
Incremental Disparity Space Image computation

for automotive applications

Mirko Felisa and Paolo Zani

VisLab – Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma, ITALY

http://www.vislab.it

{felisa,zani}@vislab.it

Abstract— Generating a depth map from a pair of stereo
images is a challenging task, which is often further complicated
by the additional restrictions imposed by the target application;
in the automotive field, for example, real-time environment
reconstruction is essential for safety and autonomous navigation
systems, thus requiring reduced processing times, often at the
expense of a somewhat limited degree of accuracy in the results.
Nevertheless, a-priori knowledge on the intended use of the
algorithm can also be exploited to improve its performance,
both in terms of precision and computational burden.

This paper presents three different approaches to incremen-
tal Disparity Space Image (DSI) computation, which leverage
the properties of a stereo-vision system installed on a vehicle
to produce accurate depth maps at sustained frame rates on
commodity hardware.

I. INTRODUCTION

Soft real-time processing capabilities are mandatory in

order to successfully interact with the highly dynamic envi-

ronment typical of automotive applications; when producing

depth maps by means of stereo-vision this constraint can

be met using a local, correlation-based approach. While said

category includes several algorithms, this study focuses on an

incremental computation technique based on the SAD (Sum

of Absolute Differences) metric: the underlying idea, and

the related performance benefits, have been first investigated

in [1] and [2] respectively; at the implementation level,

further optimizations are possible, which exploit information

about the hardware, like the inherent parallelism of modern

multi-core, SIMD1-capable CPUs.

While driving in both urban and unstructured scenarios

using a stereo imaging system like the one depicted in Fig. 1,

the ground in front of the vehicle occupies a substantial

portion of the images, and as such can be modeled, for

example using a V-Disparity Image-based approach [3], [4].

In this situation, the objects that need to be detected are

those standing out of the ground, or –if negative obstacles

need to be handled too– delve into it to some limited extent.

This observation, together with the fact that in automotive

applications the vehicle roll can be neglected most of times,

allows to limit the search range used for window matching

to disparity values greater than those of the ground for any

given image row; the actual search area can nevertheless be

expanded to include some values that would result below

the terrain surface, both to increase the robustness against

1Single Instruction Multiple Data

Fig. 1. A test vehicle: (a) highlighted in red, the stereo-vision system
mounted on top of the windshield, and (b) a close-up of the right camera

the noise present in the ground estimation process, and to

cope with the aforementioned negative obstacles, if it is the

case.

The benefits of reducing the search space are a speedup

of the DSI generation process, since fewer matches are

involved, but also an increase in the quality of the resulting

image, since spurious matches corresponding to unacceptable

disparity values are automatically avoided. Fig. 2 compares

a map obtained taking into account the ground position with

one computed using a fixed range.

Although the combination of an incremental approach

with limited search ranges is appealing, it comes at the

cost of a processing flow encumbered by non-trivial border

cases, which need to be addressed in order to obtain correct

results; moreover, accurate camera calibration needs to be

performed, and intervening miscalibrations (for example due

to vibrations or hits) need to be detected and compensated:

while this is certainly an issue to consider, recent imaging

systems are becoming increasingly compact and lightweight,

thus resulting less prone to mechanical stress.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 345

II. ALGORITHMS

The most direct approach to the application of limited

search ranges to an incremental algorithm, and the first

one to be developed, is presented in Sec. II-A, and derives

from [1] and [2]; its main constraint is its inefficiency when

handling sparse inputs (e.g. Sobel-filtered and thresholded

images), since every output value depends on its neighbors:

this requirement forces the computation of all the DSI points,

even those for which it is known in advance that they

are going to be discarded. To overcome this limitation the

algorithm described in Sec. II-B has been devised: inter-pixel

dependency is relaxed so that each one no longer requires

the computation of the preceding points on the same row;

this allows to skip unnecessary DSI values, at the cost of no

longer having a processing time independent of correlation

window width; moreover, it becomes possible to use variable

search ranges within a given row. Aside being a trade-off

which might or might not be beneficial, depending on the

intended application, this approach results interesting in that

it can be exploited to produce an alternate formulation of

the fully incremental problem, which uses just one pixel

comparison per tested disparity during the matching phase,

regardless of window size, as detailed in Sec. II-C.

A. Incremental approach

Given two input stereo images (left and right, L and R

respectively in the following) of size width×height, a DSI

can be computed by iterating on each row and each column

of the base one (R), matching a small region cropped around

each point against the set of candidate windows on the related

epipolar line of the inspection image (L), and outputting the

disparity value corresponding to

arg min
d∈[dmin,dmax]

SAD(x, y, d) (1)

The use of rectification [5], [6] allows to obtain horizontal

epipolar lines, while to limit the search ranges a height× 2
elements matrix called K is used, with each row containing

the minimum and maximum disparity values to test during

the matching phase, under the constraint that

K[y, 0] ≥ K[y − 1, 0]∀ y ∈ [1, height [(2)

which is consistent with the intent of exploiting the informa-

tion on row-wise ground disparity, and has the advantage of

reducing the number of border cases to handle. The choice

of having a SAD similarity metric over rectangular windows

of size (2m + 1)× (2n + 1) leads to a matching score for a

generic point at coordinates (x, y) of

SAD(x, y, d)
def

=
m

∑

i=−m

n
∑

j=−n

|R[x + j, y + i] − L[x + j + d, y + i]| (3)

It has been shown in [1], [2], [7] that Eq. 3 can be expressed

in an incremental fashion as

SAD(x, y, d) = SAD(x, y − 1, d) + ∆y(x, y, d) (4)

with

∆y(x, y, d)
def

=
n

∑

j=−n

|R[x + j, y + m] − L[x + j + d, y + m]| −

n
∑

j=−n

|R[x + j, y − m − 1] −

L[x + j + d, y − m − 1]| (5)

which can be further reduced to

∆y(x, y, d) = ∆y(x− 1, y, d)−A(x, y, d)+B(x, y, d) (6)

having

A(x, y, d)
def

=

|R[x − n − 1, y + m] − L[x − n − 1 + d, y + m]| −

|R[x − n − 1, y − m − 1] −

L[x − n − 1 + d, y − m − 1]| (7)

and

B(x, y, d)
def

=

|R[x + n, y + m] − L[x + n + d, y + m]| −

|R[x + n, y − m − 1] − L[x + n + d, y − m − 1]| (8)

It is possible to avoid the explicit computation of both the

A(x, y, d) and B(x, y, d) terms since it is redundant, as

A(x, y, d) ≡ B(x − 2n − 1, y, d): let Ax be an auxiliary

matrix of size 2n + 1 × max k, with

max k
def

= max
y∈[0,height[

(K[y, 1] − K[y, 0] + 1) (9)

used to hold at position (x̄, d), with x̄ = x mod (2n + 1),
the values of B(x, y, d) as they get computed while the base

window moves along a given row of R; ∆y can then be

expressed as

∆y(x, y, d) = ∆y[d] − Ax[x̄, d] + B(x, y, d) (10)

with ∆y being a vector of size max k containing at position

d the value ∆y(x − 1, y, d).

By combinig Eq. 4 and Eq. 10 is finally possible to express

SAD(x, y, d) as

SAD(x, y, d) =

SAD(x, y − 1, d) +

∆y[d] − Ax[x̄, d] + B(x, y, d) (11)

Using the formulas presented so far, in order to build a com-

plete DSI it is necessary to handle four different categories

of points:

• the first point of the first row, computed using Eq. 3;

346

(a) (b) (c) (d)

Fig. 2. Disparity map generation: (a) right frame (512 × 384 pixels), (b) V-Disparity image with estimated ground disparities highlighted in red, (c)
disparity map with range [dgnd(i), 150] ∀ i ∈ [0, 384[using 8 × 8 pixels support windows and a 1.12 m baseline; (d) disparity map using the range
[0, 150] ∀ i ∈ [0, 384[. The DSI part missing in (c) corresponds to ground points in the right image falling outside the right border of the left image.

• the following points of the first row, for which the

following holds true

SAD(x, y, d) =

SAD(x − 1, y, d) +
m

∑

i=−m

|R[x + n, y + i] − L[x + n + d, y + i]| −

m
∑

i=−m

|R[x − n − 1, y + i] −

L[x − n − 1 + d, y + i]| (12)

(using the same principle exploited to obtain Eq. 10, it

is not necessary to compute both the incremental terms);

• the first point of a generic row, computed using Eq. 4

and 5;

• a generic point within the image, computed using

Eq. 11.

Note that the ∆y and Ax terms are being initialized when

analyizing the first row and the first pixel of a generic row

respectively, and then iteratively updated as processing goes

by.

It must be observed that search ranges shrink when the

base window is close to the image borders:
{

dmin(x, y) = max(n − x,K[y, 0])
dmax(x, y) = min((width − 1 − n − x,K[y, 1])

(13)

Furthermore, having set no constraint on the values of

K[y, 1] it can happen that

K[y, 1] < K[y + 1, 1] (14)

in which case it is no longer possible to use Eq. 11

to obtain the SAD value unless ∆y(x, y + 1, d), d ∈
[dmax(x, y), dmax(x, y + 1)] is computed at row y

even if not used while generating SAD(x, y, d), d ∈
[dmax(x, y), dmax(x, y + 1)]. Note that since there is no

guarantee on the existence of ∆y(x, y− 1, d) in the relevant

interval, the most straightforward way to proceed is to use

Eq. 12; while there are cases where this might not be the

most efficient solution –namely, whenever K[y − 1, 1] ≥
K[y+1, 1] > K[y, 1]– those are a small minority, especially

given the fact that if K[y, 1] = f(G[y]), with G[y] being

the ground disparity at row y, this value will tend to be

increasing from top to bottom of the image.

To improve the robustness against noise in the ground

disparity estimation process, and to detect some negative

obstacles, it is advisable to include some disparities lower

than that of the ground on a given row during the matching

phase; allowing this requires to handle the fact that when

K[y, 0] = d̄ < 0 the first |d̄| points of the row cannot be com-

puted as per Eq. 11, since Ax[x̄, dmin(x, y)]∀x ∈ [1, |d̄| [
is not available. This happens because Eq. 13 implies that

max(n−x, d̄) = n−x, as n−x > d̄ ∀x ∈ [1, |d̄| [with n >

0, d̄ < 0, which means that max(n − x, d̄) > max(n − x −
1, d̄)∀x ∈ [1, |d̄| [, or dmin(x, y) > dmin(x − 1, y), and

more exactly dmin(x, y) = dmin(x− 1, y) + 1. The solution

is again to abandon fully recursive computation, using Eq. 5

instead.

B. Semi-Incremental approach

If there is a special interest in reducing the processing time

when generating sparse depth maps, like the one depicted in

Fig. 3, a possible approach is to use only Eq. 4 and Eq. 5 to

compute each score value.

Fig. 3. Sparse disparity map: only windows having 8 bit luminance values
with σ2 > 30 are considered.

This strategy surely renders the computational burden

dependent on window width, but still for small correlation

windows and non-dense DSI this algorithm can outperform

the one presented in Sec. II-A, especially on modern CPUs

347

(supporting the Intel R©SSE 4.1 instruction set) which allow

a very efficient SIMD implementation. The strategy adopted

in deriving Eq. 10 can be employed again, using a support

matrix Cy of size width × 2m + 1 × max k to store

intermediate results so that

SAD(x, y, d) =

SAD(x, y − 1, d) − Cy[x, ȳ, d] + D(x, y, d) (15)

with ȳ = y mod (2m + 1) and

D(x, y, d)
def

=
n

∑

j=−n

|R[x + j, y + m] − L[x + j + d, y + m]| (16)

The DSI construction process in this case involves only two

different categories of points:

• the points of the first row, computed using Eq. 3;

• a generic point within the image, computed using Eq. 15

and 16.

This algorithm still requires to satisfy both Eq. 13 and the

constraints deriving form Eq. 14; furthermore, it must be

taken into account that it is possible to completely avoid the

SAD value computation for any given point only if there is

no other one to compute along the same column in the m

rows below and above it. Given a binary input mask of pixels

to process, it is possible to (recursively) assign each to one

of three categories:

• points that need both SAD values computation and score

function minimization in order to obtain a disparity

value;

• points that only need SAD values computation to sustain

the incremental scheme;

• points that can be skipped altogether.

After this classification step, the processing takes place as

explained above.

C. Full-Incremental approach

The semi-incremental algorithm presented in Sec. II-B

can be made fully incremental again: it is straightforward

to prove that

D(x, y, d) = Dx[d] − E(x, y, d) + F (x, y, d) (17)

with Dx being a vector of size max k holding at position d

the value D(x − 1, y, d), while

E(x, y, d)
def

=

|R[x − n − 1, y + m] − L[x − n − 1 + d, y + m]| (18)

and

F (x, y, d)
def

=

|R[x + n, y + m] − L[x + n + d, y + m]| (19)

This means that

D(x, y, d) = Dx[d] − Ex[x̄, d] + F (x, y, d) (20)

with x̄ = x mod (2n + 1), and Ex being updated with

values from F (x, y, d) as they get computed while moving

along a given row. Combining Eq. 20 with Eq. 15 finally

leads to

SAD(x, y, d) =

SAD(x, y − 1, d) − Cy[x, ȳ, d] +

Dx[d] − Ex[x̄, d] + F (x, y, d) (21)

which means that each SAD value can be obtained with

just one comparison, corresponding to the term F (x, y, d),
regardless of window size; note that Cy gets iteratively

updated with the result of Dx[d] − Ex[x̄, d] + F (x, y, d).
As it happens for the algorithm presented in Sec. II-A,

there are four categories of points to consider:

• the first point of the first row, computed as

SAD(x, y, d) =

m
∑

i=−m

Cy[x, i + m, d] (22)

with

Cy[x, i + m, d] =
n

∑

j=−n

|R[x + j, y + i] −

L[x + j + d, y + i]| (23)

• the following points of the first row, obtained again

using Eq. 22, but with Cy assuming the values

Cy[x, i + m, d] =

Cy[x − 1, i + m, d] − E
′

xy
[x̄, i + m, d] +

|R[x + n, y + i] − L[x + n + d, y + i]| (24)

with E
′

xy
being a matrix of size 2n+1×2m+1×max k

holding the incremental terms computed 2n+1 columns

before;

• the first point of a generic row, computed as

SAD(x, y, d) =

SAD(x, y − 1, d) − Cy[x, ȳ, d] +
n

∑

j=−n

Ex[j + n, d] (25)

with

Ex[j + n, d] =

|R[x + j, y + m] − L[x + j + d, y + m]| (26)

• a generic point within the image, computed using

Eq. 21.

The use of Eq. 22, Eq. 24 and Eq. 25 allows both to

obtain the desired SAD values and to correctly initialize

the auxiliary buffers. Being a fully incremental algorithm,

all the border cases presented in Sec. II-A apply, but are

handled differently. The effects of Eq. 14 are compensated by

extending the SAD values computation using Eq. 21 beyond

K[y, 1] up to maxi∈[0,2m+1](K[y + i, 1]), in order to fill the

Cy buffer with values needed by the subsequent rows; note

however that disparity values belonging to this range are not

considered during the minimization step. Negative disparities

348

at the beginning of a row are compensated by applying

Eq. 15, which does not require incremental terms from

position (x− 1, y, d), which are not available, as previously

explained.

III. BENCHMARKS

The test system is equipped with 8 GB DDR2 800 MHz

RAM and an Intel R© Core
TM

2 Duo E8400 processor running

at 3 GHz, supporting the SSE 4.1 instruction set, and fea-

turing 128 KB L1 cache, 6 MB L2 cache and a 1333 MHz

FSB. The compiler used is GNU GCC version 4.2.4, with op-

timization flags -O3 -march=nocona -fforce-addr

-ftracer -s.

The algorithms presented so far have been implemented

both in plain C++ and using SIMD instructions, while the

multiple cores of the underlying hardware have been ex-

ploited by splitting the processing into different independent

threads operating on disjoint horizontal stripes of the image.

Three tests have been carried out, involving the generation

by all the described algorithms of different DSI types from

a pair of 512 × 384 stereo images, captured using a 1.12 m

baseline; various window sizes have been evaluated, and

Tab. I contains, for all the proposed benchmarks, the number

of window comparisons performed, defined as the sum of the

active reference pixels, each multiplied by the corresponding

search range size; the use of even windows is motivated by

the possibility of slightly better SIMD implementations.

TABLE I

WINDOW COMPARISONS PERFORMED IN EACH BENCHMARK

Comparisons

Win Size [px] Fixed Range Ground Sparse

4x4 23166207 14434843 8153744

8x8 22812867 14166947 9860957

12x12 22461943 13901467 10534092

16x16 22113435 13638403 10914608

A. Fixed ranges

The first benchmark consists in the generation of the dense

DSI depicted in Fig. 2-d, which is characterized by constant

search ranges: d ∈ [0, 150]∀ y ∈ [0, 384[.

TABLE II

PROCESSING TIMES – FIXED RANGES

Processing Time [ms]

Win Size
[px]

Incremental Semi-Incremental Full-Incremental
C++ SIMD C++ SIMD C++ SIMD

4x4 103 66 135 38 78 37

8x8 103 68 211 38 76 37

12x12 102 68 291 38 78 37

16x16 100 68 375 44 76 42

Results are as expected: in the plain C++ implementa-

tion the Full-Incremental approach outperforms the others,

being the one with the lowest complexity, while the Semi-

Incremental algorithm processing time is (linearly) depen-

dent on the correlation window width. On the other hand,

the SIMD implementation shows that the Semi-Incremental

 0

 50

 100

 150

 200

 250

 300

 350

 400

4x4 8x8 12x12 16x16

ti
m

e
 [

m
s
]

window size [px]

Incremental
Semi-Incremental

Full-Incremental
Incremental SIMD

Semi-Incremental SIMD
Full-Incremental SIMD

algorithm is better suited for vectorization, since it has a

more direct mapping to hardware instructions, and while

the Full-Incremental approach is still the fastest, the final

performance difference is quite small.

B. Ground-based ranges

The second benchmark involves the generation of the

dense DSI depicted in Fig. 2-c, with each search range

starting some pixels below the estimated ground disparity:

d ∈ [G[y] − 3, 150]∀ y ∈ [0, 384[.

TABLE III

PROCESSING TIMES – GROUND-BASED RANGES

Processing Time [ms]

Win Size
[px]

Incremental Semi-Incremental Full-Incremental
C++ SIMD C++ SIMD C++ SIMD

4x4 68 39 84 24 45 25

8x8 68 39 130 27 45 26

12x12 68 39 190 30 45 29

16x16 68 41 240 33 45 31

 0

 50

 100

 150

 200

 250

 300

 350

 400

4x4 8x8 12x12 16x16

ti
m

e
 [

m
s
]

window size [px]

Incremental
Semi-Incremental

Full-Incremental
Incremental SIMD

Semi-Incremental SIMD
Full-Incremental SIMD

In this test figures are lower than in the preceding one,

and while this is no surprise, since the number of performed

comparisons has been noticeably reduced, the general trend

remains unchanged.

349

C. Sparse map

The last benchmark produces the sparse DSI depicted in

Fig. 3-c, which uses the same ground-limited ranges of the

previous test, with the additional constraint that only points

whose reference window 8-bit luminance values have σ2 >

30 need to be generated.

TABLE IV

PROCESSING TIMES – SPARSE MAP

Processing Time [ms]

Win Size
[px]

Incremental Semi-Incremental Full-Incremental
C++ SIMD C++ SIMD C++ SIMD

4x4 68 39 71 15 42 22

8x8 68 39 116 20 43 24

12x12 68 39 160 22 44 27

16x16 68 41 220 27 44 29

 0

 50

 100

 150

 200

 250

 300

 350

 400

4x4 8x8 12x12 16x16

ti
m

e
 [

m
s
]

window size [px]

Incremental
Semi-Incremental

Full-Incremental
Incremental SIMD

Semi-Incremental SIMD
Full-Incremental SIMD

The applied filtering is indeed trivial, but processing times

are considerably smaller than in the two previous tests, while

the information content of interest is mostly left untouched:

the cars and the pedestrian appearing in the scene are still

clearly visible, while the ground surface is almost completely

removed.

It is interesting to note that in this case the SIMD

implementation of the Semi-Incremental algorithm results

the fastest one, given its ability to avoid the computation

of unneeded points.

IV. CONCLUSIONS

This paper has presented three different approaches to

incremental Disparity Space Image computation in automo-

tive environments, which leverage the knowledge about the

expected field of application (most notably, the presence

of the ground covering a substantial portion of the image,

and its lack of texture) to reduce the overall computational

burden, and to improve the quality of the resulting depth

map.

Performance tests have shown that on general-purpose

hardware the proposed Full-Incremental algorithm can pro-

duce dense maps at near real-time rates, while keeping a

control flow simple enough to allow SIMD vectorization,

which almost halves the processing times; conversely, the

much simpler Semi-Incremental algorithm has proven a

viable solution only when adequate hardware is available:

nevertheless, it results the best option if its ideal working

conditions are met, which is happening most of the time in

a typical urban scenario.

While a quantitative anlayisis of the quality of the gener-

ated depth maps is not easy to carry out, mainly because

producing a reliable ground truth is not an easy task in

outdoor environments, the extensive tests performed before

and during the DARPA Grand Challenge 2005 [4] and the

DARPA Urban Challenge [8] have shown that the proposed

approaches provide an effective and reliable reconstruction

of the vehicle surroundings.

V. ACKNOWLEDGEMENTS

The authors gratefully thank Alberto Broggi for his sup-

port and review of this project.

REFERENCES

[1] O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang, P. Fua,
E. Théron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy,
“Real-time correlation-based stereo : algorithm, implementations and
applications,” INRIA, Tech. Rep. 2013, Aug. 1993.

[2] L. D. Stefano, M. Marchionni, S. Mattoccia, and G. Neri, “A fast
areabased stereo matching algorithm,” Image and Vision Computing,
vol. 22, pp. 983–1005, 2004.

[3] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real Time Obstacle Detection
in Stereo Vision on non Flat Road Geometry through “V-Disparity”
Representation,” in Procs. IEEE Intelligent Vehicles Symposium 2002,
Paris, France, June 2002.

[4] A. Broggi, C. Caraffi, P. P. Porta, and P. Zani, “The Single Frame Stereo
Vision System for Reliable Obstacle Detection used during the 2005
Darpa Grand Challenge on TerraMax,” in Procs. IEEE Intl. Conf. on

Intelligent Transportation Systems 2006, Toronto, Canada, Sept. 2006,
pp. 745–752.

[5] O. Faugeras, Three-dimensional computer vision: a geometric view-

point. Cambridge, MA, USA: MIT Press, 1993.
[6] A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for

rectification of stereo pairs,” Machine Vision and Applications, vol. 12,
no. 1, pp. 16–22, 2000.

[7] L. Di Stefano, M. Marchionni, and S. Mattoccia, “A pc-based real-time
stereo vision system,” MG&V, vol. 13, no. 3, pp. 197–220, 2004.

[8] Y.-L. Chen, V. Sundareswaran, C. Anderson, A. Broggi, P. Grisleri, P. P.
Porta, P. Zani, and J. Beck, “TerraMax: Team Oshkosh Urban Robot,”
Journal of Field Robotics, vol. 25, no. 10, pp. 841–860, Oct. 2008.

350

