Knoop, and R. Dillmann. Towards
Cognitive Robots: Building Hierarchical Task Representations of
Manipulations from Human Demonstration. In IEEE Intl Conference
on Robotics and Automation, pages 1535–1540, 2005.

92

