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Abstract— Previous work [1] shows that the movement rep-
resentation in task spaces offers many advantages for learn-
ing object-related and goal-directed movement tasks through
imitation. It allows to reduce the dimensionality of the data
that is learned and simplifies the correspondence problem
that results from different kinematic structures of teacher and
robot. Further, the task space representation provides a first
generalization, for example wrt. differing absolute positions,
if bi-manual movements are represented in relation to each
other. Although task spaces are widely used, even if they are
not mentioned explicitly, they are mostly defined a priori. This
work is a step towards an automatic selection of task spaces.
Observed movements are mapped into a pool of possibly even
conflicting task spaces and we present methods that analyze
this task space pool in order to acquire task space descriptors
that match the observation best. As statistical measures cannot
explain importance for all kinds of movements, the presented
selection scheme incorporates additional criteria such as an
attention-based measure. Further, we introduce methods that
make a significant step from purely statistically-driven task
space selection towards model-based movement analysis using
a simulation of a complex human model. Effort and discomfort
of the human teacher is being analyzed and used as a hint for
important task elements. All methods are validated with real-
world data, gathered using color tracking with a stereo vision
system and a VICON motion capturing system.

I. INTRODUCTION

When a robot with a high number of degrees of freedom,

such as a humanoid robot, shall learn new movements by

imitating a human teacher, a movement representation within

so-called task spaces is often favorable in contrast to a

joint space representation. Imagine for example the task of

putting objects into a basket. A joint-level description is

very inflexible towards new basket positions because the

adaptation of the movement within the joint space is non-

trivial. A good task space representation for this example is

the movement of the object relative to the basket. Besides

reducing the dimensionality of the data to learn, this also al-

lows for additional generalization. In the mentioned example,

the representation generalizes over different basket positions.

Furthermore, if the robot shall learn from a human teacher

instead of through kinesthetic teaching, a representation

within task spaces eases the correspondence problem. This

problem arises due to the different kinematic structures of

human and robot. A direct mapping of the human’s to the

robot’s joints is more difficult than the mapping of end-

effector positions.
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Looking at the state of the art, many agree on the use-

fulness of representing movements in task spaces. However,

most imitation learning frameworks that include this concept

need a designer that chooses which task space fits best to

the action that should be learned. This limits both the open-

endedness of the system and the whole interactive process,

because the robot cannot learn different movement tasks and

their individual task spaces continuously. The authors of [2]

review several task space control methods and emphasize

that the use of task spaces in robots with many degrees of

freedom is almost inevitable. However, they do not focus on

applying task spaces to the imitation learning problem. Al-

though there are numerous approaches to imitation learning

with robots (e.g. [3]–[6]) and most of them use some kind

of task space representation, almost none of them explicitly

considers the problem of deciding which task space should

be used for learning. Two of the few exceptions to this are

[7] and [8] in which the teacher’s gaze and pointing direction

are used as priors for a Hidden Markov Model (HMM) or

Gaussian Mixture Model (GMM) representation. Still, the

movement is represented within a latent space extracted using

techniques such as Principal Component Analysis (PCA),

which may also contain elements that are irrelevant for the

actual task.

Interestingly, the representation of movements in task

spaces is not limited to the field of robotics but can also

be found in biology. In [9], the analysis of human writing

showed that the occurrence of several features was equivalent

no matter if the writing was performed with the hand or with

the toe. It seems that a mechanism exists that represents

the writing trajectories on a level higher than pure motor

control. According to [10], also human reaching is probably

represented in multiple reference frames relative to objects

in the environment or relative to the starting position of a

movement.

This work contributes to the selection of task spaces for

imitation learning. We make a step from using predefined

task spaces towards automatic selection from a pool of

possibly even conflicting task spaces. A selection method

named task space selector is being introduced that analyzes

the observed object trajectories and acquires task space

descriptors that match the observation best. For this, several

criteria beyond statistics are incorporated, such as a psy-

chologically inspired criterion that is based on the robot’s

attention to the objects in the scene and a kinetic criterion

that estimates effort and discomfort of the human teacher.

The paper is organized as follows. Section II shortly

reviews a previously developed framework for movement

generation and imitation learning for the humanoid robot
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Fig. 1. Structure of the imitation learning process

ASIMO (see [1], [11]–[13]). Subsequent sections present

extensions to this framework that aim for automatic task

space selection. First, in section III, the task space concept

is highlighted and different possible task spaces suitable for

imitation learning are presented. These task spaces comprise

the task space pool. Section IV presents the task space

selector that evaluates the observations and automatically

selects those task spaces from the task space pool that most

probably contain important information. Finally, section VI

concludes this work and presents a short outlook.

II. FRAMEWORK FOR IMITATION LEARNING

AND MOVEMENT OPTIMIZATION

In recent work [1] and inspired from [5], [14], [15], we

developed a framework for imitation learning with the hu-

manoid robot ASIMO. The upper part of Figure 1 containing

Observation, Representation, and Reproduction shows the

structure of this framework. The lower part of the figure

depicts the extensions discussed in later sections.

Several times, a human teacher demonstrates the move-

ment task that the robot should learn. These demonstrations

can be observed using either a stereo vision system with

color tracking or a VICON motion capture system. The raw

sensor data is mapped to a set of task spaces in which the

movement is most conveniently represented. No assumptions

about the teacher’s or the robot’s postures are made. As an

example, for the task of pouring a beverage from a bottle

into a glass, the relative position and orientations of the two

objects may be used. Up to now, these task spaces are fixed

and selected manually, which is a problem we address within

this paper.

After the different demonstrations have been recorded,

they are temporally aligned using Dynamic Time Warping.

This results in meaningful inter-trial variance information,

which is used as an importance measure for the movement

generation later. Although it is a useful assumption to asso-

ciate invariance over several demonstrations with importance,

we show in section V that it should not be used as the only

measure.

Gaussian Mixture Models are chosen to represent the mean

and covariance information of the task. They are trained

using a common Expectation-Maximization algorithm and

K-Means initialization. The number of Gaussian components

that are used for the representation is estimated using a fast

heuristic based on the Bayesian Information Criterion. This

results in a compact, probabilistic representation that can be

used for both movement recognition and reproduction.

This probabilistic movement representation accounts for

the robot’s effector movement. However, it does not yet

consider the limits associated to joint ranges, self-collisions

etc. To handle these aspects, we incorporate a gradient-

based trajectory optimization scheme [13]. It operates on an

attractor-based trajectory generation [11] that describes the

task space trajectories with attractor dynamics and projects

these trajectories to the joint space movement with a kine-

matic whole body control system. The key idea is to optimize

a scalar cost function by finding an optimal sequence of

such task space attractor vectors that determines the robot’s

motion. This optimization scheme incorporates a similarity

criterion that penalizes the deviation of the robot’s task

space trajectory from the observed one. The main idea is

to apply an adaptive weighting scheme that weights the

similarity with the inter-trial variance of the observation.

By assigning a low weight to the similarity criterion, its

effect will be reduced, as such giving higher influence to

the other criteria governing the movement. This results in a

movement that tracks the observed trajectory rather precisely

in phases of low variance, while it is characterized by other

criteria (joint limit and collision avoidance etc.) in phases

of higher variance. The similarity criterion is implemented

in a way such that the variance-based weighting is applied

continuously over time and all dimensions of the task space.

Starting with this framework as a basis, we propose

two extensions in order to solve the previously mentioned

problem concerning the static task space selection. These

extensions are the task space pool, described in the next

section, and the task space selector, which is explained in

section IV.

III. TASK SPACE POOL

The movement generation method allows for the task to

be represented by a large variety of possible task space

descriptions. Concerning the learning of object movements,

task spaces may be composed of absolute object positions

and orientations, relations between objects, additional con-

straints such as the restraint to only planar movements, and

additional joint-level constraints. All these and more can be

combined almost arbitrarily. However, this freedom comes

with a price. Task spaces can be conflicting if they control

the same end-effector for example. Thus, they cannot be

active at the same time. Further, different movement tasks

are best represented in different task spaces. As an example,

the task of putting an object into a basket may be represented

in form of absolute object positions or as relative object-

basket positions. Although both representations are suitable

for reproducing the task in the current situation, the latter

one usually generalizes better because it is still valid if the

basket is moved to another position.
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a) absolute object positions:
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d) relative object positions:

τd(Rj , o1, o2) =

„

. . .

“

pos(rj

k
, o1) − pos(rj

k
, o2)

”T
. . .

«T

(A.4)

e) object positions relative to salient object:

τe(Rj , os, o) =
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TABLE I

TASK SPACES AND THEIR MAPPING FROM THE RAW DATA

To tackle the problem of deciding which combination of

task spaces to use, we introduce a discriminative approach.

The idea is to map the observations into different task spaces

that may be useful in imitation scenarios. These task spaces

form the so-called task space pool from which the later

described task space selector may choose those task spaces

that fit the current movement best.

Formally, the creation of the task space pool T is per-

formed using functions τi that map raw data R coming from

the motion capture sensor system or vision system into the

different task spaces:

τi : R×O → T . (1)

Symbol O denotes the set of all recognized objects o.

The raw trajectories are already segmented into distinct

demonstrations and for simplification this segmentation is

predefined within this work (but see [16]). The segments are

denoted as Rj ∈ R. Scalar DR is the dimensionality of the

raw data:

Rj =
(

r
j
1

T
. . . r

j
k

T
. . . rj

nj

T
)T

and r
j
k ∈ R

DR . (2)

Applying the individual functions τi to all demonstrations

Rj results in the task space pool T :

Tij ∈ T with (3)

Tij =
(

t
ij
1

T
. . . t

ij
k

T
. . . tij

nj

T
)T

and t
ij
k ∈ R

Dτi . (4)

The scalar Dτi
denotes the dimensionality of the individual

task space with for example being 3 for the absolute position

of an object in Cartesian coordinates. Table I lists the task

spaces used for the subsequently described experiments. The

transformations are applied to all recognized objects o and,

in case of relative descriptions, to all combinations of them.

The functions pos and ori extract the position and orientation

from the specific input source, respectively.

There are two ways to decide if task spaces are conflicting.

One could predefine the pairs of conflicting task spaces,

which is possible if all task spaces are known beforehand.

Another way is to check if the resulting task Jacobian does

not have a full row rank.

IV. TASK SPACE SELECTOR

In the previous section a task space pool is generated

from the raw data. As already mentioned, this pool can

contain redundant and conflicting task spaces, such as for

example the absolute positions of two objects and their

relative positions. Hence, it is unfavorable and sometimes

impossible to learn the whole task space pool. Probabilistic

representations, such as Gaussian Mixture Models as used

within our imitation learning approach, suffer from noise in

irrelevant task spaces. Therefore, we introduce the task space

selector that analyzes the task space pool and selects only

the important task spaces from it. For this, several criteria are

used, which are described in the next section. These criteria

calculate a score for each task space and, based on this score,

the task space selector can influence the imitation learning

process in two ways.

First, the task spaces that should be used for the repre-

sentation are chosen exclusively by the task space selec-

tor and all the remaining ones are discarded. The system

only learns the important elements within its representation.

This improves not only the representation quality and the

generalization capabilities, but also defines clearly how the

movement should be reproduced later.

But, solely influencing the representation has its limits.

Imagine movements with not clearly distinguishable task

spaces for their whole duration, for example, an object

movement that is best described relative to one object at the

beginning and to another one at the end of the movement.

In such a case, the representation needs to contain both

task descriptions. The task space selector can then modulate

the movement reproduction with the robot by using a time-

continuous fitness function that results from the score values

of the different criteria. We have implemented this as a

modification of the previously mentioned similarity criterion

(see section II and [1]) that is used for imitating a learned

movement. This similarity criterion was used to continuously

weight the importance of different task spaces during the re-

production based on the inter-trial variance as an importance

measure. The new formulation replaces this purely variance-

based weighting with a so-called Task Blending Matrix Bt

that accounts for the importance information of all criteria

of the task space selector:

cim = (xt − µ̂t)
T
Bt(xt − µ̂t) . (6)

During the optimization and for each timestep t of the

reproduced trajectory, this cost function penalizes a devi-

ation of the state of the task space vector xt from the

learned movement’s mean values µ̂t, weighted with the time-

dependent diagonal matrix Bt. As an example, in the case of

only using the variance-based criterion within the task space

selector, the Task Blending Matrix is calculated using the
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estimated inter-trial variances σ̂t (see [1] for more details):

B
(ii)
t =

{

wmax
i −

wmax
i

σmax
i

· σ̂ti for 0 ≤ σ̂ti < σmax
i

0 for σ̂ti ≥ σmax
i

. (7)

In general, the Task Blending Matrix is defined by the fitness

function of the task space selector that is based on all criteria:

B
(ii)
t = fitness(t, i) . (8)

If the fitness for a specific task space i at timestep t is

low, the deviation of the robot’s movement from the learned

movement does not result in high costs, thus allowing other

task spaces to influence the reproduced movement stronger.

Additionally, if two or more task spaces are conflicting,

which allows only one of them to be active for the specific

timestep, the fitness values are used to decide which of them.

The following section explains the different criteria that

are evaluated within this work. In the future, based on

the concept of the task space pool and the task space

selector with its two possibilities to influence the imitation

learning process, the framework is easily extendable with

other criteria.

V. CRITERIA FOR AUTOMATIC TASK SPACE

SELECTION

A. Attention-based criterion

The first criterion presented is based on the interaction

between human and robot. Investigations in the field of

parent-infant research [17], [18], which are partly based on

a model proposed by [19] showed that parents modify their

actions when teaching their children tasks, such as stacking

cups. Parents start the interaction by highlighting and shaking

the important object that is involved in the task and begin

their demonstration when the child focuses on the object.

There is evidence that humans approach robots in a similar

way [20] and therefore it makes sense to incorporate such

mechanisms.

We account for this by implementing a reactive behavior

for the robot that detects and then focuses on the most salient

object in the scene. This has the advantage that the teacher

knows when the robot is attending to the right object before

he or she starts the demonstration. Additionally, this criterion

allows for another task space description, namely the position

information of all objects relative to the salient one (see

eq. A.5). Saliency thereby is calculated already during the

observation phase in order to actively move the robot’s head.

It is defined using the weighted variances of each object’s

position and orientation over a specific number of timesteps.

The object that is moved and shaked most strongly is selected

as the salient one. Hence, the teacher is able to directly

influence the robot’s gaze direction. In order to avoid too

hectic fixation changes if the teacher is shaking two objects

alternately, a simple hysteresis is incorporated.

B. Variance-based criterion

The second criterion is based on the inter-trial variance.

The basic principle of this is not new and its idea is that those
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Fig. 3. Analysis of the positional task spaces for the leapfrogging example.
It can be seen clearly that the demonstrations are most similar when using
the relative position wrt. the salient object (dark red).

dimensions of the observation that are important for the task

are similar over all demonstrations while the unimportant

dimensions differ more strongly. This basic idea was already

evaluated in our previous work [1] and other imitation

learning approaches that use probabilistic representations [5],

[7], [14].

In particular, the common process of imitation learning

with probabilistic encodings can be seen as having a fixed

set of task spaces for the representation and using the previ-

ously defined similarity criterion (eq. 6) with pure variance

weighting (eq. 7) in the Task Blending Matrix to blend them

during the reproduction phase. Additionally to this however,

we define a method to select the task spaces before the

encoding in order to learn only the necessary ones. This

selection is based on the comparison of all demonstrations

with each other within all possible conflicting task spaces.

Figure 2 shows 4 demonstrations of a leapfrogging toy

example. The task to be learned is to move one object

over another (top row). Note that the stereo camera head

is actively moving and focussing the most salient object as

it is defined in the attention-based criterion. The plots in the

middle row show the absolute position of both objects during

the 4 demonstrations of the task. It can be seen that the task

is performed at different absolute positions and not always

with the same object as the moving one. Further, although

the demonstrations look similar, their temporal properties

differ in a nonlinear way. To account for these nonlinear

temporal distortions, the comparison of all demonstrations is

done with Euclidean Dynamic Time Warping as a distance

measure. The analysis of the positional task spaces of the

leapfrogging example is depicted in Figure 3. For describing

the movements of the objects, the task space pool contains

the absolute object movements (eq. A.1), the movements

relative to their initial positions (eq. A.3), their movements

relative to each other (eq. A.4), the absolute movement of

the salient object (eq. A.1) and the relative movement of

the salient object wrt. the other object (eq. A.5). The figure
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Fig. 2. The top row shows shots of the leapfrogging example. The middle and the bottom row show 4 demonstrations of the task and their representations
within absolute world coordinates and in coordinates relative to the salient object, respectively. The x-axis of the right-handed world coordinate system
points towards the demonstrator and the z-axis to the top.

shows clearly that the latter task space is best suited to

represent the leapfrogging example because within this task

space all demonstrations are most similar. This can also be

seen in the bottom row of Figure 2. Based on a winner-takes-

all selection the task space selector chooses this task space

to be learned with the imitation learning system.

C. Kinetic criterion

Using the similarity over several demonstrations as a cri-

terion for what to imitate is a reasonable approach. However,

it cannot be applied to all aspects of imitation learning.

Imagine for example, the robot shall learn to reproduce

gestures performed by a human. It seems useful to track

the positions of the teacher’s hands, maybe even wrt. his

shoulders, generate the task space pool and select the task

space in which all gestures looked similar. But, there are

limits to what similarity can explain. If for example the

gesture involves only one moving hand and the other hand

is held still during the performance, no information about

the importance of the resting hand is available. It may be

important to hold the hand still exactly at the observed

position, but it is also possible the hand is completely

uninvolved and is held still because it is comfortable for

the demonstrator.

We think that in order to overcome these limitations,

additional information from a model-based criterion can

efficiently be incorporated into the task space selection. This

is motivated by neuroscientific findings, such as the mirror

system in humans [21] and by experiments as they were

carried out in [22] where it was shown that humans tend to

Fig. 4. 49 DOF skeleton and collision model of a human in its resting
position.

include their own motor model for prediction while observ-

ing hand movements. Therefore, the criterion presented in

this section maps the observation onto a human body model

and then analyzes the postures that the human teacher went

through during the demonstrations. The basic heuristic is

that exhausting or uncomfortable postures are more likely

to be task-relevant because they would have been avoided

otherwise.

We use a simplified human model with 49 angular degrees

of freedom (see Figure 4), which is structured similar to

the SantosTM model [23]. It includes segment masses and

limb lengths of an 1.8m tall male human with a weight of
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81.4kg. The model’s properties are suited for the experiments

within this work. However, it should be noted that in order

to apply the method to teachers with different proportions,

some kind of automatic scaling of the model needs to be

incorporated. The model itself is controlled using a whole

body motion algorithm [12], which includes several criteria

mapped into the null space, such as joint-limit avoidance or

collision avoidance.

Our experiments focus on human arm movements that

are recorded using a VICON motion capture system1. The

observed movements are mapped onto the human model

by using task space control that accounts for the relative

positions of the hand markers wrt. the shoulder markers and

the absolute head position. The marker positions are depicted

in Figure 4 as small, red spheres on the collision model.

Similar to [24] and [25], it is possible to define cost functions

based on this model. But, instead of predicting human upper

body postures, we use such cost functions to evaluate arm

movements of a human teacher.

We define two cost functions for both arms, effort and

discomfort. Effort is a cost that is based on the torque of

the arm joints, caused by the masses of the arm segments.

A high overall torque is associated with an exhausting arm

posture. It is calculated using the center of gravity Jacobians

JCOGi that relate the velocities of the segment masses to the

joint velocities of the human model. For all segment masses

i that belong to one arm, the torque that they generate is

defined through:

M =
∑

i∈arm

J
T
COGimi (9)

with mi being the gravity force due to the segment’s mass.

The effort costs are calculated as squared measures, multi-

plied with a diagonal selection matrix S to include joints of

the specific arm only:

Ceffort = M
T
SM (10)

S
(jj) =

{

1.0 j is arm joint

0.0 else
. (11)

Note that for simplification we only include the static torques

in our equations. We ignore the dynamic torques because we

use the cost function only to evaluate parts of movements,

which the variance-based or the attention-based criterion

cannot cope with, namely the static parts.

The discomfort cost function is defined by the deviation

of each arm joint j from its resting state. Figure 4 shows

the resting posture of the human model. The deviation is

weighted with the overall range between default q0j
and

extreme angular positions qminj
or qmaxj

:

Dj =











(

q0j
−qj

q0j
−qminj

)2

for qminj
≤ qj ≤ q0j

(

qj−q0j

qmaxj
−q0j

)2

for q0j
< qj ≤ qmaxj

(12)

Cdiscomfort =
∑

j∈arm

Dj . (13)

1located at the CoR-Lab, Bielefeld University

Fig. 5. The plots show the effort, the discomfort and their combination for
the observed movement depicted on the bottom. The blue, solid lines and
the red, dashed lines represent the right and left hand, respectively.

Figure 5 shows a movement that is evaluated with the kine-

matic model and the cost functions. The demonstrator begins

the movement with a default posture, which can be seen in

the first subfigure (I). Afterwards, the right hand continuously

draws the symbol “8” into the air and the left hand is held

still at different positions (subfigure II-IV). During this, only

the left arm posture in subfigure II is comfortable for the

demonstrator. The recorded movements are used to control

the human model and effort and discomfort is calculated for

each arm. The upper two plots show clearly distinguishable

phases of high and low effort and discomfort. Further, both

cost functions complement each other as illustrated in the

third plot of Figure 5, which shows the weighted sum of

both cost functions. Applying thresholds, such as indicated

by the dashed lines, can account for the distinction between

importance and unimportance for an arm that is held still.

As initially mentioned, this criterion obviously provides

advantages in cases where the observation cannot be ex-
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plained through variance-based measures. Based on the com-

bined costs, the task space selector is able to choose if the

movement of a specific arm should be learned or not. Note

that although only human arm movements are investigated

within this work, the same method can account for whole

body movements.

VI. SUMMARY AND FUTURE WORK

This work investigated a method for the automatic se-

lection of task spaces. These task spaces can be used to

efficiently represent movements that a robot should learn

through imitation. In order to determine an effective rep-

resentation, a discriminative approach was presented that

analyzes the observed movement within a pool of possibly

even conflicting task spaces. Based on the score of several

different criteria, the task space selector can choose a subset

of this task space pool for representation and influence the

movement reproduction with the robot by adapting the Task

Blending Matrix.

The incorporated criteria do not solely rely on variance-

based analysis, where a low inter-trial variance is associated

with importance, but also on psychological and physiological

measures. An attention mechanism is used to enable the robot

to determine task-relevant objects and reactively orient its

gaze direction towards it. Further, a step towards model-

based task space analysis with the help of a kinematic simu-

lation was made. The effort and discomfort cost functions

based on this model can be used as reliable importance

measures in cases where the other criteria fail.

Future work will further investigate the topic of task

spaces and their use in imitation learning systems. More

insights from the field of neuroscience shall be included in

the generation of the task space pool. Further, we want to

emphasize the task-dependence of task spaces and therefore

incorporate more higher-level information about task goals.

Quality measures for selecting suited task spaces shall in-

clude this additional information.
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