
On-line reference trajectory generation for manually convoying

a platoon of automatic urban vehicles

P. Avanzini, B. Thuilot, T. Dallej, P. Martinet and J.P. Derutin

LASMEA - 24 avenue des Landais - 63177 Aubière - FRANCE

Pierre.AVANZINI@lasmea.univ-bpclermont.fr

Abstract— Various “Urban Transportation Systems” are cur-
rently in developing, in order to put forward solutions to
congestion and pollution in dense areas. Autonomous electric
vehicles in free-access can be seen as an attractive approach,
in view of the large flexibility that can be expected. One
instrumental functionality linked to this solution is platoon
motion: several autonomous vehicles accurately follow the
trajectory of a manually driven first vehicle, with pre-specified
inter-distances. A global decentralized platoon control strategy,
supported by inter-vehicle communications and relying on
nonlinear control techniques is here proposed. Each vehicle is
controlled with respect to the same smooth reference trajectory,
inferred on-line from the motion of the first vehicle via B-spline
optimization. Experimental results, carried out with four urban
vehicles, demonstrate the capabilities of the proposed approach.

Index Terms— mobile robots, nonlinear control, platooning,
automatic guided vehicles, trajectory generation, path following.

I. INTRODUCTION

Congestion of vehicle traffic in dense areas, with cor-

related pollution and waste of time, is currently a serious

concern. As a consequence, new alternative transport systems

are in developing. Autonomous electric vehicles in free-

access appear as a promising approach, especially when

the public demand is properly structured, e.g. commutations

within inner-cities or large industrial estates. The large

flexibility that can be obtained with such a transport system

(commutation at any time and along any route) is definitely

its main attractive feature and should meet user expectations.

One functionality of special interest which can enhance

this transport system is automated platooning, i.e. several

autonomous vehicles following the trajectory of a first one,

with pre-specified inter-distances. Such a functionality, on

the one hand allows to easily adapt the transport offer to

the actual need (via platoon length), and on the other hand

eases maintenance operations, since only one person (driving

the first vehicle) can then move several vehicles at a time

(e.g. to bring vehicles back to some station). Moreover, since

cooperative navigation can ensure more coherent motions, an

increase in traffic as well as an enhancement in safety can

be expected. Platooning is therefore considered in this paper.

Different approaches can be proposed. They can be classi-

fied into three categories, according to the information used

for vehicle control: local, semi-global and global strategies.

The most standard approaches rely on local strategies, i.e.

each vehicle is controlled exclusively from data relative to

the immediate front vehicle. They are also named leader-

follower approaches. For instance, visual tracking of the

preceding vehicle has been proposed in [1] and generic

control laws have been designed in [2] and [3].

Some approaches based on a structural analogy constitute

semi-global strategies: neighboring vehicles (and not only

the preceding one) are taken into account in a formation

criterion, evaluated from direct measurements. For instance,

a virtual structure approach, characterized by a serial chain

of spring-damper, is proposed in [4] and a control law is then

derived from the combined front and rear virtual forces.

These two strategies present however some drawbacks, the

most concerning one being error accumulation: the servoing

errors, induced by sensor noises and/or actuator delays, are

inevitably growing from the first vehicle to the last one,

leading to unacceptable oscillations. Such problems can be

overcome by considering global strategies, i.e. each vehicle

is now controlled from the data received from all vehicles,

collected from appropriate communication channels. Most

of the virtual structure approaches belong to this category.

In [5], a mechanical analogy is used to design feedback

controllers to achieve straight line motion. A single virtual

rigid structure is also considered in [6], relying on graph

theory. Nevertheless, since these techniques aim at imposing

some pre-specified geometric pattern, the vehicles cannot

all reproduce the trajectory of the first one: in a curve, if

vehicles are kept according to a straight line pattern, they

all describe a distinct trajectory. In contrast, in previous

work [7], a trajectory-based global control strategy has been

proposed: relying on nonlinear control techniques, vehicle

lateral and longitudinal control have been exactly decoupled.

Lateral guidance of each vehicle with respect to the same

reference path can then be achieved independently from

longitudinal control, designed to maintain a pre-specified

curvilinear vehicle inter-distance.

In this paper, this work is enhanced in order that the

platoon reference path can be defined on-line, from the tra-

jectory of a manually driven first vehicle. The objective is to

manually convoy a platoon of automatic vehicles, following

accurately the trajectory chosen by the driver of the first one.

Such a manual guidance mode is very attractive, for public

transportation as well as for maintenance operations, since

vehicles can then instantaneously be driven along any route,

without requiring a previously recorded reference trajectory.

On-line trajectory generation and its application to ve-

hicle platooning is therefore specifically addressed in this

paper. Trajectory generation has been extensively discussed
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in robotics community (see [8], [9], [10] for recent surveys).

With respect to platooning applications, high-order contin-

uous trajectories (at least C2) are required, and moreover

analytic representations are mandatory (in order that the point

on the reference trajectory the closest to the vehicle con-

trolled point can be accurately evaluated). In view of these

requirements, the approaches derived from the Computer

Aided Design (CAD) community appear quite attractive:

in [11], [12], [13] parametric functions like Bezier and

B-Spline curves are used to provide smooth curves according

to boundary conditions. Constraints on curvature are added

in [14]. Trajectory modification in dynamic environment and

on-line navigation have also been addressed in [15], [16],

[17]. With respect to these techniques, the specificities of the

considered application (the trajectory has to be generated on-

line and must be as close as possible to the actual first vehicle

trajectory) have led to propose an extension procedure based

on B-Spline curves.

The paper is organized as follows: the global decentralized

control strategy for vehicle platooning is first sketched in

Section II. The trajectory generation process is then de-

scribed in Section III. Finally, in Section IV, simulations

investigate the sensitivity of this process to some parameter

values and experiments carried out with four electric vehicles

demonstrate the capabilities of the proposed approach.

II. GLOBAL DECENTRALIZED CONTROL STRATEGY

A. Modeling assumptions

Urban vehicles involved in platooning applications are

supposed to move at quite low speed (less than 5m.s−1) on

asphalted roads. Therefore dynamic effects can be neglected

and a kinematic model can satisfactorily describe their be-

havior, as corroborated by extensive tests performed with our

experimental vehicles shown in Fig. 1.

Fig. 1. Experimental vehicles: two Cycab leading two RobuCab

In this paper, the kinematic tricycle model is considered:

the two actual front wheels are replaced by a unique virtual

wheel located at the mid-distance between the actual wheels.

The notation is illustrated in Fig. 2.

• Γ is the common reference path for any vehicle (to be

inferred from the trajectory of the first one), defined in

an absolute frame [A, XA, YA].
• Oi is the center of the ith vehicle rear axle.

• Mi is the closest point on Γ to Oi.

• si is the arc-length coordinate of Mi along Γ.

• c(si) is the curvature of path Γ at Mi, and θΓ(si) is the

orientation of the tangent to Γ at Mi w.r.t. [A, XA, YA].

Fig. 2. Tricycle model description

• θi is the heading of ith vehicle w.r.t. [A, XA, YA].
• θ̃i = θi − θΓ(si) is the angular deviation of the ith

vehicle w.r.t. Γ.

• yi is the lateral deviation of the ith vehicle w.r.t. Γ.

• δi is the ith vehicle front wheel steering angle.

• L is the vehicle wheelbase.

• vi is the ith vehicle linear velocity at point Oi.

• l is the number of vehicles in the platoon, i.e. i ≤ l.

B. Vehicle state space model

The configuration of the ith vehicle can be described

without ambiguity by the state vector (si, yi, θ̃i). The current

values of these variables can be inferred on-line by compar-

ing vehicle absolute localization to the reference path. It can

then be shown (see [18]) that tricycle state space model is:















ṡi = vi
cos θ̃i

1− yi c(si)

ẏi = vi sin θ̃i

˙̃
θi = vi

(

tan δi

L
− c(si) cos θ̃i

1− yi c(si)

)

(1)

Platooning objectives can then be described as ensuring

the convergence of yi and θ̃i to zero, by means of δi,

and maintaining the gap between two successive vehicles

to a fixed value d∗, by means of vi. It is considered that

yi 6= 1
c(si)

(i.e. vehicles are never on the reference path

curvature center). In practical situations, if the l vehicles are

well initialized, this singularity is never encountered.

C. Control law design

In previous work [7], it has been shown that exact lin-

earization techniques offer a relevant framework to address

platoon control: equations (1), as most of kinematic models

of mobile robots, can be converted in an exact way into a so-

called chained form, see [18]. Such a conversion is attractive,

since the structure of chained form equations allows to

address independently lateral and longitudinal control.

Steering control laws δi can first be designed to achieve

the lateral guidance of each vehicle within the platoon. In

these control laws, vi just appears as a free parameter. Since

conversion of equations (1) into chained form is exact, all

nonlinearities are explicitly taken into account. High tracking

performances (accurate to within ±5cm when relying on an

RTK GPS sensor) can then be ensured, whatever initial errors

or reference path curvature are. Details can be found in [19].
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Control variables vi can then be designed to achieve

longitudinal control. In nominal situation, the objective for

the ith vehicle is to regulate e1
i = s1 − si − (i − 1) d∗,

i.e. the arc-length longitudinal error w.r.t. the leader. This

control objective is attractive, since the location s1 of the

leader represents a common index for all the vehicles into the

platoon, so that error accumulation and inherent oscillations

can be avoided. In addition, since it is an arc-length error, this

control objective remains consistent whatever the reference

path curvature is (in contrast with euclidian inter-distances).

Nevertheless, for obvious safety reasons, the location of the

preceding vehicle cannot be ignored. Therefore, in previous

work [7], the longitudinal control law has been designed to

control a composite error: a smooth commutation function

gives the predominance either to the global error e1
i or to

the local one ei−1
i = si−1 − si − d∗ according to some

security distance. Once more, exact linearization techniques

have been used, so that nonlinearities in equations (1) are

still explicitly accounted, ensuring high accurate regulation.

More details, as well as experiment results carried out with

Cycab and RobuCab vehicles (see Fig. 1), relying on RTK

GPS sensors for vehicle localization and WiFi technology

for inter-vehicle communications, can be found in [7].

III. TRAJECTORY GENERATION

The error variables to be regulated in lateral and longitu-

dinal control are either a gap w.r.t. the reference trajectory

(i.e. yi and θ̃i) or a measurement w.r.t. this trajectory (i.e.

si). As a result, the reference trajectory representation must

exhibit the following features:

• it should accept an analytic expression, in order to

enable an accurate computation of the error variables,

• it should be at least C2, since the reference path

curvature c(si) is needed in control laws.

In order to meet these requirements, it is here proposed to

rely on B-Spline curves. The raw data from which these

curves have to be inferred is the set, denoted Ω, of successive

absolute localizations of the first vehicle. The difficulty lies

in extending the reference trajectory without modifying what

had been previously built, in order for any variable (si, yi,

θ̃i, etc.) to keep consistent values although the first vehicle

is moving. Approximation of raw data by B-Spline is first

recalled, and then the extension process is described.

A. B-Spline optimization

B-Spline curves consist in the concatenation of 2-dim.

polynomial curves Qi(t) = (Qi
x(t) , Qi

y(t) ), with 1 ≤ i ≤ n

and t ∈ [0, 1]. Each polynomial Qi(t) is a linear combination

of basis polynomials {bj(t)}(0≤j≤d) whose degree d and

coefficients are selected such that continuity constraints at

the connection between Qi(t) and Qi+1(t) are satisfied. The

ith B-Spline curve Qi(t) can then be expressed as:

Qi(t) =
(

b0(t) . . . bd(t)
)







P i
x P i

y
...

...

P i+d
x P i+d

y






(2)

The coefficients (P k
x , P k

y )(i≤k≤i+d) of the linear combina-

tion are called control points. They shape the B-Spline curve

Qi(t), as shown in Fig. 3.

Approximating raw data Ω consists then in finding optimal

values for (P k
x , P k

y ), such that B-Spline
{

Qi(t)
}

(1≤i≤n)

fits at best with the raw trajectory Ω. More precisely, let Ωi

be the subset of Ω associated with the B-Spline curve Qi(t)
and (Ωi,j

x , Ωi,j
y )(j∈Ji) be the Ji raw coordinates within Ωi.

Then, optimal control points (P k
x , P k

y ) are obtained by

minimizing criterion (3) via standard least square method.
n

∑

i=1

∑

j∈Ji

[

(Ωi,j
x − Qi

x(tj))
2 + (Ωi,j

y − Qi
y(tj))

2
]

(3)

B. Local optimization criterion

When the first vehicle is moving, its successive absolute

localizations are constantly filling Ω. Let ΩT be the raw

data available at instant T . Ideally, each time ΩT is up-

graded, criterion (3) should be minimized, supplying new

control point coordinates and possibly demanding for the

addition of new control points. However, in order to limit

the modifications on the reference trajectory previously built,

only the most recent polynomials Qi(t) are here updated.

Two additional advantages are a bounded computing time

(since optimization duration increases with the number of

optimized control points), and a guarantee that inter-vehicle

communication band-width is not saturated (since a bounded

number of control points has then to be transmitted).

More precisely, let nac (as active curves) be the number

of polynomials Qi(t) entering into the optimization process.

The local criterion (deduced from (3)) is:
n

X

i=n−nac+1

X

j∈Ji

h

(Ωi,j

T,x − Q
i
x(tj))

2 + (Ωi,j

T,y − Q
i
y(tj))

2
i

(4)

Finally, let nap (as active points) be the number of control

points (P k
x , P k

y ) whose coordinates are to be modified

when minimizing (4). It can be observed in (2) that each

polynomial Qi(t) is defined from d + 1 control points :

• Q1(t) is defined from (P 1
x , P 1

y ), . . . , (P d+1
x , P d+1

y ),

• Qn−nac+1(t) is defined from:

(P n−nac+1
x , P n−nac+1

y ), . . . , (P n−nac+d+1
x , P n−nac+d+1

y ),

• Qn(t) is defined from: (Pn
x , Pn

y ), . . . , (Pn+d
x , Pn+d

y ).

Therefore, in order to freely shape nac polynomials Qi(t)
when minimizing (4), then it must be chosen nap = nac+d 1.

The drawback of such a choice is that nac+d polynomials

(Qn−nac−d+1(t) to Qn(t)) are then altered, when the mini-

mization of only nac is explicitly addressed in (4). The fitting

performances on (Qn−nac−d+1(t) to Qn−nac(t)) can be

damaged, and consequently the overall fitting performances.

In contrast, if it is chosen nap = nac, then criterion (4)

cannot be driven to its minimum2. Therefore, the local fitting

performances (and thus the overall one) can also be damaged.

The best compromise on (d, nac, nap) values is discussed,

via extensive numerical simulations, in Section IV.

1(P n−nac+1
x , P

n−nac+1
y ) to (P n+d

x , P
n+d
y ) should be free

2since (P n−nac+1
x , P

n−nac+1
y ) to (P n−nac+d

x , P
n−nac+d
y ) can no

longer be adjusted
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C. Implementation details

When a new localization data is available, two possibilities

have to be considered. They are illustrated in Fig. 3, when

d = 3, nac = 3 and nap = 4.

• either the arc-length along the last polynomial Qn(t) is

lower than a threshold c1 > 0. Then, the new raw data

is just incorporated into the last subset Ωn
T , see top-

figure 3, and the minimization of criterion (4) supplies

optimized control point coordinates.

• or the arc-length along Qn(t) exceeds threshold c1.

Then, subset Ωn
T is split in such a way that the arc-

length of the new last subset Ωn+1
T is c1 − c2, with

0 < c2 < c1. A new control point is added, when the

oldest active one is fixed, see bottom-figure 3. Accord-

ing to this procedure, the arc-length of any subset, ex-

cept the last one, is c2. Finally, optimized control points

coordinates are obtained by minimizing criterion (4).

In order to reduce computing time, new raw localizations

are taken into account only if their distance from the last

data entered into ΩT is superior to some minimum threshold.

Finally, in order to be able to compute the arc-length coor-

dinate s1 of the first vehicle between two raw acquisitions,

its motion is predicted on some short horizon (relying on

model (1)), and predicted locations are incorporated into ΩT

before minimizing criterion (4), see Fig. 3.

Fig. 3. B-Spline extension process

IV. SIMULATIONS AND EXPERIMENTAL

RESULTS

This section is divided into two parts: first optimization

results are presented to investigate the sensitivity of the on-

line reference trajectory generation to its main parameters,

and eventually propose their most suitable values. Then, full-

scale experiments carried out with four vehicles are reported

to demonstrate the performances of the proposed approach.

A. Simulation results

In order for the simulations to be representative of actual

conditions, an experimental vehicle has first been manually

driven and the raw localization data supplied by its RTK GPS

receiver have been recorded (the vehicle and the GPS sensor

are both described in Section IV-B). The recorded trajectory

is shown in Fig. 4.
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Fig. 4. Trajectory for simulations
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Fig. 5. Trajectory for experiments

First, a posteriori optimizations (i.e. minimization of cri-

terion (3)) have been performed, in order to investigate the

influence of parameters d and c2. Clearly, parameter c2 has

to depend on both the vehicle velocity and the acquisition

rate. Since raw localization data have here been recorded

at a 10Hz sampling frequency, with a limited measurement

noise (the accuracy of the RTK GPS is 2cm), when the

vehicle was driven at a velocity of 1m.s−1, c2 ∈ [ 1.5 , 5 ]
appear as consistent values (this means 15 to 50 raw data

within each subset Ωi). Next, since the rate of change in

the reference path curvature has to be bounded (in view

of the dynamic constraints on actual vehicles), it is not

useful to investigate large values for parameter d: tests have

therefore been limited to d ∈ {3, 4, 5}. The average and the

maximum euclidian distances between the raw data (i.e. the

actual vehicle locations) and their projection on the proposed

reference trajectory (i.e. the B-Spline) are supplied in Fig. 6.

As it could have been intuitively expected, whatever the value

of d is, the best approximations are obtained with the smallest

value of c2. Moreover, they are very satisfactory, since the

absolute average error is less than 5mm.

maximum average

d c2 (m) error (m) error (m)

3 1.5 0.0231 0.0047

3 3 0.0372 0.0077
3 5 0.1078 0.0224
4 1.5 0.0265 0.0044

4 3 0.0439 0.0099
4 5 0.0832 0.0222
5 1.5 0.0205 0.0046

5 3 0.0362 0.0077
5 5 0.0855 0.0216

Fig. 6. Influence of d and c2 on a posteriori optimization
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maximum average average absolute variations in

c2 (m) nap d nac error (m) error (m) distance (m) direction (rad) curvature (m−1)

1.5 3 3 3 0.0621 0.0088 0.0025 0.0039 0.0103
” 4 3 4 0.0559 0.0087 0.0056 0.0102 0.0234
” 4 3 3 0.0533 0.0107 0.0071 0.0127 0.0316
” 4 4 4 0.0722 0.0130 0.0052 0.0096 0.0232
” 5 3 5 0.0466 0.0060 0.0028 0.0057 0.0145

” 5 4 4 0.0557 0.0088 0.0044 0.0082 0.0193
” 5 4 5 0.0357 0.0077 0.0034 0.0067 0.0166
” 5 5 3 0.0676 0.0121 0.0053 0.0089 0.0208
” 6 3 6 0.0453 0.0069 0.0041 0.0081 0.0183
” 6 4 6 0.0383 0.0075 0.0038 0.0073 0.0165

” 6 5 6 0.0483 0.0088 0.0043 0.0083 0.0191
” 8 5 8 0.0449 0.0079 0.0042 0.0080 0.0174

1 5 3 5 0.2041 0.0110 0.0056 0.0191 0.6591

Fig. 7. Influence of nac and nap on on-line optimization

Next, on-line optimizations (i.e. minimization of crite-

rion (4)) have been performed with the most satisfactory

choices for (d, c2) (shown in bold in Fig. 6), in order to

investigate the influence of parameters nac and nap. The

most significant results are reported in Fig. 7.

Maximum and average error values show clearly that, for

a given d, the higher nac value is, the more the on-line

optimization is accurate, as it could have been expected.

However, beyond some threshold (depending on the value of

d), increasing nac value does no longer improve significantly

the quality of the approximation. It can also be observed that,

for any given d, the most satisfactory results are obtained

when nap = nac. This means that modifying polynomials

Qi(t) which are not explicitly considered in local crite-

rion (4) (cases nap > nac) is more harmful, with respect

to the optimization accuracy, than minimizing criterion (4)

with a non-maximum degree of freedom (case nap = nac).

According to the on-line optimization process, the last

nac polynomials Qi(t) are always varying. Consequently,

the reference path for the first follower vehicles cannot be

perfectly constant. However, the average absolute variations

in distance, in direction and in curvature between the ref-

erence paths supplied at two successive iterations are quite

small, as shown in Fig. 7. And once more, the best results

are obtained when nap = nac.

Finally, if the lowest value for nap is sought (in order

to reduce the computing time), then the parameter set (d = 3,

nac = nap = 5 and c2 =1.5m) appears to be the most appropri-

ate and has therefore been used in the experiments reported

in the next section. A shorter value c2 = 1m had also been

investigated. However, as can be seen in Fig. 7, the results are

poor, especially w.r.t. variations in curvature. For the current

application context, c2 = 1.5m appears as a lower bound.

B. Experiments

Several experiments have been carried out in Clermont-

Ferrand on “PAVIN Site”, an open platform devoted to

urban transportation system evaluation. The video attachment

presents some sequences recorded during the experiments.

1) Experimental set-up: The experimental vehicles are

shown in Fig. 1. They are electric vehicles, powered by

lead-acid batteries providing 2 hours autonomy. Two (resp.

four) passengers can travel aboard the Cycab (resp. the

RobuCab). Their small dimensions (length 1.90m, width

1.20m) and their maximum speed (5m.s−1) are appropriate to

urban environments. On-board RTK GPS receivers provide

absolute localization measurements accurate to within 2cm

at a 10Hz sampling frequency. Inter-vehicle communication

is ensured via WiFi technology. Platoon control laws are

implemented in C++ language on Pentium-based computers

using RTAI-Linux OS.

2) Experimental results: The experiments have been car-

ried out with four vehicles. The leading one was manually

driven along the 240m-long path shown in Fig. 5, at a

constant velocity of 1m.s−1. The accuracy of the on-line

reference trajectory generation is shown in Fig. 8: the average

and maximum errors between the raw localization data of the

first vehicle and their projection on the B-Spline are resp.

0.76cm and 5.49cm. These figures are quite similar to what

was expected from simulation trials, see Fig. 7.
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Fig. 8. Error in the approximation of the first vehicle trajectory

The lateral deviations of each vehicle w.r.t. the raw posi-

tions of the leader are shown in Fig. 9. It can be observed

that the behavior of vehicle 2 is slightly different from those

of vehicles 3 and 4. This small difference is due to the
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fact that the reference trajectory is still slightly varying for

vehicle 2 (since it is close to the leader), when it has become

constant for vehicles 3 and 4. However, the lateral guidance

of vehicle 2 is roughly as accurate as for vehicles 3 and 4, and

as satisfactory as in previous work, when all vehicles were

guided w.r.t. a pre-specified reference trajectory, see [19].
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Fig. 9. Vehicle lateral deviations

Finally, the accuracy of the longitudinal control laws is

investigated in Fig. 10. Once the platoon is in nominal mode

(i.e. all vehicles have reached their desired inter-distances),

the behavior is identical to what was observed in previous

work, when vehicles were guided w.r.t. a pre-specified ref-

erence trajectory (see [7]), namely a 10cm accuracy: the

on-line reference trajectory generation does not disturb the

longitudinal performances. Behaviors when the platoon is

initialized or when the first vehicle stops abruptly are also

identical to what is reported in [7].
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Fig. 10. Vehicle inter-distance errors

V. CONCLUSION AND FUTURE WORK

In this paper, vehicle platooning with respect to a manually

driven leader, i.e. each autonomous vehicle must accurately

follow the trajectory chosen by the driver of the first one with

pre-specified inter-vehicle distances, has been addressed. A

global decentralized control strategy, taking advantage of

inter-vehicle communications, has been proposed in order

to avoid error accumulation inherent to local control ap-

proaches. An on-line reference trajectory generation, relying

on B-Spline curves, has been developed to accurately rep-

resent the first vehicle actual trajectory. Since only a fixed

number of control points has to be adjusted at each step,

computing time is bounded and communication channel is

ensured not to be saturated. Then, nonlinear control tech-

niques have been considered to take explicitly into account

the nonlinearities in vehicle models, in order to enable high

accurate guidance. Finally, full scale experiments, carried out

with four vehicles, have demonstrated the efficiency of the

proposed approach.

Current developments aim at refining the on-line refer-

ence path generation: enhanced criteria, with adaptive subset

length (instead of a constant length c2), are in developing

in order to reduce the number of control points with never-

theless an identical or higher accuracy of the reference path

approximation.
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